Proof of Riemann Hypothesis Using Schwarz Reflection Principle

Shekhar Suman
Email: shekharsuman068@gmail.com
October 13, 2020

Abstract: Riemann's Xi function is defined as ,
$\xi(s)=\frac{s(s-1)}{2} \pi^{-s / 2} \Gamma(s / 2) \zeta(s)$
$\xi(s)$ is an entire function whose zeroes are the non trivial zeroes of $\zeta(s)$ All the non trivial zeros of the Riemann zeta function lie inside the critical strip $0<\Re(s)<1$.In this paper we use product representation of Riemann Xi function and Schwarz Reflection principle to conclude that the Riemann Hypothesis is true

Keywords: Riemann zeta function, Riemann Xi function, critical strip, critical line.

1 Statement of the Riemann Hypothesis

The Riemann Hypothesis states that all the non trivial zeroes of the Riemann Zeta function lie on the critical line $\Re(s)=1 / 2$

2 Proof

The Riemann Xi function [2, p.37, Theorem 2.11] is defined as ,
$\xi(s)=\xi(0) \prod_{\rho}\left(1-\frac{s}{\rho}\right) \quad \ldots$
where ρ ranges over all the roots ρ of $\xi(\rho)=0$ and if we combine the factors
$\left(1-\frac{s}{\rho}\right)$ and $\left(1-\frac{s}{1-\rho}\right)$, the product converges absolutely and uniformly on
compact subsets of \mathbb{C}
Also, $\xi(0)=1 / 2,[2, p .37]$
Claim : $\xi\left(\rho_{0}\right)=0 \Rightarrow \Re\left(\rho_{0}\right)=1 / 2$
Enough to prove : $\Re\left(\rho_{0}\right) \neq 1 / 2 \Rightarrow \xi\left(\rho_{0}\right) \neq 0$
Let, $\Re\left(\rho_{0}\right) \neq 1 / 2$
Case 1:0<凡($\left.\rho_{0}\right)<1 / 2$ and $\Im\left(\rho_{0}\right)>0$
Assume on the contrary that $\xi\left(\rho_{0}\right)=0,0<\Re\left(\rho_{0}\right)<1 / 2$ and $\Im\left(\rho_{0}\right)>0$
Hadamard product of the Riemann Xi function is, [4, p. 42 , section 2.5]
$\xi(s)=\xi(0) \prod_{\Im(\rho)>0}\left(1-\frac{s}{\rho}\right)\left(1-\frac{s}{1-\rho}\right)$
$\xi\left(\rho_{0}\right)=0$
$\prod_{\Im(\rho)>0}\left(1-\frac{\rho_{0}}{\rho}\right)\left(1-\frac{\rho_{0}}{1-\rho}\right)=0$, since $\xi(0)=1 / 2$
$\Rightarrow \prod_{\Im(\rho)>0, \Re(\rho)<1 / 2}\left(1-\frac{\rho_{0}}{\rho}\right)\left(1-\frac{\rho_{0}}{1-\rho}\right) \Pi_{\Im(\rho)>0, \Re(\rho)>1 / 2}\left(1-\frac{\rho_{0}}{\rho}\right)\left(1-\frac{\rho_{0}}{1-\rho}\right)=0$
Since both the above products are convergent [proved later in this paper], so,
$\Pi_{\Im(\rho)>0, \Re(\rho)<1 / 2}\left(1-\frac{\rho_{0}}{\rho}\right)\left(1-\frac{\rho_{0}}{1-\rho}\right)=0$ or $\prod_{\Im(\rho)>0, \Re(\rho)>1 / 2}\left(1-\frac{\rho_{0}}{\rho}\right)\left(1-\frac{\rho_{0}}{1-\rho}\right)=0$
Case $1 A: \prod_{\Im(\rho)>0, \Re(\rho)>1 / 2}\left(1-\frac{\rho_{0}}{\rho}\right)\left(1-\frac{\rho_{0}}{1-\rho}\right)=0$
$\Pi_{\Im(\rho)>0, \Re(\rho)>1 / 2}\left(1-\frac{\rho_{0}}{\rho}\right)\left(1-\frac{\rho_{0}}{1-\rho}\right)=\prod_{\Im(\rho)>0, \Re(\rho)>1 / 2}\left[1-\frac{\rho_{0}\left(1-\rho_{0}\right)}{\rho(1-\rho)}\right]$
This converges absolutely provided $\sum_{\Im(\rho)>0, \Re(\rho)>1 / 2} \frac{1}{|\rho(1-\rho)|}<\infty$
$\sum_{\Im(\rho)>0, \Re(\rho)>1 / 2} \frac{1}{|\rho(1-\rho)|}<\sum_{\Im(\rho)>0} \frac{1}{|\rho(1-\rho)|}<\sum_{\Im(\rho)>0} \frac{1}{\left|\left(\rho-\frac{1}{2}\right)^{2}-\frac{1}{4}\right|}<\sum \frac{1}{\left|\rho-\frac{1}{2}\right|^{2}}$
it suffices to prove the convergence of the sum $\sum \frac{1}{\left|\rho-\frac{1}{2}\right|^{2}}$; here the sum can be considered either as a sum over roots ρ such that $\Im(\rho)>0$ or as a sum over all roots since first of these is twice the second [4, p.42]
$\sum \frac{1}{\left|\rho-\frac{1}{2}\right|^{2}}<\infty[4, p \cdot 42$, Theorem $]$
Product $\prod_{\Im(\rho)>0, \Re(\rho)>1 / 2}\left(1-\frac{\rho_{0}}{\rho}\right)\left(1-\frac{\rho_{0}}{1-\rho}\right)$ is absolutely convergent and hence convergent .
Value of a convergent infinite product is 0 if and only if atleast one of the factors is 0 [5, p.287]
$\left(1-\frac{\rho_{0}}{\rho_{1}}\right)\left(1-\frac{\rho_{0}}{1-\rho_{1}}\right)=0$, where $\Im\left(\rho_{1}\right)>0, \Re\left(\rho_{1}\right)>1 / 2$
$\rho_{0}=\rho_{1}$ or $\rho_{0}=1-\rho_{1}$
$\Re\left(\rho_{0}\right)=\Re\left(\rho_{1}\right)>1 / 2$ or $\Im\left(\rho_{0}\right)=\Im\left(1-\rho_{1}\right)<0$
$\Re\left(\rho_{0}\right)>1 / 2$ or $\Im\left(\rho_{0}\right)<0$
which contradicts $\Re\left(\rho_{0}\right)<1 / 2$ and $\Im\left(\rho_{0}\right)>0$ in Case 1
Case $1 B: \prod_{\Im(\rho)>0, \Re(\rho)<1 / 2}\left(1-\frac{\rho_{0}}{\rho}\right)\left(1-\frac{\rho_{0}}{1-\rho}\right)=0$
Let, $I(s)=\prod_{\Im(\rho)>0, \Re(\rho)<1 / 2}\left(1-\frac{s}{\rho}\right)\left(1-\frac{s}{1-\rho}\right)$
$I\left(\rho_{0}\right)=0$
$\xi(s)=\xi(0) \prod_{\Im(\rho)>0}\left(1-\frac{s}{\rho}\right)\left(1-\frac{s}{1-\rho}\right)$
$\xi\left(\rho_{0}\right)=0$
$\xi\left(\rho_{0}\right)=\prod_{\Im(\rho)>0, \Re(\rho)<1 / 2}\left(1-\frac{\rho_{0}}{\rho}\right)\left(1-\frac{\rho_{0}}{1-\rho}\right) \prod_{\Im(\rho)>0, \Re(\rho)>1 / 2}\left(1-\frac{\rho_{0}}{\rho}\right)\left(1-\frac{\rho_{0}}{1-\rho}\right)$
Since, $\xi(\rho)=0 \Longleftrightarrow \xi(1-\rho)=0 \Longleftrightarrow \xi(\bar{\rho})=0 \Longleftrightarrow \xi(1-\bar{\rho})=0$
$\xi\left(\rho_{0}\right)=\prod_{\Im(\rho)>0, \Re(\rho)<1 / 2}\left(1-\frac{\rho_{0}}{\rho}\right)\left(1-\frac{\rho_{0}}{1-\rho}\right)\left(1-\frac{\rho_{0}}{\bar{\rho}}\right)\left(1-\frac{\rho_{0}}{1-\bar{\rho}}\right) \prod_{\Im(\rho)>0, \Re(\rho)>1 / 2}(1-$ $\left.\frac{\rho_{0}}{\rho}\right)\left(1-\frac{\rho_{0}}{1-\rho}\right)\left(1-\frac{\rho_{0}}{\bar{\rho}}\right)\left(1-\frac{\rho_{0}}{1-\bar{\rho}}\right)$
$I(s)=\prod_{\Im(\rho)>0, \Re(\rho)<1 / 2}\left(1-\frac{s}{\rho}\right)\left(1-\frac{s}{1-\rho}\right)\left(1-\frac{s}{\bar{\rho}}\right)\left(1-\frac{s}{1-\bar{\rho}}\right)$
$I\left(\rho_{0}\right)=\prod_{\Im(\rho)>0, \Re(\rho)<1 / 2}\left(1-\frac{\rho_{0}}{\rho}\right)\left(1-\frac{\rho_{0}}{1-\rho}\right)\left(1-\frac{\rho_{0}}{\bar{\rho}}\right)\left(1-\frac{\rho_{0}}{1-\bar{\rho}}\right)=0$
$I\left(\overline{\rho_{0}}\right)=\prod_{\Im(\rho)>0, \Re(\rho)<1 / 2}\left(1-\frac{\overline{\rho_{0}}}{\rho}\right)\left(1-\frac{\overline{\rho_{0}}}{1-\rho}\right)\left(1-\frac{\overline{\rho_{0}}}{\bar{\rho}}\right)\left(1-\frac{\overline{\rho_{0}}}{1-\bar{\rho}}\right)$
$I\left(\overline{\rho_{0}}\right)=\overline{\prod_{\Im(\rho)>0, \Re(\rho)<1 / 2}\left(1-\frac{\rho_{0}}{\rho}\right)\left(1-\frac{\rho_{0}}{1-\rho}\right)\left(1-\frac{\rho_{0}}{\bar{\rho}}\right)\left(1-\frac{\rho_{0}}{1-\bar{\rho}}\right)}$
$I\left(\overline{\rho_{0}}\right)=\overline{I\left(\rho_{0}\right)}=0$
Since from Case $1 B, I\left(\rho_{0}\right)=0 \Rightarrow I\left(\overline{\rho_{0}}\right)=0$
$I(s)$ is Holomorphic on the upper half plane $\{\mathrm{I}(\mathrm{z}) \in \mathbb{C} \mid \Im(z)>0\}$ and real on the real axis

Also, by Schwarz's reflection principle,
$\mathrm{I}\left(\overline{\rho_{0}}\right)=\overline{I\left(\rho_{0}\right)}=0$
$I\left(\overline{\rho_{0}}\right)=0$
$\prod_{\Im(\rho)>0, \Re(\rho)<1 / 2}\left(1-\frac{\overline{\rho_{0}}}{\rho}\right)\left(1-\frac{\overline{\rho_{0}}}{1-\rho}\right)=0$
Since proceeding similarly in case $1 A,(2)$ is also a convergent infinite product.
Value of a convergent infinite product is 0 if and only if atleast one of the factors is $0[5, p .287]$
$\left(1-\frac{\overline{\rho_{0}}}{\rho_{1}}\right)\left(1-\frac{\overline{\rho_{0}}}{1-\rho_{1}}\right)=0$, where $\Re\left(\rho_{1}\right)<1 / 2$ and $\Im\left(\rho_{1}\right)>0$
$\overline{\rho_{0}}=\rho_{1}$ or $\overline{\rho_{0}}=1-\rho_{1}$
$\Im\left(\overline{\rho_{0}}\right)=\Im\left(\rho_{1}\right)>0$ or $\Re\left(\overline{\rho_{0}}\right)=\Re\left(1-\rho_{1}\right)>1 / 2$
$\Im\left(\rho_{0}\right)<0$ or $\Re\left(\rho_{0}\right)>1 / 2$
contradicts $\Im\left(\rho_{0}\right)>0$ or contradicts $\Re\left(\rho_{0}\right)<1 / 2$ in Case 1
So we get a contradiction.
Hence our assumption that $\xi\left(\rho_{0}\right)=0,0<\Re\left(\rho_{0}\right)<1 / 2$ and
$\Im\left(\rho_{0}\right)>0$ is wrong

Thus, $\xi\left(\rho_{0}\right) \neq 0$ when $0<\Re\left(\rho_{0}\right)<1 / 2$ and $\Im\left(\rho_{0}\right)>0$
Case $2: 0<\Re\left(\rho_{0}\right)<1 / 2$ and $\Im\left(\rho_{0}\right)<0$
$\xi\left(\rho_{0}\right)=0$
$\Rightarrow \xi\left(\overline{\rho_{0}}\right)=0$
$\Im\left(\rho_{0}\right)<0 \Rightarrow \Im\left(\overline{\rho_{0}}\right)>0$
Also $0<\Re\left(\overline{\rho_{0}}\right)<1 / 2$

By, Case 1, $\xi\left(\overline{\rho_{0}}\right) \neq 0, \Im\left(\overline{\rho_{0}}\right)>0$ and $0<\Re\left(\overline{\rho_{0}}\right)<1 / 2$
Since, $\xi(s)$ is holomorphic and is real on the real axis so, by Schwarz's reflection principle [1, p.30],
$\overline{\xi\left(\rho_{0}\right)}=\xi\left(\overline{\rho_{0}}\right) \neq 0, \Im\left(\overline{\rho_{0}}\right)>0$ and $0<\Re\left(\overline{\rho_{0}}\right)<1 / 2$
$\xi\left(\rho_{0}\right) \neq 0,0<\Re\left(\rho_{0}\right)<1 / 2$ and $\Im\left(\rho_{0}\right)<0$
Thus in both the above cases 1 and 2, we get a contradiction

So, our assumption that $\xi\left(\rho_{0}\right)=0$ when $0<\Re\left(\rho_{0}\right)<1 / 2$ is wrong
Thus, $\xi\left(\rho_{0}\right) \neq 0$ when $0<\Re\left(\rho_{0}\right)<1 / 2$
Case 3:1/2< $\left(\rho_{0}\right)<1, \Im\left(\rho_{0}\right) \in \mathbb{R}$
ρ_{0} is a zero of $\xi(s)$ then $1-\rho_{0}$ is also a zero due to the functional equation
$\xi(s)=\xi(1-s)$ and by Schwarz's reflection principle $1-\overline{\rho_{0}}$ is also a zero $[1, p .30]$
$\rho_{0}=\sigma_{0}+i t_{0}, 1 / 2<\sigma_{0}<1$
$1-\overline{\rho_{0}}=1-\sigma_{0}+i t_{0}$
$1-\sigma_{0}=\sigma_{0}^{\prime}, 0<\sigma_{0}^{\prime}<1 / 2$
By cases 1 and 2, $\xi\left(\sigma_{0}^{\prime}+i t_{0}\right) \neq 0,0<\sigma_{0}^{\prime}<1 / 2$
$\xi\left(1-\sigma_{0}+i t_{0}\right) \neq 0$
By functional equation,
$\xi\left(\sigma_{0}-i t_{0}\right) \neq 0$
By Schwarz's Reflection principle,
$\xi\left(\sigma_{0}+i t_{0}\right) \neq 0,1 / 2<\sigma_{0}<1$
$\xi\left(\rho_{0}\right) \neq 0$ when $1 / 2<\Re\left(\rho_{0}\right)<1$
Cases 1, 2 and 3 gives,
If $\Re\left(\rho_{0}\right) \neq 1 / 2$ then $\xi\left(\rho_{0}\right) \neq 0$
or if $\xi\left(\rho_{0}\right)=0$ then $\Re\left(\rho_{0}\right)=1 / 2$
This proves the Riemann Hypothesis

3 References:-

1. E. C. Titchmarsh, D. R. Heath-Brown - The theory of the Riemann Zeta function [2nd ed] Clarendon Press; Oxford University Press (1986).
2. Kevin Broughan - Equivalents of the Riemann Hypothesis : Arithmetic Equivalents Cambridge University Press (2017) .
3. A Monotonicity of Riemann's Xi function and a reformulation of the Riemann Hypothesis, Periodica Mathematica Hungarica - May 2010.
4. H.M Edwards - Riemann's Zeta function- Academic Press (1974).
5. Analytic Functions, 3rd Edition Hardcover - 1971 by Stanislaw Saks, Antoni Zygmund .

Email- shekharsuman068@gmail.com

