
Auto-Encoder Transposed Permutation Importance
Outlier Detector

Dr. Eren Unlu

Paris, France
datascientist.unlu@gmail.com

Abstract—We propose an innovative, trivial yet effective unsu-
pervised outlier detection algorithm called Auto-Encoder Trans-
posed Permutation Importance Outlier Detector (ATPI), which is
based on the fusion of two machine learning concepts, auto-
encoders and permutation importance. As unsupervised anomaly
detection is a subjective task, where the accuracy of results can
vary on the demand; we believe this kind of a novel framework
has a great potential in this field.

I. INTRODUCTION

Unsupervised anomaly detection has been one of the most
extensively studied field of machine learning due to its
important diverse real life applications [1]. These include
fraud detection, automated identification of malfunctioning
computer servers, medical diagnosis, intrusion detection and
many more [2]. One particular interesting feature of this field
is about the fact that there is no well defined specific accuracy
method or metric as there is no supervision. The outcomes
of the algorithms also depend on the perspective of the user
and highly subjective. It is obvious that there is no clear
definition of anomaly under an unsupervised setting, where
two different anomalous instances identified by two different
algorithms may be both correct under different contexts [3]
[4]. For instance, the definition of anomaly for server mal-
functioning shall be deviant from the fraud detection, where
same algorithm may not comply the needs of both [4]. The
first probable occurrence of a formal terminology for such
problem in the literature is in the seminal paper of Grubbs in
1969 [5] [3].

This ambiguity of the subject make it a more attractive
area for researchers as various dissimilar algorithms can be
developed with varying semantic evaluation of the users [6].
As the number of features, in other words the dimension of the
problem increases, the semantic evaluation of the algorithms’
performance becomes more and more difficult for humans to
interpret. The curse of extremely large dimensional setting also
forces researchers to develop more elaborate and interpretive
solutions. The general a priori assumption in unsupervised
anomaly detection is that the user knows more or less the ratio
of minority anomalous instances in the dataset, which is called
contamination, where it is given as a common parameter to
algorithms [7] [8].

The unsupervised anomaly detection algorithms in the lit-
erature can be grouped in to three broad categories; prox-

imity based, clustering based and statistical modeling based
methods [9]. Albeit most of the well known methods in the
literature fall either in one of these three groups or their in-
tersections, there also exists certain types of algorithms which
can not be explained fully with this taxonomy [9]. Proximity
based algorithms characterize each point with their position
in the feature space with regard to their closest neighbors. By
defining a proper distance metric, either the density of the
data points in the vicinity or a direct distance based measure
is used the score the anomaly of the point of interest in
this neighborhood [10] [11]. On the other hand, clustering
based algorithms aim to group data points in the feature space
either directly based on the values or transformed metrics such
as explaining the local connectivity of an instance [3]. In
an iterative or single step fashion, the clustering algorithms
encapsulates the most anomalous points in one minority class
whose size is determined by the contamination ratio given
by the user. Finally as the name suggests, statistical models
tries to fit distributions or statistical systems to assign highest
anomaly scores to a subgroup of pre-defined contamination
size based on the inherent attributes of the data.

In this paper, we present an innovative unsupervised
anomaly detection algorithm, where it is difficult to place
categorically into this tertiary taxonomy. Our method is ac-
tually highly straight-forward and trivial but very effective to
provide more intuitive alternative solutions, especially under
high dimensionality. It encompasses two seminal concepts of
machine learning auto-encoders and permutation importance
with a simple data manipulation trick, where the dataset is
transposed before being fed to algorithm as input.

II. PROPOSED METHOD

We are mainly inspired by the potency of the one of the
hottest topics of machine learning, interpretability algorithms.
Most particularly, permutation importance algorithm which is
very straight-forward, trivial yet highly effective for global
interpretability [12] [13]. The central idea of the algorithm is to
measure the degree of variance of the result of the classifier or
regressor for each feature independently by randomly shuffling
the data points on that particular axis. Conveniently, if the
result does not change significantly, it is concluded that the
feature of interest has no great importance. Thus, based on



Fig. 1. Workflow of the proposed ATPI outlier detection algorithm.

this rationale each feature can be assigned relative scores of
importance.

Another highly important recent topic in machine learning
are the auto-encoders [14]. Albeit being a concept proposed
in mid 80s by Rumelhart and Hinton in [15], their potency
has been surfaced recently in parallel with the proliferation of
practical deep learning architectures thanks to computational
power and data adequacy. Today, they are at the core of
numerous technological breakthroughs in various fields such
as signal denoising, data compression, statistical modeling,
information retrieval and yet anomaly detection [16] [17].
Artificial Neural Networks (ANNs) are exceptional machine
learning models with their ability to learn highly complex
non-linear features, inspired by biological neural structures.
Current course of artificial intelligence still follows the deepen-
ing of similar architectures with advancing silicon technology
and data availability. Auto-encoders are special application of
ANNs for unsupervised learning where the the data of interest
constitutes both input and output during training [18]. The cen-
tral idea is to design an hourglass architecture, where at first
half of the layers the number of neurons gradually decrease,
finally reaching a bottleneck layer and in following expand
back in symmetry towards the output [17]. This scheme allows
the concentration of the most informative representations on
the bottleneck. Therefore, for instance, the feature vector on
this layer which is shorter than the actual feature dimension
can be used for efficient compression or pattern recognition. In
consequence, the output of these networks contain the same
data points in dimension, whereas such a version excluded
from outliers and noise [19] [18]. Hence, deep auto-encoders
have been investigated extensively for unsupervised anomaly
detection recently, providing some important improvements on
the topic [20] [19].

We propose a highly trivial, yet efficient algorithm fusing
these two machine learning concepts which is capable of pro-
viding insightful results for unsupervised anomaly detection
problem, especially with very high dimensional dataset of
relatively smaller number of samples (wide dataframes). The
procedure is illustrated in Fig. 1. Firsly, we apply a simple
trick, where the data frame is transposed. Next, an auto-

encoder architecture for this transposed dataset is constructed.
As it can be seen, the number of input and output neurons
in this case is equal to the number of samples, not the
features. Next, the network is auto-trained where number of
data points of training in this case equals to the number of
features. After adequate training, the outputs of this auto-
encoder network assumed to contain the most informative,
stripped of anomalies of this transposed dataset. Finally, a
permutation importance algorithm is applied on the network,
where the weights correspond to the importance of data points,
not the features as the input is transposed.

As the permutation importance measures the importance of
a feature by shuffling the data points randomly and checking
the effect on the output, in this specific transposed case the
resulting weights shall be correlated to the anomaly score of
each point. Note that, as the input is transposed, the weight
vector of permutation importance algorithm is equal to the
number of data points, a weight correlated to the anomaly of
each data point (Fig. 1).

III. EXPERIMENTAL EVALUATION

We have tested a single hidden bottleneck layer architecture
where the number of neurons on this layer is equal to half of
the input size, i. e. number of datapoints in this specific case.
100 random shuffles are performed for permutation importance
measurements. As a baseline algorithm for comparison widely
known isolation forest is used [21]. 100 parallel estimators
are used for isolation forest, where all features are used for
training each of them. We have tested the performance of
the proposed method with two well known datasets, Wine
and Boston [22]. The data is scaled between 0.0 and 1.0
before being fed to algorithms for each feature. Wine dataset
is composed of 178 samples of 3 classes of different wines
(from 3 different regions) and their 13 numerical features.
Without loss of generality, we have one hot encoded the wine
type and included in the features. Thus, at the end dataset
had 16 numerical features. Boston dataset is composed of 60
different houses’ prices in Boston, USA and 13 numerical
socio-economic, location and demographic attributes. We have
included the price, thus at the end there are 14 features.

For the wine dataset we have set a contamination rate of
15%. Fig. 2, Fig. 3, Fig. 4 and Fig. 5 show the comparison
of detected outlier points with two pairs of features for the
proposed ATPI algorithm and isolation forest. The outlier
points are marked with red. For interpretability we have also
marked type of wines with three different shapes.

If we look closely to Fig. 2, we can see that in this high
dimensional setting, even though both algorithms identify a
handful number of common points as outliers, there are also
many different points where one of them recognizes as an
anomaly whilst other not. It is interesting to observe that
ATPI classifies 3 neighboring points (on this specific two
dimensional space, alcalinity of ash versus alcohol) which
have an alcalinity of ash around 25.0 and alcohol between
13.5 and 14.5 (two of them being of class-2 and one of them
belonging to class-1); isolation forest only detects one of them



Fig. 2. The detected outlier points with proposed ATPI algorithm (top graph)
and isolation forest (bottom graph) for alcalinity of ash (x-axis) versus alcohol
(y-axis) in Wine dataset

Fig. 3. The detected outlier points with proposed ATPI algorithm (top graph)
and isolation forest (bottom graph) for proanthocyanins (x-axis) versus malic
acid (y-axis) in Wine dataset

as an outlier. On the other hand, 3 neighboring points which
have an alcalinity of ash between 11.0 and 13.5 and alcohol
between 14.0 and 15.0 (all of them being of class-0) are all
identified as outlier by isolation forest, however ATPI detected
only one of them. This again demonstrates the ability of a
new kind of algorithm to provide a different and valuable

Fig. 4. The detected outlier points with proposed ATPI algorithm (top graph)
and isolation forest (bottom graph) for total phenols (x-axis) versus alcalinity
of ash (y-axis) in Wine dataset

Fig. 5. The detected outlier points with proposed ATPI algorithm (top graph)
and isolation forest (bottom graph) for total phenols (x-axis) versus alcohol
(y-axis) in Wine dataset

perspective for an unsupervised task. On Fig. 3, this time
for proanthocyanins versus malic acid we observe similar
outcomes. Many points are both identified as anomalies by
two algorithms. However, we see that our proposed algorithm
is able to classify 2 neighboring wine samples of class-1 on
the bottom left of the graph as outlier, while isolation forest



can only identify one of them.
Similar observations can be made on Fig. 4 and Fig. 5.

As mentioned previously, unsupervised anomaly detection,
especially with large dimensionality does not permit a unified
definition or measure of success, where it depends on the
context and the evaluation of the human interpreter. However,
it is highly encouraging to see that ATPI can identify many
common anomalies with a baseline algorithm, whereas it is
still able to provide different meaningful anomalous samples.
This proves the ability of the proposed algorithm to give a dif-
ferent, novel perspective compared to conventional algorithms
with a reasonable confidence.

Fig. 6. The detected outlier points with proposed ATPI algorithm (top graph)
and isolation forest (bottom graph) for DIS (x-axis) versus RM (y-axis) in
Boston dataset

Experiments on Boston dataset demonstrate similar out-
comes for the Boston dataset, with the exception for Fig. 6
(DIS versus RM). In this specific case, all apparent outliers are
missed by ATPI, whereas isolation forest managed to detect.
However, note that our algorithm has been able to identify a
pattern; a relatively large cluster of neighboring data points on
the left handside of the graph are marked as anomaly. Also,
note there still exists a significant number of common data
points identified by both of the algorithms. This hints about
the potent anomalous pattern recognition capability of our
algorithm, with a different perspective on the issue compared
to a conventional method. Especially, in Fig. 8 (TAX versus
PTRATIO), we see that ATPI can detect two apparent outliers
on the top of the graph, while isolation forest misses.

IV. CONCLUSION AND PERSPECTIVES

We have developed a new kind of unsupervised outlier
detection algorithm called Auto-Encoder Transposed Permu-
tation Importance Outlier Detector (ATPI), which integrates

Fig. 7. The detected outlier points with proposed ATPI algorithm (top graph)
and isolation forest (bottom graph) for PTRATIO (x-axis) versus ZN (y-axis)
in Boston dataset

Fig. 8. The detected outlier points with proposed ATPI algorithm (top graph)
and isolation forest (bottom graph) for TAX (x-axis) versus PTRATIO (y-axis)
in Boston dataset

two potent concepts of machine learning; auto-encoders and
permutation importance interpretability method. Our algorithm
depends on a simple yet effective trick where a deep auto-
encoder is trained by the transposed dataset. In other words,
the features are treated as samples and vice versa. Thus,
when a permutation importance is applied on this network,



the resulting feature importance weights can be treated as
a measure of data point anomaly. Unsupervised outlier and
novelty detection is a highly interesting area as there is no
universal definition of accuracy and the performance depends
on the context and semantic interpretation of users. The
ambiguity and challenge increases as the number of features
increases, where efficient visual human interpretation in high
dimensional space is not possible. Therefore, introduction of
new types of novel algorithms based on different mechanisms
has a colossal importance.

It was demonstrated with experiments on relatively high
dimensional datasets that ATPI can identify numerous com-
mon data points as outliers, which are also detected by
a conventional algorithm. Whilst, it still suggests different
but semantically meaningful anomalous points; which is an
indicator on the capabilities of the proposed method. We
believe that the introduced framework in this paper has a great
potential in unsupervised novelty detection. More elaborate
solutions can be developed based on this paradigm by using
different kinds of auto-encoder networks and machine learning
interpretation algorithms.
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