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Abstract

This article proposes a viral diffusion model (like Covid-19 pandemic) in the ordi-

nary differential equations (ODE) and stochastic differential equations (SDE) frame-
work. The classic models based on the logistic map are analyzed, and then a noise
term is introduced that models the behavior of the so-called deniers. This model fairly
faithfully reproduces the Italian situation in today’s period. We then move on to local
analysis, arriving at an equation of continuity for what concerns the density of the
number of infected in an assigned region. We, therefore, prove a Theorem according to
which classical logistics is the most catastrophic of predictions. In a realistic scenario,
it is necessary to take into account the inevitable fluctuations in the aforementioned
density. This implies a fragmentation of the initial cluster (generated by “patient
zero”) into an N disjoint sub clusters. For very large N , statistical analysis suggests
the use of the two-point correlation function (and more generally, n-points). In prin-
ciple, an estimate of this function makes it possible to determine the evolution of the
pandemic. The distribution of the sub clusters could be fractal, exactly as it happens
for the distribution of galaxies starting from a homogeneous and isotropic primordial
universe, but with random fluctuations in matter density. This is not surprising, since
due to the invariance in scale, fractals have a low “computational cost”. The idea that
pandemics are cyclical processes, that is, they occur with a given periodicity, would
therefore remain corroborated.
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CONTENTS

Introduction

The work is divided as follows:

• In sections 1, 2, 2.1 the necessary definitions are introduced, and then set up a differ-
ential equation containing among its coefficients a containment parameter (lockdown,
social distancing, masks, etc.).

• Section 2.2 considers the special case of an autonomous system which is specifically a
Bernoulli-like differential equation with constant coefficients (stationary containment
action). By applying Fourier’s analysis to the density fluctuations of the number of
infected, we prove a Theorem according to which the logistic solution is the most
catastrophic of the predictions.

• In section A.4 the use of the two-point correlation function (or more generally n-points)
is proposed, the estimate of which can be made by analyzing the data collected. In this
way it could be possible to arrive at a law of distribution of infected clusters, starting
from an initial homogeneous cluster. A fractal distribution of the aforementioned
clusters cannot be excluded.

• In section 2.3 we move on to a more realistic scenario where the containment parameter
depends on time. We prove a Theorem according to which a pandemic modeled by
a non-autonomous system with a containment parameter represented by an analytic
function, is extinguished at most asymptotically.

• Section 2.4 mentions an alternative paradigm to that of differential equations, with
particular regard to autonomous systems. More precisely, the dynamic evolution of
the pandemic is studied in the space of configurations.

• Section 3 considers an even more realistic scenario, in which the containment parameter
“disturbed” by the action of the so-called deniers. The disturbing action is modeled
by a Wiener process.
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2 ATTACK STRATEGIES

1 Predictability and controllability of a pandemic

If t0 and tna
denote the initial and current instants of a pandemic process P respectively,

the time interval [t0, tna
] is sampled in intervals of width ∆ = 1d. If ηk is the number of

daily infections, i.e. the number of cases registered on the k-th day tk (new positives), the
following subset of N (na > 1) is uniquely determined:

{η0, η1, ..., ηna
} (1)

As na increases indefinitely, la (1) becomes a sequence from N to N:

{ηk} : η0, η1, η2, ... (2)

That said, the following definitions exist:

Definition 1 A pandemic P è predictable if (2) is elementarily expressible. In otherwise
we say that P is unpredictable.

Definition 2
ΣP

def
= {σ1, σ2, ..., σp} (3)

where σk denotes a containment action (social distancing, masks, lockdown, antiviral thera-
pies, vaccine). An unpredictable pandemic P is controllable if

∃ΣP 6= ∅ | ηk = 0, ∀k > k∗ ∈ N (4)

Otherwise, P is said ti be uncontrollable.

2 Attack strategies

• Time domain [1] (ODE, PDE, SDE)

Notation 3 As we will see below, the use of SDE derives from the presence of random
variables. More specifically, if I is a population of individuals, it follows that however
we take I ∈ I, I is free to make choices and therefore to execute a behavior conforming
to at least one σk ∈ ΣP .

• Configuration domain [2] (CA)

2.1 Time domain

In the hypothesis of predictability of P , we are obviously interested in the search for the
expression elementary of succession (2). ). For this purpose it is preferable to pass to the
continuum, defining first the magnitude yk:

yk+1 − yk = ηk, k = 0, 1, 2, ..., na − 1 (5)

which enumerates the total number (at the current time tna
) of the infected (the so-called

currently positive). Equation (5) can be rewritten as

yk+1 − yk

∆
= ηk (6)
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2 ATTACK STRATEGIES

Going to the continuous and performing the operation of passing the limit for ∆ → 0, the
previus become:

d

dt
y (t) = η (t)

Using dotted notation to denote the derivation operation with respect to time:

ẏ (t) = η (t) (7)

Since it is simpler to refer to the magnitude y (t) which enumerates the currently positive,
any predictive model will have to implement a differential equation for the aforementioned
greatness. In order to define the characteristic parameters of a pandemic, let us examine the
special case given by the following homogeneous linear ODE:

ẏ = R0y (8)

being R0 > 0 a constant with the dimensions of the inverse of a time. Equation (8) is
accompanied by the initial condition:

y (t0) = y0, (9)

The solution of this Cauchy problem is:

y (t) = y0e
t/τ , (10)

were τ = R−1
0 is the time constant of the exponential viral diffusion process. For being able

to explain the meaning of R0 = ẏ
y
we have to sample to sample time, so that with obvious

meaning of symbols

R0 =
yk+1−yk

∆

yk
, (∆ = 1d) (11)

For example for yk = 1 we have that for yk+1 > yk, it succeeds

R0 =
∆=1d

yk+1 > 1 (12)

This implies that if at the instant tk we have only one infected, at the next instant tk+1 =
tk + ∆ there will be R0 > 1 iinfected. From an epidemiological point of view, this means
that on average a infected can infect R0 individuals in the time interval ∆.

Definition 4 The constant R0 that appears in (8) is called the contagio rate.

In the paradigm of systems theory, (8) describes a linear dynamic system. More precisely,
(8) is a particular case of a so-called autonomous system

{
ẏ = f (y)
y (t0) = y0

, (13)

being f (y) an assigned function sufficiently regular in order to guarantee its existence and
the uniqueness of the solutions of the Cauchy problem (13). The differential equation

ẏ = f (y) (14)
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2 ATTACK STRATEGIES

integrates by separation of variables. The general integral is written:

F (y) = t+ C, ∀C ∈ R

where is it

F (y) =

∫
dy

f (y)

The following geometric locus is uniquely determined in the Cartesian plane (y, ẏ):

Γ (f) =
{
(y, ẏ) ∈ R2 | 0 ≤ y < +∞, ẏ = f (y)

}
(15)

that is the cartesian diagram of the real function f of the real variable y. For the aforemen-
tioned regularity hypothesis of f , we have that the locus Γ (f) is a regolar curve.

Let’s consider a non-autonomous system:

ẏ = f (t, y) ,

for an assigned real function f of the real variables t, y, sufficiently regular so as to ensure the
existence and uniqueness of the solutions for a given initial condition y (t0) = y0. Virtually,
the function f(t, y) is expressed as the sum of two contributions:

f (t, y) = fauto (y) + fcont (t, y) , (16)

where the first term in the second member is clearly the contribution coming from the
dynamics “internal” to the system. The second term, on the other hand, represents the
containment action (3). The latter explicitly depends on time through a term we denote
with β (t):

fcont (t, y) = β (t) yλ,

being λ > 0 a parameter that introduces a nonlinear effect, essential if we want maintain
an adherence to physical reality (most of the processes occurring in nature are nonlinear, so
linearity is only a useful approximation).

Definition 5 The quantity β (t) is called the pandemic containment parameter.

Definition 6 If y (t) is the only solution of the Cauchy problem

{
ẏ = f (t, y)
y (t0) = y0

,

the greatness

R (t)
def
=

ẏ (t)

y (t)
(17)

is called the actual contagion rate.

Remark 7 A pandemic P is controllable if

∃t1 > 0 | R (t) < 1, ∀t > t1; (18)

not controllable otherwise.
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2.2 Autonomous systems. Solution analysis

At this point it is interesting to resume autonomous systems, examining the special case of
following stationary containment process (β (t) ≡ β0 = constant):

fcont (y) = β0, λ = 2

hence our Cauchy problem is rewritten:

C :

{
ẏ = R0y − β0y

2

y (t0) = y0
(19)

Here R0 > 1 and β0 ≥ 0 such that

R0y (t)− β0y (t)
2
> 0, ∀t ∈ [t0,+∞) (20)

whereby ẏ > 0, i.e. the function y (t) is monotonically increasing. This condition is essential
since the function y (t) expresses the total number of infected persons at time t, counted
from the initial instant t0. Since y (t) is zerozero, (20) can be rewritten:

0 ≤ β0 <
R0

y (t)
, ∀t ∈ [t0,+∞)

Excluding the trivial case β0 = 0, we have that the differential equation (19) is Bernoulli-like,
and the solution of C is:

y (t) =
L0

1 +
(

L0

y0
− 1

)

e−R0t
, (21)

having defined:

L0 =
R0

β0
= lim

t→+∞
y (t) (22)

This magnitude is the total number of people infected at the end of the pandemic. For
example, if R0 = 2.2, β0 = 0.2, we find the trend shown in fig. 1. . Daily contagions
are enumerated by the first derivative of function(21), whose graph has the trend shown in
fig. 2. The inflection point of the graph of y (t) corresponds to a relative maximum point
corrisponde of the derivative ẏ (t) , technically known as the maximum peak (fig. 3).

The actual contagion rate is

R (t) =
ẏ (t)

y (t)
= R0

(
L0

y0
− 1

)

e−R0t

1 +
(

L0

y0
− 1

)

e−R0t
,

graphed in fig. 4.
From (22) we see that the pandemic described by the autonomous system (19) is not

controllable at the finite, but it is asymptotically since the daily contagions cancel each
other out only by t → +∞. To be more practical, we assign an ε ∼ 1 and then assume for
the instant of stopping pandemic the time t∗ such that

L0 − y (t∗) < ε (23)

The aforementioned instant uniquely defines a single pandemic cycle. Nothing prevents us
from considering a second cycle (second wave) as a solution to a Cauchy problem analogous
to problem (19) in which the initial instant is t∗, and the corresponding solution comes
suitably connected with the previous one.
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t
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y

Figure 1: Trend of the solution of problem (19) for R0 = 2.2, β0 = 0.2. Note the asymptotic
behavior.
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Figure 2: Trend of the first derivative of the solution of problem (19) for R0 = 2.2, β0 = 0.2.
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Figure 3: Trend of the solution and its first derivative of the solution of problem (19) for
R0 = 2.2, β0 = 0.2.
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t1
t

RH0L

R0

1

R

Figure 4: Trend of the actual infection rate as a function of time.

Definition 8 By varying the parameters R0, β0 in (19) we obtain a family F of curves
integrals, which solve infinite Cauchy problems sharing the same initial condition y (0) = y0.
Each element of this family is known as a logistic curve or simply logistic.

Theorem 9 For a controllable pandemic, logistics is the most catastrophic of predictions.

Proof. See Appendix A.

2.3 Non-autonomous systems. Solution analysis

We generalize the behavior discussed in the previous section (§ 2.2) to a system not au-
tonomous1: {

ẏ = R0y − β (t) y2

y (0) = y0
, (24)

taking on
β ∈ C2 ([0,+∞))
β (t) > 0, ∀t ∈ [0,+∞)

As usual we have to impose ẏ > 0, so we are interested in the solutions y (t) of the Cauchy
problem (24) such that

y0 ≤ y (t) <
R0

β (t)
(25)

For known theorems on limits:

y0 ≤ y (t) <
R0

β (t)
=⇒ y0 ≤ lim

t→+∞
y (t) ≤ R0 lim

t→+∞

1

β (t)
(26)

If the function β (t) is infinitesimal for t→ +∞
lim

t→+∞
y (t) ≤ +∞

That is, the solution y (t) can be convergent or divergent for t → +∞. However, in a
neighborhood of +∞ the solutions of (24) (assuming that β (t) is infinitesimal to infinity),
we behave like the solutions of the differential equation ẏ = R0y, so

y (t) −→
t→+∞

eR0t =⇒ lim
t→+∞

y (t) = +∞ (27)

1For simplicity we set t0 = 0.
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2 ATTACK STRATEGIES

Conclusion 10 If the function β (t) is infinitesimal for t → +∞, the pandemic described
by (24) is not controllable.

If β (t) is not infinitesimal to infinity, the possible behaviors are:

• β (t) is oscillating for t→ +∞, so

∄ lim
t→+∞

β (t)

• β (t) is convergent for t→ +∞
lim

t→+∞
β (t) = ℓ ∈ R

In the case of convergence, the dynamic system is asymptotically autonomous, so yes
expect a “logistical” trend.

To be more quantitative, the only solution to the Cauchy problem (24) (see. Appendix
B) is

y (t) =
y0e

R0t

1− y0 [B0 − B (t)]
, (28)

where is it

B (t)
def
=

∫

β (t) eR0tdt, B0 = B (0) (29)

Notation 11 The function B (t) does not contain the integration constant, since the latter
is incorporated in (85).

Deriving:

ẏ =
y0e

R0t
{
R0 [1− y0 (B0 −B (t))]− y0β (t) e

R0t
}

[1− y0 [B0 −B (t)]]2
(30)

For the above, the first derivative ẏ of the function that enumerates the total contagions is
positive in [0,+∞), so

R0 [1− y0 (B0 − B (t))]− y0β (t) e
R0t > 0, ∀t ∈ [0,+∞)

Conversely, for a pandemic that comes to an end:

∃t1 > 0 | ẏ (t) > 0, se 0 ≤ t < t1
ẏ (t) = 0, se t ≥ t1

(31)

But all the derivatives at the point t1. must cancel out. For example, if ÿ (t1) 6= 0, the graph
of ẏ (t) has an angular point in (t1, 0) and this behavior is not predicted by (30). Iterating:

dy

dt

∣
∣
∣
∣
t=t1

= 0,
d2y

dt2

∣
∣
∣
∣
t=t1

= 0, ...,
dny

dtn

∣
∣
∣
∣
t=t1

= 0, ...

In other words, derivatives of a high order must be canceled out. It follows the not analyticity
of the aforesaid function. On the other hand, for an assigned analytical function β (t), the
solution of the Cauchy problem (24) is in turn an analytic function. We have so proved the
theorem:

Theorem 12 A pandemic P modeled by a non-autonomous system of type (24) at most dies
out asymptotically.

In practice, in the case of asymptotic extinction we refer to a stop instant t∗ such as to
verify a condition of type (23).
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2.4 Configuration domain

Let us return to the special case of an autonomous system (13).

Definition 13 The following subset of R2

{(y, ẏ) | 0 ≤ y < +∞, −∞ < ẏ < +∞}
it is called the configuration space of the dynamic system (13).

Definition 14 The geometric locus (15) è is the region of the configuration space accessible
to the dynamic system (13). The generic point (y, ẏ) ∈ Γ (f) is called the representative
point of the system.

In the particular case of exponential growth, the region of the configuration space ac-
cessible to this system is the line of equation ẏ = R0y, i.e. the line for the origin and the
angular coefficient R0 > 0.

The notion of configuration space and the corresponding region accessible to the system
suggests an alternative approach to the study of the dynamic evolution of an autonomous
system. Precisely, instead of integrating the differential equation

ẏ = f (y) (32)

for an assigned initial condition, the evolution of the representative point in the configuration
space is studied.

2.4.1 Sampling

The analysis just seen is valid for any autonomous system characterized by a quantity y(t)
which is a real function of the real variable t. However from § 1 it follows that y, t are not
variable quantities with continuity. For the independent variable we write:

tk = k∆, k = 0, 1, 2, ..., n, (33)

where ∆ = 1d. On the other hand, remaining continuously (14) we write:

lim
∆t→0

y (t+∆t)− y (t)

∆t
= f [y (t)] ,

while the sampling (33) of the independent variable uniquely determines the sampling of the
dependent variable, so

yk+1 − yk

∆
= f (yk) ,

having defined yk = y (tk). It follows

yk+1 = yk + f (yk)∆,

that is, an equation of recurrence for y. The representative point of the system therefore
moves by discrete steps along the curve of the cartesian plane (yk, yk+1):

γ : yk+1 = g∆ (yk) , (34)

where is it
g∆ (yk)

def
= yk + f (yk)∆ (35)

The set of positions taken by the aforementioned representative point makes up the diagram
of the orbits of the system whose transfer function is (35).

This computing paradigm has produced a vast literature opening new and fantastic hori-
zons. Search for fixed points, ergodicity, chaos (i.e. deterministic chaos) are the elements
that distinguish these systems [3].
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3 Random variables

In a realistic scenario, random behavior is expected for what concerns the containment
action. This suggests to model β (t) through a suitable random variable. Suppose:

β (t) = β0 + β1 (t) , |β1 (t)| ≪ β0

where β1 (t) is a random variable. To be more precise, β1 (t) is an stationary random process
and its random fluctuations model deviations from correct behavior (social distancing, use
of masks, etc.). In other words, we have a constant containment parameter β0 immersed in
a “noise”.

3.1 Wiener Processes

Let us consider in particular, a Wiener process i.e. the integral of a white noise W (t). As
is known, the latter has a flat power spectrum:

w (f) = w0 > 0, ∀f ∈ R

where f is the frequency. From the Wiener–Khintchine Theorem it follows that the auto-
correlation function is deltiform:

ϕ (τ) = w0δ (τ) , ∀τ ∈ R

In other words, the values assumed byW (t) are 100% uncorrelated. For the above, a Wiener
process (also known as Brown noise) is an integral ofW (t).With abuse of notation, we write:

β1 (t) =

∫

W (t) dt (36)

The abuse derives from the fact that the quantity W (t) is not a function in the sense
of mathematical analysis. However, the Mathematica software ooffers the possibility to
manipulate these objects in the same way as the usual functions. Specifically, after generating
an array of values assumed by W (t) for an assigned range of values assumed by t, we use
the instruction Interpolation[] to create a real function of the real variable t, symbolized
by

Wint [t]

after which we calculate its primitive through the usual Integrate[]instruction. In symbols:

Wint [t] −→∫ β1 [t]

The result is reported in fig. 5.
From the point of view of mathematical analysis, a white noise is a ”function” that has

a point of discontinuity of the first kind (or finite discontinuity) in every point of its field
of existence. Furthermore, the assumed values are random. For the above, Mathematica
generates a random list of the aforementioned values. With the Interpolation[] instruc-
tion, Mathematica performs a polynomial interpolation. In this way a function with very
violent oscillations is obtained but still integrable in the sense of Riemann. The presence of
an infinite number of discontinuities of the first kind implies that its primitive is a function
whose graph has an equally infinite number of angular points, just as shown in fig. 5. With
an appropriate choice of the parameters that enter the differential equation gives the result
of 6, which qualitatively reflects the Italian situation in today’s period.
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Figure 5: Typical trend of a Wiener process.
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Figure 6: The blue curve is an integral curve of the Cauchy problem (24), where β (t) is a
Wiener process.
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A Density fluctuations in the number of infected

A.1 Introduction

These notes follow from a development of the article by Davide Lombardi

A.2 Balance equation

Let I (t) be the number of infected individuals at time t. We assume that this quantity is a
deterministic variable

I (t) −→
ev. deterministica

I (t′) , ∀t′ > t

That is, the value assumed by I at a given instant t univocally determines the value assumed
at any future instant. It follows that the function I(t) is the only solution of a Cauchy
problem of the type:

{
İ = F (t, I)
I (t0) = 0

(37)

Obviously we are interested in the elementary expression of the function F (t, I) in order to
be able to solve the aforementioned problem. For this purpose, we take at will a limited
region of physical space, mathematically represented by a regular and limited domain D

whose boundary ∂D is a regular surface. We denote by ID (t) the restriction of the function
I(t) to the aforementioned domain, which can be expressed through a density function i(x, t)
which returns the number of infected individuals (simply infected) at time t and in the unit
of volume.

ID (t) =

∫

D

i (x, t) d3x (38)

Deriving
d

dt
ID (t) =

d

dt

∫

D

i (x, t) d3x (39)

Equation (39) measures the rate of change of ID (t) in D, i.e. the variation in the unit of
time (in D) of the number of infected. In turn, this variation is the algebraic sum of two
contributions:

1. number of infected people who enter or leave D through its border in the unit of time;

2. number of new infected (in D) in the unit time interval.

Contribution 1 assumes the existence of a velocity field in D, with which the infected
move, and which we denote by v (x, t). If dσ = ndσ is the surface element oriented according
to the unit vector n the normal external to ∂D (fig. 7), the number of infected in the unit
of time cross dσ is given by j (x, t) · dσ, dove x è il vettore posizione del punto di ∂D in cui
valutiamo dσ, while the quantity

j (x, t) = i (x, t)v (x, t) (40)

is the current density of the infected. It follows that the contribution 1 is

∮

∂D

j (x, t) · ndσ = Φ∂D (j) (41)

13
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that is the flow of the vector j through ∂D. Now suppose that contribution 2 is zero, that
is, in D no new infected are created. Necessarily

∣
∣
∣
∣

d

dt

∫

D

i (x, t) d3x

∣
∣
∣
∣
= |Φ∂D (j)|

It follows

d

dt

∫

D

i (x, t) d3x > 0 =⇒ ID (t) è crescente

=⇒ entrano nuovi infetti =⇒ Φ∂D (j) < 0

and viceversa. Therefore
d

dt

∫

D

i (x, t) d3x = −Φ∂D (j) (42)

The contribution 2 is given by a quantity ΓD (t) equal to the speed with which the number
of infected in D increases. Let us express it through a density function γ (x, t) or the speed
per unit of volume with which the number of infected grows.

ΓD (t) =

∫

D

γ (x, t) d3x (43)

Figure 7: By D we denote a regular domain of R3 representative of an arbitrary region of
physical space.

We finally have the balance equation:

d

dt

∫

D

i (x, t) d3x = −Φ∂D (j) +

∫

D

γ (x, t) d3x, ∀D ⊂ R3 (44)

For D = R3

d

dt

∫

R3

i (x, t) d3x =

∫

R3

γ (x, t) d3x (45)

since Φ∂R3 (j) = 0. Formally, this result is reached by assuming a cube with edge L as a
domain, and then performing the operation of passing to the limit for L→ +∞.
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A.3 Statistical analysis

Now let’s calculate the spatial mean:

〈i〉L (t) =
1

L3

∫

D

i (x, t) d3x, (46)

and therefore

〈i〉 (t) = lim
L→+∞

1

L3

∫

D

i (x, t) d3x (47)

The quantity i (x, t) can be treated as a random variable, of variance space (or space power
of quantity i (x, t)):

σ2 (t) =
〈
[i (x, t)− 〈i〉 (t)]2

〉
=

〈
i2
〉
(t)− 〈i〉2 (t) , (48)

where the spatial mean is computed according to (47). We decompose the scalar field i (x, t)
in a superposition of plane waves, imposing periodic conditions on the faces of the cube.
Precisely, we develop in Fourier series:

i (x, t) =
∑

k

ik (t) e
jk·r, (j =

√
−1)

whose Fourier coefficients in the space of the wave vectors k, are

ik (t) =
1

L3

∫

D

i (x, t) e−jk·rd3r (49)

By imposing the reality of i (x, t):

i (x, t) ≡ i∗ (x, t) ⇐⇒ i∗
k
(t) ≡ i−k (t) (50)

The periodic conditions are

i (0, y, z) = i (L, y, z) , e simili

which give rise in the space of the wave numbers under the conditions:

kx =
2π

L
nx, ky =

2π

L
ny, kz =

2π

L
nz, nx, ny, nz ∈ Z

For L→ +∞ the Fourier series is a Fourier transform:

i (x, t) =

∫

R3

i (k, t) ejk·rd3k (51)

i (k, t) =
1

(2π)3

∫

R3

i (x, t) e−jk·rd3r

In conditions of isotropy in the space of wave numbers:

i (x, t) = 4π

∫ +∞

0

i (k, t) k2ejk·rdk

i (k, t) =
1

(2π)3

∫

R3

i (x, t) e−jk·rd3r
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This implies that potency is expressed as:

σ2 (t) = 4π

∫ +∞

0

w (k, t) k2dk,

where w (k, t) is the spatial power spectrum of quantity i (x, t). The autocorrelation function
of i (x, t) is

ψ (r, t) = 〈i (x, t) i (x+ r, t)〉 (52)

By the Wiener–Khintchine Theorem

w (k, t) = 4

∫

R3

ψ (r, t) ejk·rd3r

ψ (r, t) =

∫ +∞

0

w (k, t) k2e−jk·rdk

We rewrite (45) as:

d

dt
lim

L→+∞

∫

DL

i (x, t) d3x = lim
L→+∞

∫

DL

γ (x, t) d3x (53)

Before carrying out the operation of passing to the limit we can multiply both members for
L−1

d

dt
lim

L→+∞

1

L

∫

DL

i (x, t) d3x

︸ ︷︷ ︸

=〈i〉(t)

= lim
L→+∞

1

L

∫

DL

γ (x, t) d3x

︸ ︷︷ ︸

〈γ〉(t)

That is
d

dt
〈i〉 (t) = 〈γ〉 (t) (54)

To make the second member explicit, we expect the velocity density γ (x, t) to be a composite
function of the type

γ (x, t) = f [i (x, t)]

By developing the function f (i) in a right neighborhood of i = 0 in Taylor series

f (i) = c0 + c1i+ c2i
2 + ...

We observe that if the density i (x, t) is identically zero, such will be γ (x, t), so

c0 = f (0) = 0

So, truncating to the second order:

f (i) = c1i+ c2i
2 =⇒ 〈γ〉 (t) =

〈
c1i+ c2i

2
〉
(t) = c1 〈i〉 (t) + c2

〈
i2
〉
(t) (55)

From (48):
〈
i2
〉
(t) = 〈i〉2 (t) + σ2 (t)

Replacing in the previous one

〈γ〉 (t) = c1 〈i〉 (t) + c2 〈i〉2 (t) + c2σ
2 (t)
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And therefore in (54)
d 〈i〉
dt

= c1 〈i〉+ c2 〈i〉2 + c2σ
2 (t) (56)

which is the differential equation (37) referred to the average density. It is a non-linear and
non-autonomous first order differential equation, due to the time dependence of the power
spatial σ2 (t). The effects of this last quantity depend on the sign of the coefficient c2 of the
Taylor expansion and therefore, of the second derivative f ′′ (0). Precisely:

d 〈i〉
dt

=

{
c1 〈i〉+ c2 〈i〉2 + c2σ

2 (t) , se c2 > 0

c1 〈i〉 − |c2| 〈i〉2 − |c2| σ2 (t) , se c2 < 0
(57)

In other words, if c2 > 0 the power of i (x, t) amplifies the viral growth. Conversely, if c2 < 0
the power acts as a damping factor, since the derivative of the mean value of 〈i〉 is reduced
by a factor c2σ

2 (t). For c2 < 0, if the distribution is homogeneous i.e. σ2 (t) ≡ 0, has the
classic logistic evolution:

d 〈i〉
dt

= c1 〈i〉 − |c2| 〈i〉2 (58)

From the W-K theorem it follows that to have a null power spectrum, there must be the
maximum correlation between the values assumed by the scalar field i (x, t) at the various
points x. Conversely, if the random variable i (x, t) is a white noise, i.e. its power spectrum
is flat:

σ2 (t) = 4π

∫ kmax

0

k2dk =
4

3
πk3max ≡ σmax

and the values assumed by the field are uncorrelated to 100%, i.e. the autocorrelation
function as a Fourier transform of a flat power spectrum, is a three-dimensional Dirac delta
centered at r = 0:

ψ (r) = δ(3) (r)

In this case, (57) becomes (if c2 < 0)

d 〈i〉
dt

= c1 〈i〉 − |c2| 〈i〉2 − |c2| σmax (59)

to which corresponds the minimum value of the speed of variation of the average density
of the number of infected (d〈i〉

dt
). For the above, in the limit σ (t) → 0, the distribution

of infected is homogeneous. Interpreting the viral diffusion as the propagation of a signal
between individuals (whose motion can be described by the propagation of a Dirac delta
wave), we have that in the homogeneous case the propagation of the aforementioned signal
is instantaneous, for which there will be a single cluster that expands uniformly (following the
logistic trend 58). Conversely, the condition σ > 0 makes the distribution inhomogeneous
and this determines the presence of disjoint clusters where the density of the infected is
governed by the non-homogeneous differential equation (59).

Notation 15 We note incidentally that this conclusion exhibits a remarkable (albeit for-
mal) analogy with Friedmann’s cosmological models. More precisely, the universe primordial
described by these models is homogeneous (Milne’s Principle): the density of matter-energy
does not depend on the spatial coordinates (in co-moving) but only on the time coordinate.
In this way the expansion of the universe occurs in the Hubble flow, conserving the initial
homogeneity. But such a universe does not produce gravitational structures such as galaxies
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and clusters of galaxies. In a more realistic description, fluctuations are considered of density
(triggered by quantum processes) which then grew (Jeans theory) to then exit the Hubble flow
giving rise to the aforementioned structures. From a statistical point of view, the distribution
of galaxies in the current universe is studied through the two-point correlation function (or
more generally, n-points). In the case of a pandemic instead of the density of matter-energy
we have the density of infected. A homogeneous distribution does not produce structures
of the disjoint cluster type, but there is a single expanding cluster. As in the cosmological
case, here too the initial homogeneity is preserved (curiously, even in Cosmology there is
the problem of the instantaneous propagation of a “signal”, since regions outside their re-
spective cosmological horizons were thermalized). Conversely, the presence of fluctuations
in the density of infected destroys the homogeneity by creating disjoint clusters that they do
not communicate instantly. The n-point correlation function could be of some use to ex-
plain some anomalies of viral propagation that occurred in Italy in the period February-June
(maximum density in the northern regions, minimum in the south).

A.4 The two-point correlation function. Fractal distribution

In a nutshell: initially, the viral spread follows an exponential law until containment actions
take place, after which the process tends to follow the classic logistics. For the above, this
occurs if and only if there is the greatest correlation between infected individuals. Conversely,
in the presence of fluctuations in the density of infected, the cluster tends to fragment. In
symbols:

cluster iniziale −→
fragmentation

N ≫ 1 clusters

Assigned a cartesian referenceR (Oxyz) with origin in the center of the representative sphere
Σ della Terra, of the Earth, and with axes xyz so as to compose a three-rectangle left-handed,
we denote by ρ (r, t) a non-negative function such that

dP = ρ (r0, t) dV (60)

is the infinitesimal probability of finding, at instant t, a cluster in the volume element
dV = dxdydz centered in the vector point position r0 = (x0, y0, z0), for which the aforesaid
function is a probability density that verifies l’obvious condition of normalization:

∫

R3

ρ (r, t) dV = 1, ∀t ∈ [0,+∞) (61)

Orienting the z-axis of the cartesian reference R in the direction and towards the north
pole of the earth, we pass from the Cartesian coordinates to the polar coordinates in space
(spherical coordinates) spherical coordinates O of R and the polar axis coinciding with
the z-axis. The equations that connect the cartesian coordinates (x, y, z) to the spherical
coordinates (r, θ, ϕ) are:

x = RT sin θ cosϕ, y = RT sin θ sinϕ, z = RT cos θ, (62)

since for any point of Σ the radial coordinate is r = RT , where the latter is the radius of the
earth. Conventionally, we assume RT as a unit of length, i.e. we set RT ≡ 1. Recall that
the angular coordinates θ, ϕ are respectively called colatitude and longitude:

0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π
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and they are obviously linked to the geographic coordinates latitude and longitude, even if
there is a conflict of symbols since the longitude (as a geographic coordinate) is indicated
with λ and is measured in degrees from 0 a 180◦ towards East or West. The latitude is instead
symbolized by ϕ, while the θ colatitude of the spherical coordinates is the complementary
angle.

In spherical coordinates the volume element appearing in (60) is written:

dV = r2drdΩ, (63)

where dΩ is the elementary solid angle:

dΩ = sin θdθdϕ (64)

Since clusters are portions of Σ, in (60) the volume element must be replaced by the surface
element of Σ:

dS = R2
TdΩ =

RT=1
dΩ (65)

Therefore
dP = ρ (r0, t) dΩ (66)

Here the components of the vector r0 are expressed according to (62) with RT = 1.
That said, the joint probability of finding cluster 1 in dΩ1 centered in r1 at instant t, and

cluster 2 in dΩ2 centered in r2, is
d2P = dP1dP2,

being
dP1 = ρ (r1, t) dΩ1, dP2 = ρ (r2, t) dΩ2

So
d2P = ρ (r1, t) ρ (r2, t) dΩ1dΩ2 (67)

Equation (67) is valid if the relative positions of the individual clusters are uncorrelated.
Otherwise, this equation becomes:

d2P = ρ (r1, t) ρ (r2, t) dΩ1dΩ2 + d2P∗

where d2P∗ is the excess or defect in probability, which can be expressed as:

d2P∗ = ξc (r12, t) ρ (r1, t) ρ (r2, t) dΩ1dΩ2 (68)

Here r12 = r1 − r2 is the relative position vector of the clusters, while ξc (r12, t) ≥ 0 is a
dimensionless quantity known as a two-point spatial correlation function or simply a
two-point correlation function.

In other words, if ξc (r12, t) ≡ 0 there is a random distribution of clusters, while if
ξc (r12, t) > 0 lthe distribution tends to form structures or leave gaps. We therefore have:

d2P = ρ (r1, t) ρ (r2, t) [1 + ξc (r12, t)] dΩ1dΩ2 (69)

These arguments are generalized by defining a correlation function at q > 2 points, for which
the joint probability of finding at instant t, q clusters in r1, r2, ..., rq respectively, is

dqP = ρ (r1, t) ρ (r2, t) ...ρ (rq, t) [1 + ξc (r12, r13, r23, ..., t)] dΩ1dΩ2...dΩq (70)
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Without loss of generality, we consider the case q = 2. The vector defining the relative
position is

r12 = (x2 − x1, y2 − y1, z2 − z1)

In spherical coordinates:

r12 = (sin θ2 cosϕ2 − sin θ1 cosϕ1, sin θ2 sinϕ2 − sin θ1 sinϕ1, cos θ2 − cos θ1)

It follows that the correlation function ξc becomes a function composed of the variables
θ1, ϕ1, θ2, ϕ2. In order not to weigh down the notation, we continue to indicate this function
with the same symbol:

ξc (r12, t) = ξc (θ1, ϕ1, θ2, ϕ2, t) (71)

Since the orientation of the polar axis is arbitrary, we orient this axis in the direction of
cluster 1, so that in the new spherical coordinate system this cluster has theta colatitude
θ = 0 and indeterminate longitude ϕ. Conventionally we set ϕ = 0. So in (71):

θ1 = 0, ϕ1 = 0

Therefore, the independent variables θ2, ϕ2, t remain, and we redefine the angular ones simply
with θ, ϕ. It follows

ξc (θ, ϕ, t) , ∀ (θ, ϕ) ∈ [0, π]× [0, 2π] , ∀t ∈ [t0,+∞) (72)

Moreover, in the limit of large N , we can approximate the probability density with the
average number at instant t of clusters in the unit of surface:

ρ (r, t) ∼ 〈n〉 (t) (73)

Thus (69) becomes:
dP = 〈n〉 (t) [1 + ξc (θ, ϕ, t)] dΩ (74)

or what is the same
dP = ρc (θ, ϕ, t) dΩ

having defined the probability density of finding a cluster in (θ, ϕ) at instant t

ρc (θ, ϕ, t) = 〈n〉 (t) [1 + ξc (θ, ϕ, t)] (75)

which verifies the normalization condition:
∫

4π

ρc (θ, ϕ, t) dΩ = 1,

having extended the integration to the total solid angle. That is

∫ π

0

dθ sin θ

∫ 2π

0

dϕρc (θ, ϕ, t) = 1

From (75) it follows that the correlation function ξc (θ, ϕ, t) verifies the normalization con-
dition: ∫

4π

ξc (θ, ϕ, t) dΩ =
1− 4π 〈n〉 (t)

〈n〉 (t) , ∀t ∈ [t0,+∞) (76)
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Assigned an initial condition
ξc (θ, ϕ, t0) ≡ ξ(0)c (θ, ϕ) (77)

the problem consists of determining the time evolution of the initial configuration. That is:

ξ(0)c (θ, ϕ) −→
ev. temporale

ξc (θ, ϕ, t) (78)

Since initially there is only one cluster:

ξ(0)c (θ, ϕ) = δ (θ) δ (ϕ) ,

where δ denotes the Dirac delta function. The problem thus arises of determining the
dynamic evolution of the correlation function starting from an initial deltiform configuration.
It could be conjectured that, with a statistical distribution described by a correlation function
like:

ξc (θ, ϕ, t) ∝ θµϕν , θ ∈ (0,∆θ) , ϕ ∈ (0,∆ϕ) , ∀t > 0

with 1 < µ, ν < 2, the average number of clusters in the region

T = {(r, θ, ϕ) | r = R, 0 < θ < ∆θ, 0 < ϕ < ∆ϕ}

is
n ∝ lD (79)

where l is the distance (on the sphere) between the initial cluster (in (θ, ϕ) = (0, 0)) and
∂T . In (79) D > 0 is a fractional exponent called the fractal dimension of the distribution
of clusters.

B Bernoulli equation

The ordinary nonlinear first-order differential equation:

ẏ = R0y − β (t) y2 (80)

of the Cauchy problem (24) is a Bernoulli equation and is integrated by setting:

u =
1

y
, (81)

whereby (80) becomes
u̇+R0u = β (t) , (82)

which is a non-homogeneous linear first-order differential equation. An integral factor is eR0t,
so multiplying the first and second members of (80) by this factor, we have:

d

dt

[
u (t) eR0t

]
= β (t) eR0t

By integrating first and second members with respect to t

u (t, C) eR0t = C +

∫

β (t) eR0tdt, ∀C ∈ R (83)
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where C is an integration constant. It follows

u (t, C) = Ce−R0t + e−R0t

∫

β (t) eR0tdt (84)

From (81):

y (t, C) =
eR0t

C +
∫
β (t) eR0tdt

(85)

By imposing the initial condition y (0, C) = y0, we obtain

y (t) =
y0e

R0t

1− y0 [B0 −B (t)]
(86)

where

B (t)
def
=

∫

β (t) eR0tdt, B0 = B (0) (87)
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