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In this paper, we propose an alternate interpretation of the quantum theory using

objective physical reality that does not depend on the conventional probability inter-

pretation.

As typical physical phenomena for the probability interpretation, we consider the

single-photon interference, single-electron interference, and EPR correlation experi-

ments using photon polarization. For the calculation using the alternate interpreta-

tion, the minus sign derived from the covariant quantization of Maxwell’s equations,

which is associated with the scalar potential of time axis component of four-vector, is

taken as it is as an inevitable request from the theory. In addition, geometrical phase

is incorporated, which can be recognized as a kind of scalar potential. We show that

both conventional and alternate interpretation derive the identical calculation results

for these single photon, single electron interference, and EPR correlation.

These alternate calculation processes describe that there is a kind of scalar po-

tential in whole space-time and when there is some geometrical arrangement in the

space, the scalar potential forms the oscillatory field of the potential according to

the arrangement. It reveals the objective physical reality that the single-photon,

single-electron interference, and EPR correlation are generated by the movement of

the photons and electrons in the oscillatory field with interference.

In addition, we show that the oscillatory field formation of the scalar potential

depending on the geometrical arrangement causes energy fluctuation in the space,

which enables removal of infinite zero-point energy and causes spontaneous sym-

metry breaking and Casimir effect. By recognizing the electromagnetic field as an

unitary U(1) gauge field and generalizing it to a special unitary SU(2), we also show

the uncharged particle, e.g. neutron, interferences are generated by the geometrical

arrangement of the SU(2) gauge field or geometrical phase. Furthermore, we discuss

the origin of the scalar potential by distinguishing the space where the substance

exists and the vacuum.

Finally, by introducing the extended Lorentz gauge, we propose the alternate so-

lution without physical state and subsidiary condition for the contradiction between

Lorentz gauge as an operator equation and the commutation relation in the covariant

canonical quantization of Maxwell’s equations with the conventional Lorentz gauge.
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This paper contains the compilation of published author’s papers1,2 in addition

to featured discussions such as the physical reality, uncharged particle interference,

geometrical phase and alternate proposal for the contradiction between Lorentz gauge

as an operator equation and commutation relation3.
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I. INTRODUCTION

The standard quantum theory has been constructed based on probability interpretation.

An arbitrary state of a microscopic physical system such as an atom or elementary particle

is represented by a state vector equate with a vector in Hilbert space. An expected value of

a physical quantity is obtained from the eigenvalue equation of an operator representing a

physical quantity. That is the outline of the calculation technique of the standard quantum

theory based on probability interpretation.

According to the idea of equating this physical state with a vector in Hilbert space, the

inner product of the vectors is interpreted as representing the probability that the state of

the system exists in the space-time. Calculations using this basic concept are in agreement

with experimental results. Without this concept, single photon and electron interference are

difficult to explain. In addition, an entangled state exhibiting long-range correlation that

seem to contradict relativity has been discussed by probability interpretation.

However, as long as follow this concept, it is difficult to solve the paradoxes associate

with a wave packet reduction typified by ”Schrödinger’s cat” and ”Einstein, Podolsky and

Rosen (EPR)”.4,5

To interpret quantum theory without these paradoxes, de Broglie and Bohm proposed

the so-called ”hidden variable” theory.6,7 However it is considered ”hidden variable” has

been rejected by violation of Bell’s inequality. The rejection of ”hidden variables” due to

the violation of Bell’s inequality is inconsistent with relativity that relies on the locality of

physical laws.

Although the improvement has not been completed so far, some researchers have been

trying to improve the quantum theory based on probability interpretation to fit relativity.8–12

Various discussions and experiments have been conducted associate with the correctness

of the basic concept of quantum theory that requires description of physical phenomena

beyond relativity and common sense. For examples, quantum mechanical superpositions

by some experiments have been reviewed.13 The atom interference by using Bose-Einstein

condensates (BECs) has been reported experimentally and theoretically.14,15 The coherence

length of an electron or electron-electron interference by using Aharonov-Bohm oscillations

in an electronic MZI has been discussed theoretically.16,17 A plasmonic modulator utilizing

an interference of coherent electron waves through Aharonov-Bohm effect has been stud-
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ied by the author.18 The entangle states have been widely discussed experimentally and

theoretically.19–24 The photon interference by using nested MZIs and vibrate mirrors has

been measured and analyzed.25,26 The double-slit electron diffraction has been experimen-

tally demonstrated.27

These reports associated with quantum phenomena have convinced the validity of the

basic concept of the probability interpretation, and the reliability of the standard quantum

theory based on the probability interpretation has come to be considered unwavering.

However, these reports just confirmed the agreement between the measurement results

and the calculation results based on the basic concept of the probability interpretation, and

examined the application of the interference derived from the probability interpretation.

They have considered no possibility other than the probability interpretation of quantum

theory.

In this paper, we propose an alternate interpretation of the quantum theory without

probability interpretation and show the identical calculation results are obtained for single

photon interference, single electron interference, and EPR correlation utilizing both conven-

tional and alternate interpretation. Then we also show the alternate interpretation describes

objective physical reality that photons and electrons are actually moving in space-time in-

stead of probability interpretation.

According to the alternate interpretation, the concept of pure state of which probabilities

are fundamental sense is not necessary in nature. Only the concept of mixed states of

which probabilities are statistical sense is physically valid as a natural law. Although the

probability interpretation of the standard quantum theory using the mixed state is useful

for calculations, it is shown that quantum theory will be deterministic physics without

probability interpretation as in classical physics.

In addition, we show that the removal of infinite zero-point energy without artificial sub-

traction, Casimir effect and spontaneous symmetry breaking can be spontaneously obtained.

Furthermore, by generalizing the electromagnetic field of unitary gauge field to special uni-

tary gauge field, we also show uncharged particle interference can be explained as the same

mechanism, i, e., by the geometrical arrangement of the SU(2) gauge field or geometrical

phase which can be recognized as a kind of scalar potential.

The structure of this paper is as follows.

In chapter II, we summarize the covariant quantization of Maxwell’s equation that re-
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quires an indefinite metric, which is the essence of this paper, and discuss that the indefinite

metric obtained by the quantization should take precedence over the probability interpreta-

tion.

In chapter III, we indicate the difference in calculation and interpretation for single-

photon interference, single-electron interference and EPR correlation between using the

conventional probability interpretation and alternate interpretation. Despite the differences,

except for the interpretation, the identical results can be obtained as the observable physical

phenomena. In addition, we show a convenient format for calculation named “simple cal-

culation method”, which simplifies the calculation of the alternate interpretation. From the

calculation results by the alternate interpretation, it becomes clear that the scalar potential

is a physical reality with a minus sign of indefinite metric.

In chapter IV, as applications of the alternate interpretation, we show that the removal

of infinite zero-point energy, Casimir effect, spontaneous symmetry breaking can be spon-

taneously obtained utilizing the generalization of the geometrical arrangement in the space

discussed in chapter III. We also refer to the general approach for single particle interference

include uncharged particle.

In chapter V, the origin of the indefinite metric potential and Maxwell’s equations in

vacuum, which is the core of the alternate interpretation examined in this paper, is discussed.

In chapter VI, we discuss the contradiction between Lorentz condition as an operator and

commutation relation in covariant canonical quantization of Maxwell’s equations. Then we

propose the alternate method introducing the extended Lorentz gauge that can avoid the

contradiction without physical state and subsidiary condition.

In chapter VII, we summarize the alternate interpretation.
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II. COVARIANT QUANTIZATION OF MAXWELL’S EQUATIONS

In order to revise the basic concept of the conventional standard quantum theory based

on probability interpretation to the alternate interpretation using objective physical reality,

covariant quantization of Maxwell’s equations using Lorentz gauge is indispensable instead

of using Coulumb gauge. That will be shown together with concrete calculations in the

following chapters.

The purpose of the quantization described in this chapter is to clarify the introduction

of the minus sign required by the indefinite metric, which is necessary for the discussion in

the following chapters.

For that purpose, quantization is performed using Fourier transform without going into

the details of canonical quantization, namely, the four-vector satisfying the covariant form

of Maxwell’s equations is expressed by the Fourier transform of plane wave expansion and

then those Fourier coefficients are replaced with operators along with setting commutation

relations.

The canonical covariant quantization of Maxwell’s equations in Lorentz gauge requires

the discussions other than the purpose of this chapter, i.e., associate with the selection

of Lagrangian density and the setting of commutation relations. Therefore the canonical

quantization will be dealt with independently and discussed in Chapter VI.

However, there is no difference in calculations and discussions in the following chapters,

whether the quantization in this chapter or the canonical quantization is adopted.

A. Quantization using Lorentz gauge

The subject of the discussion is Maxwell’s equations below.(
∆− 1

c2
∂2

∂t2

)
A−∇

(
∇ ·A+

1

c2
∂ϕ

∂t

)
= −µ0i(

∆− 1

c2
∂2

∂t2

)
ϕ+

∂

∂t

(
∇ ·A+

1

c2
∂ϕ

∂t

)
= − ρ

ε0
(1)

where µ0 and ε0 are the permeability and permittivity of a vacuum respectively.

In the Maxwell’s equations (1), the electromagnetic potentials ϕ and A are expressed as

following four-vector in Minkowski space.

Aµ = (A0, A1, A2, A3) = (ϕ/c, A) (2)
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The charge density ρ and space currents i are also expressed as following four-currents.

jµ = (j0, j1, j2, j3) = (cρ, i) (3)

Hence, by setting the axises of Minkowski space as x0 = ct, x1 = x, x2 = y, x3 = z,

Maxwell’s equations in the Lorenz gauge are expressed as following covariant form

□Aµ = µ0j
µ, ∂µA

µ = 0 (4)

In addition, the conservation of charge

div i+ ∂ρ/∂t = 0 (5)

is expressed as following covariant form.

∂µj
µ = 0 (6)

where,

∂µ = (1/c∂t, 1/∂x, 1/∂y, 1/∂z) = (1/∂x0, 1/∂x1, 1/∂x2, 1/∂x3) (7)

and □ is the d’Alembertian :□ ≡ ∂µ∂
µ ≡ ∂2/c2∂t2 −∆.

The covariant and contravariant vectors can be transformed to each other using the

simplest Minkowski metric tensor gµν as follows.

gµν = gµν =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 (8)

Aµ = gµνA
ν , Aµ = gµνAν (9)

The following quadratic form of a four-vector is invariant under a Lorentz transformation.

(x0)2 − (x1)2 − (x2)2 − (x3)2 (10)

The wave front equation can be expressed by applying a minus sign to the above quadratic

form and can be described by using metric tensor as follows.

−gµνx
µxν = −xµxµ = x2 + y2 + z2 − c2t2 = 0 (11)
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This quadratic form, including the minus sign, is also introduced into the inner product of

arbitrarily vector and commutation relations in Minkowski space.

Maxwell’s equations that satisfy the four-vectors with no four-current in free space can

be expressed as the following Fourier transform by plane wave expansion.28

Aµ(x) =

∫
dk̃

3∑
λ=0

[a(λ)(k)ϵ(λ)µ (k)e−ik·x + a(λ)†(k)ϵ(λ)∗µ (k)eik·x] (12)

k̃ =
d3k

2k0(2π)3
k0 = |k| (13)

where the unit vector of time-axis direction n and polarization vectors ϵ
(λ)
µ (k) are intro-

duced as n2 = 1, n0 > 0 and ϵ(0) = n, ϵ(1) and ϵ(2) are in the plane orthogonal to k and

n

ϵ(λ)(k) · ϵ(λ′)(k) = −δλ,λ′ λ , λ′ = 1, 2 (14)

ϵ(3) is in the plane (k, n) orthogonal to n and normalized

ϵ(3)(k) · n = 0 , ϵ(3)(k) · ϵ(3)(k) = −1 (15)

Hence ϵ(0), ϵ(1) (and ϵ(2)) and ϵ(3) can be recognized as a polarization vector of scalar wave,

transversal waves and a longitudinal wave respectively. Here we take the following the easiest

forms as these vectors.

ϵ(0) =


1

0

0

0

 ϵ(1) =


0

1

0

0

 ϵ(2) =


0

0

1

0

 ϵ(3) =


0

0

0

1

 (16)

The quantization is performed by replacing the Fourier coefficients of the four-vector with

operators Âµ ≡
∑3

λ=0 â
(λ)(k)ϵ

(λ)
µ (k) and setting the commutation relations as follows.

[Âµ(k), Â
†
ν(k

′)] = −gµνδ(k − k′) (17)

The time-axis component has the opposite sign of the space axes. Because ⟨0|Â0(k)Â
†
0(k

′)|0⟩ =

−δ(k − k′),

⟨1|1⟩ = −⟨0|0⟩
∫
dk̃|f(k)|2 (18)

where |1⟩ =
∫
dk̃f(k)Â†

0(k)|0⟩. Therefore, the time-axis component is the source of indefinite

metric.
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Here, when we identify |1⟩ as the single photon state by the probability interpretation,

the probability that there is one photon in space is negative. Therefore the probability

interpretation is inapplicable for the covariant quantization.

Mathematically, the negative sign of the inner product of vectors is contrary to the

definition of the inner product of vectors in Hilbert space.

In the first place, equating of the physical state vectors |x⟩ and those inner product ⟨x|x⟩

with the vectors and those inner product in Hilbert space such as |x⟩ ≥ 0 ⟨x|x⟩ = 0 ⇔

|x⟩ = 0 was not derived from theory, but estimated and artificially introduced.

The reliability of the identification has been established as a result of accumulating agree-

ment between the calculation results obtained from the probability interpretation and various

experimental results.

In addition to the reliability, the mathematical procedures which can reconcile the prob-

ability interpretation with the indefinite metric has been developed for example so-called

Gupta-Bleuler formalism29,30 and Nakanishi-Lautrup formalism31 as will be mentioned in

chapter VI. However, such a procedures are not necessarily required theoretically, and can

be understood as mathematical techniques to be consistent with the probability interpreta-

tion by introducing artificial manipulation such as physical states and subsidiary conditions.

On the other hand, the minus sign is necessarily introduced from Maxwell’s equations and

the theory of relativity. In the first place, the physical space of the natural world is expressed

as Minkowski space even if gravity is ignored or Riemann space if gravity is included, and

the metric is not limited to a positive definite value.

In this paper, we accept the introduction of the minus sign as an inevitable request

from the theory, and propose an alternate interprettion of the quantum theory without

probability interpretation. In the following chapters we show the calculation results of

single-photon interference, single-electron interference and EPR correlation using probability

interpretation can be faithfully reproduced by introducing the minus sign and a kind of scalar

potential (geometrical phase). Then we also show these phenomena will be clear the image

of objective physical reality.

If Coulomb gauge is adopted, the scalar potential of the time axis component, which is

the source of the indefinite metric, will be ignored. Therefore the discussion in the next

chapter becomes difficult. In addition, the explicit covariance of Maxwell’s equations is also

lost, hence Lorentz gauge should be adopted to construct the basic concept of physical law
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independent of the coordinate system.
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III. SINGLE PHOTON, SINGLE ELECTRON INTERFERENCE AND EPR

CORRELATION

In this chapter, we show the calculation methods for the single photon interference, single

electron interference, EPR correlation by using both probability and alternate interpreta-

tion. We emphasize that the calculation of single-photon and single-electron interference by

using probability interpretation imposes the description that a single particle that cannot

be further divided must be considered as if it were divided into separate paths on us.

On the other hand, the calculation of single-photon and single-electron interference by

using the alternate interpretation reveals that the scalar potential, which is the source of the

indefinite metric, forms an oscillatory field due to the geometrical arrangement of the exper-

imental setups. Then we can obtain the image of objective physical reality which describes

the inseparable single photon or electron moves in the oscillatory field while interfering with

each other.

For EPR correlation, the calculation utilizing polarized photons will be discussed. On

the calculation of EPR correlation by using probability interpretation, two photons having

polarizations orthogonal to each other must be considered as a correlated photon pair state

(Entanglement), which simultaneously splits into different paths and only probabilistically

exists in whole space-time. This kind of explanation requires not only the probability in-

terpretation but also the ”denial of locality” which contradicts the relativity such that the

polarization of the photon of the other path is determined at the very moment when the

polarization is found by the polarization measurement of the photon of the other path.

On the other hand, according to the alternate interpretation, the correlated photon pair

has the designated polarization that is determined when it generates, and when the polar-

ization direction is measured, those photons are interfered with the scalar potential that

forms an oscillatory field due to the geometrical arrangement of the experimental setup. We

clarify that there seems to be a non-local long-range correlation beyond the causality due

to the interference with the potential.
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FIG. 1. Schematic view of Mach-Zehnder Interferometer (MZI). BS:Beam Splitter.

A. Single photon interference

1. Calculation using probability interpretation

Figure 1 shows a schematic view of the Mach-Zehnder Interferometer (MZI) and coordi-

nate system.1

On the probability interpretation, the calculation of the single photon interference by

using Maxwell’s equations (1) in free space ( i = 0, ρ = 0 ) in Coulomb gauge eliminates

the scalar potential ϕ and only uses the quantized vector potentials â and â† as the photon

annihilation and creation operator respectively.

According to the reference32, the following electric field operator of which square Ê†Ê is

used as an electric field intensity operator proportional to the photon number, and number

state |n⟩ are introduced to calculate the single photon interference of the MZI.

Ê =
1√
2
â1 exp (iθ) +

1√
2
â2 (19)

where â1or2is the photon annihilation operator corresponding to an optical mode passing

through path 1 or 2, respectively, θ is a phase difference corresponding to the difference in

length between the two paths.

â1or2 and â†1or2 are defined along with the expected photon number from the photon

creation and annihilation operators â and â† in free space (MZI input) before the photons

are split into two paths as follows.

⟨n|â†1â1|n⟩ = ⟨n|â†2â2|n⟩ = ⟨n|â†1â2|n⟩ =
1

2
n (20)
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â =
â1 + â2√

2
, â† =

â†1 + â†2√
2

(21)

The photon number at the MZI output is calculated as follows by using the squared operator

and the number state.32

⟨Î⟩ ∝ ⟨n|Ê†Ê|n⟩ = 1

2
⟨n|â†1â1|n⟩+

1

2
⟨n|â†2â2|n⟩+ cos θ⟨n|â†1â2|n⟩ (22)

where ⟨Î⟩ is the expected field intensity proportional to the photon number.

Substituting 1 (n = 1) for the photon number as a single photon, the above expected

value is calculated to be as follows.

⟨Î⟩ ∝ 1

4
+

1

4
+

1

2
cos θ =

1

2
+

1

2
cos θ (23)

The above calculations can be interpreted that the photon incident from the MZI is

passing through both path 1 and 2 simultaneously with probability 1/2 along with the

phase difference corresponding to the optical length between the two paths, as is clear from

the form of the electric field operator introduced in (19), the expected photon number (20)

on each path, the division of the photon creation and annihilation operator (21).

This interpretation is valid as statistical physics that when the intensity of light incident

on the MZI is high and the photon number n is large, approximately n/2 photons are on

one side and n/2 photons are on the other side.

This kind of statistical state has been introduced as a mixed state which is multiplied by a

density matrix proportional to the probability including the pure state having a fundamental

probability. The probability interpretation using the mixed state is considered statistically

valid.

However, even if the intensity of light incident on the MZI is very low and it is considered

to be a single photon that cannot be split any more, the single photon is considered as a pure

state with fundamental probability and passes through both path 1 and 2 simultaneously

with probability 1/2.

2. Calculation using alternate interpretation

In order to revise the probability interpretation to alternate interpretation with objective

physical reality, we examine again the electromagnetic field of the incident photon beam on

the MZI in Figure 1.
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First, assume that a light beam having an angular frequency ω and a propagation constant

β polarized in the x-axis direction propagates in the z-axis direction, and the electric field of

the light beam forms, for example, a Gaussian distribution of which cross-sectional shape is

well localized in free space. Then, the electric field of the input light beam can be expressed

as follows.

E = ex · CE · exp
(
−x

2 + y2

w2
0

)
· cos (ωt− βz) (24)

where, ex is unit vector parallel to the x-axis. CE is an arbitrary constant which is propor-

tional to the magnitude of the electric field. w0 is the radius of the optical beam. E and B

are expressed by vector and scalar potentials as follows.

E = − ∂

∂t
A−∇ϕ

B = ∇×A (25)

By introducing a vector function C, A is calculated from (24) and (25) as follows.

A = − 1

ω
ex · CE · exp

(
−x

2 + y2

w2
0

)
· sin (ωt− βz) +C

∂

∂t
C = −∇ϕ (26)

To localize B to space, we can take C as an irrotational vector function ∇ × C = 0. For

example, C and ϕ can be expressed by introducing an arbitrary scalar function λ which

satisfies C = ∇λ and ∇
(
∂
∂t
λ+ ϕ

)
= 0.

Then B is expressed as follows

B = ∇×A

=
β

ω
ey · CE · exp

(
−x

2 + y2

w2
0

)
· cos (ωt− βz)

− 2y

ω ·w2
0

ez ·CE ·exp
(
−x

2 + y2

w2
0

)
·sin (ωt− βz) (27)

Therefore, E and B are localized in the free space in the input. In contrast, the vector

and scalar potentials are not necessarily localized. The above localized form (24) is one

example, other forms which satisfy the Maxwell’s equations (1) in free space i = 0 and ρ = 0

can be adopted.

Note that, the free space propagation will expand the radius of the Gaussian beam.

However, that of the propagated beam w (z) will be approximately 10.5mm when the beam
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of which launched radius w0 = 10mm propagates z = 100m in free space. This value can

be calculated using w (z) = w0

√
1 +

(
λz
πw2

0

)2
in the case of wavelength λ = 1µm. Hence the

spatially expansion of the beam will be negligible small in the case of the paths of the MZI

are less than several tens meters.

As described above, even if the photon is localized, the potentials are not always localized.

In particular, the scalar potential can exist in whole space-time. The alternate interpretation

is shown below by utilizing the existence of the scalar potential as the objective physical

reality.

First, note that vector potentials and scalar potential are mixed by Lorentz transforma-

tion. Therefore from the Lorentz invariance, vector potentials and scalar potential should

be equally treated as ⟨1|Â†
0Â0|1⟩ = ⟨1|Â†

1Â1|1⟩ = ⟨1|Â†
2Â2|1⟩ = ⟨1|Â†

3Â3|1⟩.

For simplicity of calculation, the incident beam in the figure 1 is assumed to be perfectly

polarized on the x-axis, and the longitudinal wave that is considered to be unphysical pres-

ence is ignored, i.e., A2 = 0, A3 = 0. However, as mentioned above, the scalar potential

can exist in the whole space-time. Therefore, the four-vector at the input of the MZI is

expressed as follows.

Aµ = (A0, A1, 0, 0) (28)

It is reasonable for physically phenomenon that the scalar potential is split when there are

two paths of the MZI. Here, we examine that a single photon represented by a transverse

wave polarized in the x-axis passes through path 1 and the scalar potential A0 is divided

into both paths 1 and 2 with a phase difference θ between the two paths. In this case, the

four-vector (≡ Aµ:(path1)) along path 1 and four-vector (≡ Aµ:(path2)) along path 2 of MZI

can be expressed as follows.

Aµ:(path1) = (
1

2
eiθ/2A0, A1, 0, 0)

Aµ:(path2) = (
1

2
e−iθ/2A0, 0, 0, 0) (29)

By replacing Fourier coefficients of the four-vector with operators Âµ ≡
∑3

λ=0 â
(λ)(k)ϵ

(λ)
µ (k)

and setting the commutation relations, the single photon interference can be calculated using

the potentials as an operator. According to the quantization, photon annihilation operators

corresponding to optical modes passing through MZI paths 1 and 2 are defined as Âµ:(path1)

and Âµ:(path2) respectively. Here we must introduce the indefinite metric into the product of
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the operator as follows.

Â†Â = −gµνÂ
µ†Âν = −gµνÂ†

µÂν (30)

Hence the photon number operator at the output of MZI can be obtained as following

expression by using the photon annihilation operator at the point Âµ:(path1) + Âµ:(path2).

−gµν{Âµ:(path1) + Âµ:(path2)}†{Âν:(path1) + Âν:(path2)} = −1

2
Â†

0Â0 + Â†
1Â1 −

1

2
Â†

0Â0 cos θ (31)

where, the following relations are used.

−gµνÂ†
µ:(path1)Âν:(path1) = −1

4
Â†

0Â0 + Â†
1Â1

−gµνÂ†
µ:(path1)Âν:(path2) = −1

4
e−iθÂ†

0Â0

−gµνÂ†
µ:(path2)Âν:(path1) = −1

4
eiθÂ†

0Â0

−gµνÂ†
µ:(path2)Âν:(path2) = −1

4
Â†

0Â0

From (31) and |1⟩ with the Lorentz invariance, ⟨Î⟩ ∝ 1
2
− 1

2
cos θ can be calculated. By

selecting the proper reference point of the phase difference, (23) is reproduced.

⟨Î⟩ ∝ 1

2
+

1

2
cos θ (32)

Here, in order to clarify the motion of the scalar potential and the single photon as an

objective physical reality, we further study the setup of the single photon MZI experiment.

Since the electromagnetic field has time reversal invariance, there is no particular reason to

distinguish the input and output of the MZI. Therefore, the photon annihilation operator

at the confluence of the input of the MZI should be represented as the output of the MZI.

Then

Âµ = Âµ:(path1) + Âµ:(path2) =

(
cos

θ

2
Â0, Â1, 0, 0

)
(33)

It is physically reasonable to assume that there is clearly single photon at the input of the

MZI. If (28) is used to calculate the photon number with the single photon state at the

input of the MZI, the result is calculated to be ⟨1|(−Â†
0Â0 + Â†

1Â1)|1⟩ = 0. Therefore if we

erase the scalar potential as Â0 = 0, we can not obtain the interference. On the other hand,

the photon number is 1 when θ = ±Nπ (N : odd number) in (33). Therefore, we should

recognize the scalar potential at the input of the MZI is nonzero (not empty, i.e., Â0 ̸= 0)

but rather cancels each other out with opposite phase waves, i.e., cos(θ/2) = 0. From this

study, it is possible to obtain a picture that the scalar potential generates an oscillatory field

like f(θ) · Â0 when there is a division (geometrical arrangement) in the space. Where f(θ)
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is an oscillatory function of θ. The formation of the oscillatory field can be recognized as a

”hidden variable” associate with the EPR correlation, which will be dealt with in the next

section. It is possible to interpret that a substantial photon moves in the oscillatory field,

which interferes with each other. Therefore, the expected value of the field intensity at any

spatial position is calculated as ⟨Î⟩ ∝ 1
2
+ 1

2
cos θ using (33). From the discussion, no matter

where the substantial photon moves in the space, no photon can be observed at the position

where θ = ±Nπ (N : odd number) in the space.

In this way, if we accept the indefinite metric required from the covariant quantization

without probability interpretation, a clear image of objective physical reality is obtained.

That is to say, there is a scalar potential on both paths of the MZI, which forms an oscillatory

field caused by the path division of the MZI, and a single photon incident from one path

passes through while interfering with the oscillatory field. The formation of the oscillatory

field caused by the path division examined here corresponds to the fact that the phase term

depending on the potentials introduced on the electron wave function cannot be eliminated

in the spatially multiple-connected region in Aharonov-Bohm effect.33,34

We can replace the above calculation and picture by an analogy of electronic circuits

that the scalar potential corresponds to the bias current (voltage) and the vector potential,

which represents a single photon, corresponds to a signal current (voltage) added to the

bias current (voltage). However, in this case, the bias current (voltage) is not direct current

(DC) (or voltage), but an alternating bias current (AC) (or voltage) that interferes with

the signal current (voltage), which causes output fluctuations. In summary, an observed

signal fluctuates when the signal is added on a fluctuating reference. In addition, if we

use the analogy of homodyne detection wireless communication or optical communication,

the scalar potential corresponds to a continuously oscillating local oscillator placed at the

receiving end and a single photon corresponds to a signal. This corresponds to extracting

the signal information by the interference between the continuous wave of the local oscillator

and the signal at the receiving end, and the image shows that each point in whole space-time

has a local oscillator.

In the above calculations, the scalar potential that requires the indefinite metric was

treated as an operator as a physical reality. Following the standard quantum theory, we call

the form Heisenberg picture in which the indefinite metric of the scalar potential is imposed

on an operator. Then, we can call the form Schrödinger picture in which the indefinite
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metric of the scalar potential is imposed on a state vector.

In Schrödinger picture, the expected field intensity can be calculated using the state

along path 1 and path 2, and the photon annihilation operator at the output in Schrödinger

picture ÂS, which is proportional to the electric field operator Ê ∝ ÂS at the output 1 (or

2). For a more detailed definition is as follows. The operators Â, ÂS and state |1⟩, |1⟩S
can be translated by using the Hamiltonian Ĥ as Â = eiĤt/ℏÂSe

−iĤt/ℏ and |1⟩S = e−iĤt/ℏ|1⟩

respectively.

Here the state along path 1 can be expressed as 1
2
eiθ/2|1⟩S0 + |1⟩S1 according to (29),

where |1⟩S0 expresses the state which there is only scalar potential A0 along path 1, and

|1⟩S1 expresses the state which there is x-polarized single photon along path 1 respectively.

In the same way, the state along path 2 can be expressed as 1
2
e−iθ/2|1⟩S0+ |0⟩S according

to (29), where |0⟩S expresses the state which there is no photon along path 2. |0⟩S can be

identified as “ideal vacuum” as will be discussed in section IVA. However |0⟩S ≡ 0 which

means S⟨0|0⟩S = 0 ̸= 1. We can neglect the “ideal vacuum” in the calculation.

Then the state of the output can be calculated as following the sum of the both states.

cos
θ

2
|1⟩S0 + |1⟩S1 (34)

Therefore the expected value of the field intensity using the probability interpretation is also

reproduced by using Schrödinger picture as follows.

⟨Î⟩ ∝
(
cos

θ

2S0
⟨1|+S1 ⟨1|

)
Â†
SÂS

(
cos

θ

2
|1⟩S0 + |1⟩S1

)
= − cos2

θ

2
+ 1 =

1

2
− 1

2
cos θ =

1

2
+

1

2
cos θ′ (35)

where θ′ = θ ± π(the proper reference point of the phase difference), and according to (30),

−S0⟨1|Â†
SÂS|1⟩S0 =S1 ⟨1|Â†

SÂS|1⟩S1 = 1,S0 ⟨1|1⟩S1 =S1 ⟨1|1⟩S0 = 0 are used.

In the above discussion, we have expressed the operators and states along path 1 and

2. However, an objective physical reality is that the oscillatory field of the scalar potential

is formed due to the geometrical arrangement that divides the space into two, and a single

photon passes through (or exists) in it. That is, in Heisenberg picture, the x-polarized single

photon Â1 passes through (or exists) in the oscillatory field of the scalar potential cos θ
2
Â0.

In Schrödinger picture, the x-polarized single photon |1⟩S1 passes through (or exists) in the

oscillatory field of the scalar potential cos θ
2
|1⟩S1 formed on the vacuum |0⟩S0.
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It is convenient to calculate the single photon interference in Heisenberg picture by in-

troducing the following operator Â′
0 instead of Â0 using the above operator Â1.

Â′
0 =

1

2
γeiθ/2Â1 −

1

2
γe−iθ/2Â1

Â′†
0 =

1

2
γe−iθ/2Â†

1 −
1

2
γeiθ/2Â†

1 (36)

where γ2 = −1 (i.e., γ corresponds to the square root of the determinant of Minkowski

metric tensor
√
|gµν | ≡

√
g ≡

√
−1 = γ)

By using the operator, the expected field intensity ⟨Î⟩ ∝ ⟨1|(Â′
0 + Â1)

†(Â′
0 + Â1)|1⟩ can

be calculated as follows.

Â′†
0 Â

′
0 = −1

4
Â†

1Â1 −
1

4
Â†

1Â1 +
1

4
eiθÂ†

1Â1 +
1

4
e−iθÂ†

1Â1

= −1

2
Â†

1Â1 +
1

2
Â†

1Â1 cos θ

Â†
1Â

′
0 =

1

2
γeiθ/2Â†

1Â1 −
1

2
γe−iθ/2Â†

1Â1

Â′†
0 Â1 =

1

2
γe−iθ/2Â†

1Â1 −
1

2
γeiθ/2Â†

1Â1 (37)

Finally, we can obtain the following result.

⟨1|Â†
1Â1|1⟩ = 1

⟨1|Â′†
0 Â

′
0|1⟩ = −1

2
+

1

2
cos θ

⟨1|Â†
1Â

′
0|1⟩ =

1

2
γeiθ/2 − 1

2
γe−iθ/2

⟨1|Â′†
0 Â1|1⟩ =

1

2
γe−iθ/2 − 1

2
γeiθ/2

⟨1|Â†
1Â1|1⟩+ ⟨1|Â′†

0 Â
′
0|1⟩+ ⟨1|Â†

1Â
′
0|1⟩+ ⟨1|Â′†

0 Â1|1⟩ =
1

2
+

1

2
cos θ (38)

This form is equivalent to using the following four-vector instead of (29).

Âµ:(path1) ≡ (0, Â1, 0, 0)

Âµ:(path2) ≡ (
1

2
ieiθ/2Â0 −

1

2
ie−iθ/2Â0, 0, 0, 0) (39)

We call this expression “simple calculation method” in this paper. When this simple cal-

culation method is interpreted by physical reality, the single photon passes through only
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path 1 and the oscillatory field caused by scalar potential exists only on path 2. Although

the picture of oscillatory field formation by the scalar potential remains, we lost the natural

picture discussed based on the Gaussian light beam that the scalar potential exists in whole

space-time. Furthermore, as will be described later, it obscures the generalized picture of the

oscillatory field formation by arbitrary number paths. Therefore, we should understand that

it does not faithfully describe the objective physical reality, though this simple calculation

method is a convenient format for reproducing the calculation results.

The Schrödinger picture of the simple calculation method can be expressed as follows

according to (36) and (39).

The state along path 1 is |1⟩S1, the state along path 2 is
(
1
2
γeiθ/2 − 1

2
γe−iθ/2

)
|1⟩S0. Here

we define

|ζ⟩ ≡
(
1

2
γeiθ/2 − 1

2
γe−iθ/2

)
|1⟩S0 (40)

Then the expected value of the field intensity using the probability interpretation is also

reproduced by using Schrödinger picture of the simple calculation method.

⟨Î⟩ ∝ (S1⟨1|+ ⟨ζ|) Â†
SÂS (|1⟩S1 + |ζ⟩)

= 1 + ⟨ζ|Â†
SÂS|ζ⟩ = 1− sin2 θ

2
= cos2

θ

2
=

1

2
+

1

2
cos θ (41)

Because ⟨ζ|ζ⟩ = −1
2
+ 1

2
cos θ and ⟨ζ|ζ⟩ ≤ 0 when θ ̸= ±Nπ(N : even number), |ζ⟩ is an

indefinite metric vector. Therefore we can understand that the above calculation represents

Schrödinger picture in which the indefinite metric of the scalar potential is imposed on a

state vector.
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FIG. 2. Schematic view of a typical setup for the single electron interference experiment. : The

electron emitted from the electron source passes through the two pinholes and is detected by the

electron detector on the screen, and the detection frequency is recorded as an interference pattern

on the screen.

B. Single electron interference

1. Calculation using probability interpretation

Figure 2 shows the schematic view of a typical setup for the single electron interfer-

ence experiment.1,35 This experimental setup is also the equivalent setup for single photon

interference which has the divided path.

In the quantum mechanical description using probability interpretation, the single-

electron interference in the figure 2 is calculated using the following probability amplitude

ϕ1 = ⟨x|1⟩⟨1|s⟩ , ϕ2 = ⟨x|2⟩⟨2|s⟩ (42)

and probability (density) of finding the electron on the screen.35

P12 = |ϕ1 + ϕ2|2 (43)

Where ϕ1 = ⟨x|1⟩⟨1|s⟩ and ϕ2 = ⟨x|2⟩⟨2|s⟩ are composed of probability amplitudes as

follows.

⟨1or2|s⟩ ≡ ⟨ electron arrives at pinhole 1 or 2 | electron leaves s (electron source) ⟩

⟨x|1or2⟩ ≡ ⟨ electron arrives at screen x | electron leaves pinhole 1 or 2 ⟩

When either pinhole 1 or 2 is closed, the each and total probabilities are calculated to be

P1 = |ϕ2
1|, P2 = |ϕ2

2| and P = P1+P2 ̸= P12. In this case, the interference when both pinholes
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open at the same time will not be reproduced. Therefore the probability interpretation that

a single electron passes through both pinholes simultaneously has been introduced, though

it cannot be further divided.

This single electron interference also gives the same interference of the single photon

interference described in section IIIA.

In probability interpretation, the charge operator is defined instead of the photon number

operator defined in the calculation of the single photon interference, and the states of the

single electron passing through path 1 and path 2 are introduced. The single electron

interference can be calculated by using the charge operator and the above two states.

Specifically, we replace the n-photon number state with the electron-number state |n⟩

where n electrons are present, and the photon number operator n = â†â composed of the

operator â of the expression (21) is replaced by defining the charge operator Q ≡
∫
d3xj0(x).

Where j0(x) is the 0-th component of four-current jµ = (q, i), ∂µjµ = ∂q
∂t

+ ∇ · i = 0

Because the charge operator satisfies Q|n⟩ = nq|n⟩, n electronic states are eigenstates of

Q.28,36

Here the state |1⟩1&2 that a single electron simultaneously passes through both path 1

and 2 with probability 1/2 can be expressed as follows.

|1⟩1&2 =
1√
2
|1⟩ exp iθ + 1√

2
|1⟩ (44)

where, θ is the phase corresponding to the difference of the path length. Then expected

charge intensity ⟨Î⟩ can be calculated as follows.

⟨Î⟩ ∝ ⟨1|1&2Q|1⟩1&2 = q (1 + cos θ) ∝ q

(
1

2
+

1

2
cos θ

)
(45)

This is the same expression as the single photon interference in the previous section.

2. Calculation using alternate interpretation

In order to revise the probability interpretation to alternate interpretation with objective

physical reality, we start by reexamining the experimental setup in figure 2 with classical

electromagnetism.

In figure 2, an isolated charge q moving with an arbitrary velocity v in free space generates
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the scalar and vector potentials called Liénald and Wiechert potentials as follows.37

ϕ =
1

4πε0

q

r
(
1− vr

c

) , A =
µ0

4π

qv

r
(
1− vr

c

) (46)

where ε0, µ0 and c are the permittivity, permeability and the speed of light respectively. vr

is the component of charge velocity in the direction of the radius vector r drawn from charge

to observer. r = |r| is the distance in three-dimensional configuration space from the charge

to the observer.

Therefore the scalar and vector potentials definitely passes through (or exist) not only

the pinhole the electron passes through but also the opposite pinhole.

Thus, similar to the single photon interference described in the previous section, we can

obtain the picture that the electron as an objective physical reality propagates through the

pinhole on one side and the potentials exist on both side. The potentials are composed of

both existing potentials in whole space-time and generated potentials by the movement of

the charge. Hence, the electron wave functions should be expressed as follows in such a case.

ψ′
1 = ψ1 · exp

[
i
q

ℏ

∫
s→Pinhole1→screen

(ϕdt−A · dx)
]

ψ′
2 = ψ2 · exp

[
i
q

ℏ

∫
s→Pinhole2→screen

(ϕdt−A · dx)
]

(47)

where ψ′
1 and ψ′

2 are the electron wave functions on the screen passing through pinhole

1 and 2 with the potentials respectively. ψ1 and ψ2 are the electron wave functions heading

to pinhole 1 and 2 at the electron source without the effects of the potentials. Note that

because a single electron shows no effects of a “self-generated field”, the potentials should not

include the “self-generated potentials”. For example, when the two electron propagate from

the electron source to the detector via pinhole 1 and 2 respectively, the electron propagates

via pinhole 1 is affected the potentials generated by electron propagates via pinhole 2 and

vice versa.

The following expression is the probability of finding an electron on the screen by using

probability interpretation.

P12 ∝ |ψ′|2 = |ψ′
1 + ψ′

2|2 = |ψ1|2 + |ψ2|2 − 2Re

(
exp

[
i
q

ℏ

∮
s→1→screen→2→s

(ϕdt−A · dx)
]
ψ∗
1ψ2

)
(48)

where 1 and 2 of the integration path denote pinhole 1 and 2 respectively.
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Although the probability interpretation insists the single electron passes through pinholes

1 and 2 simultaneously, the expression (48) is derived form the picture that the single electron

passes through a pinhole on one side assuming that there are potentials on both sides as

mentioned above. Hence this is considered to be the expected value of the charge intensity

observed on the screen.

However, (48) uses the wave function. We need to shift from the wave function to the

state vector to clarify the picture. Note that (48) is a formula equivalent to Aharonov-Bohm

effect.33 The phase term can be eliminated in a single connected region where the spatial

region can contract to a single point but cannot be eliminated in multiple-connected region

where the spatial region can not contract to a single point.

In the following description, we will show that the phase term can be introduced as

a geometric phase, so-called Berry phase, even when there is no existing or generating

potentials as described above.

Here we first consider in the case of single electron passes through pinhole 1 or 2, and

arrive at the detector.

In this case, we consider the scattering problem of Schrödinger equation for the single

electron interference.

The setup of the calculation is that an electron passes through only pinhole 1 (or 2; we

use 1 below.) and is affected by the scalar potential of both pinholes as described such

existence in previous section. First, when there are no pinholes and no scalar potential, the

time dependent solution |ψ(t)⟩ of the electron state obeys following Schrödinger equation.

iℏ
∂

∂t
|ψ(t)⟩ = H0|ψ(t)⟩ (49)

where H0 is Hamiltonian without perturbation (scalar potential). Then we can obtain

|ψ(t)⟩ = c1 exp(−
iEt

ℏ
)|ψ1⟩ (50)

where c1, E and |ψ1⟩ are an arbitrary constant, eigenvalue (energy) of H0 and the one

electron eigenstate heading to pinhole 1 respectively. Next, when the scalar potential exists,

the total Hamiltonian is described as H = H0 + qϕ and we can assume that the solution is

an extension of an arbitrary constant c1 to a time function.

|ψ(t)⟩ = c1(t) exp(−
iEt

ℏ
)|ψ1⟩ (51)
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Note that even if ϕ does not depend on time t or ϕ = 0, the system, in this case, the splitting

and recombination of a beam may be regarded as going backwards in time along one beam

and returning along the other beam to its original state at the same time: cyclic evolution.38

In this subsection, we assume the |ψ(t)⟩ can be expressed as in (51), whereas c1(t) is justified

by the references38–40, which is discussed in subsection IVE.

By applying the solution (51) to Schrödinger equation of total Hamiltonian, we can obtain

the following expression for c1(t).

iℏ exp(− iEt
ℏ

)
∂c1(t)

∂t
|ψ1⟩ = exp(− iEt

ℏ
)c1(t)qϕ|ψ1⟩ (52)

By applying ⟨ψ1| to (52) from the left side, the partial differential equation for c1(t) is

obtained as follows.

iℏ
∂c1(t)

∂t
= c1(t)qϕ (53)

Therefore c1(t) is obtained as c1(t) = c0 exp(−i qℏ
∫
ϕdt), where |c0|2 = 1 normalized constant.

Since ϕ is on multiple-connected region when there are pinholes, c1(t) needs to be added

along s → Pinhole1 → screen and s → Pinhole2 → screen as follows.

c1(t) =
1

2
exp(−i q

ℏ

∫
1

ϕdt) +
1

2
exp(−i q

ℏ

∫
2

ϕdt) (54)

where the subscript 1 or 2 of the integral means s→ Pinhole1 or Pinhole2 → screen as same

in (47). In addition we assume c1(0) = 1 and the coefficients 1/2 because ϕ is symmetric

with respect to Pinhole1 and Pinhole2. Hence the following solution is obtained.

|ψ(t)⟩ = 1

2
exp(−i q

ℏ

∫
1

ϕdt) exp(− iEt
ℏ

)|ψ1⟩+
1

2
exp(−i q

ℏ

∫
2

ϕdt) exp(− iEt
ℏ

)|ψ1⟩ (55)

Note that this expression corresponds to that the direct product of the oscillatory field of

the scalar potential caused by the geometrical arrangement and one electron state as follows.

(
1

2
eiθ/2A0|1⟩+

1

2
e−iθ/2A0|1⟩)⊗ |ψ1⟩ =

1

2
eiθ/2A0|1⟩ ⊗ |ψ1⟩+

1

2
e−iθ/2A0|1⟩ ⊗ |ψ1⟩ (56)

Therefore the expected charge intensity of the single electron interference can be calcu-

lated using the above solution as follows.

⟨Î⟩ ∝ ⟨ψ(t)|Q|ψ(t)⟩

=
1

4
q⟨ψ1|ψ1⟩+

1

4
q⟨ψ1|ψ1⟩+

1

4
q exp(i

q

ℏ

∮
ϕdt) +

1

4
q exp(−i q

ℏ

∮
ϕdt)

=
1

2
q +

1

2
q cos(

q

ℏ

∮
ϕdt) ≡ 1

2
q +

1

2
q cos θ (57)

27



where the trajectory of the line integral
∮
is as same as (48). This result stands for the single

electron interference is not caused by extrinsically generated potentials, but by the oscilla-

tory field of the intrinsically existing scalar potential formed according to the geometrical

arrangement of the space.

The relativistic generalization of (54) is given as follows.33

c1(t) =
1

2
exp(−i q

ℏ

∫
1

(ϕdt−A · dx) + 1

2
exp(−i q

ℏ

∫
2

(ϕdt−A · dx) (58)

(Note: This correspond to use H = H0+ qϕ− qA, however such Hamiltonian is inconsistent

with second-order partial differential Schrödinger equation utilizing covariant derivative as

described later in section IVE. If we consider first-order partial differential Dirac equation,

similar Hamiltonian H = H0 + γ0qϕ − γiqAi (i = 1, 2, 3) is obtained, where γµ are Dirac’s

gamma matrices and the wave function has 4 components.)

Hence the expected charge intensity of the single electron interference using the relativistic

generalization is expressed as follows.

⟨Î⟩ ∝ 1

2
q +

1

2
q cos(

q

ℏ

∮
ϕintdt+

q

ℏ

∮
(ϕextdt−A · dx))

≡ 1

2
q +

1

2
q cos(θ +

q

ℏ

∮
(ϕextdt−A · dx)) (59)

where we split the scalar potential ϕ into intrinsically existing term ϕint and extrinsically

generated term ϕext such as Faraday cage in Ref33 by considering Aharonov-Bohm effect,

i.e., first term θ in cos generates single electron interference and second term generates

Aharonov-Bohm effect which shifts the interference pattern. Note that we can also split the

vector potential A into A = Aint +Aext.

In (52), we considered the existing scalar potential ϕ. If there is no electromagnetic

potential in space, no phase term is generated.

However, even if we try to calculate the ”self-generating” electromagnetic potentials in

(46), the potentials can not be defined in terms of the position of electrons on the path

because r = 0. This is one of the major problems from classical physics that is brought into

the quantum fields theory, which gives infinite self-energy, and there is still no fundamental

theoretical solution.

Therefore, in this paper, we follow the conventional treatment that a single electron is

not affected by the ”self-generating” potentials. Instead, we will show that the introduction
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of the geometric phase noted by Berry41 yields a phase term that is formally identical to the

case where there are existing potentials, as follows.

The geometric phase noted by Berry as follows, which was introduced by slowly transport

or adiabatic evolution, was generalized for any cyclic evolution in the projective Hilbert

space by Y. Aharonov and J. Anandan.38 and all quantum evolutions, not merely cyclic

evolutions.39,40

Note that the following discussion for single electron interference is based on the original

concept by Berry, but it should be discussed based on the reference38–40 which generalizes

the adiabatic theorem (we call this Berry-Aharonov-Anandan phase, BAA phase). The

calculation by the BAA phase is discussed in the calculation of neutron interference later

in subsection IVE. The single electron interference should also be calculated by the same

BAA phase as in subsection IVE though the following result is unchanged.

The introduction of the geometric phase γ(C), where C is closed loop as described be-

low, is formally the same as replacing c1(t) in (51) with exp[iγ(t)] which means we con-

sider the Hamiltonian H(r(t)) with varying parameters r(t) = (x, y, z) instead of an unper-

turbed Hamiltonian H0 in (49) and the parameter dependent eigenstate |ψ1(r(t))⟩ instead

of time dependent state |ψ1(t)⟩ in addition to the parameter dependent eigenvalue (energy)

E(r(t)) instead of stationary eigenvalue E. In these replacements, the specific solution of

the Schrödinger equation is obtained as following form.

|ψ(t)⟩ = exp

[
iγ(t)− i

ℏ

∫ t

0

E(r(s))ds

]
|ψ1(r(t))⟩

≡ exp [iγ(t) + iγd(t)] |ψ1(r(t))⟩ (60)

Substituting (60) into Schrödinger equation (49) with (50) and the above replacement yields

∂γ(t)

∂t
|ψ1(r(t))⟩ = i

∂

∂t
|ψ1(r(t))⟩ (61)

Multiplying ⟨ψ1(r(t))| (multiplying the other eigenstates is zero due to adiabatic assumption)

by the left-hand side leads to

γ(t) = i

∫ t

0

⟨ψ1(r(s))|
∂

∂s
|ψ1(r(s))⟩ds

= i

∫ r(t)

r(0)

⟨ψ1(r)|∇r|ψ1(r)⟩ · dr (62)

where ∂/∂t =
∑

i dxi/dt · ∂/∂xi is used. When r(t) travels in a closed loop C on parameter
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space, i.e., r(0) = r(T ), the total phase change of |ψ⟩ is given by

|ψ(T )⟩ = exp

[
iγ(C)− i

ℏ

∫ T

0

E(r(s))ds

]
|ψ1(r(0))⟩ (63)

Note that the second term of the phase ≡ γd(T ) is called dynamical phase in comparison to

the geometric phase.

Because the two paths along C1 ≡ s → Pinhole1 → screen and C2 ≡ s → Pinhole2 → screen

which forms a closed loop C ≡ C1 − C2 are on multiple-connected region in this setup, the

solution (60) needs to be added up the phase changes c1(t) ≡ exp(iγ(t)) along C1 and C2 as

same as (54) by taking the r(t) as an external parameter in the real space itself.

|ψ(t)⟩ =
1

2
exp [iγ(C1) + iγd(C1)] |ψ1(r(t))⟩

+
1

2
exp [iγ(C2) + iγd(C2)] |ψ1(r(t))⟩ (64)

Note that because |ψ1(r(t))⟩ is the one electron eigenstate heading to pinhole 1, the real

single electron travels along C1 but the phase difference due to the geometrical arrangement

of the space is introduced. This is the identical form as (56) by equating the phases of the

scalar potential with the geometrical phases.

By using (64), the expected charge intensity of the single electron interference can be

calculated as same manner as (57).

⟨Î⟩ ∝ ⟨ψ(t)|Q|ψ(t)⟩

=
1

4
q +

1

4
q +

1

4
q exp [iγ(C) + iγd(C)] +

1

4
q exp [−iγ(C)− iγd(C)]

=
1

2
q +

1

2
q cos(γ(C) + γd(C)) (65)

where the normalization of the eigenstate ⟨ψ1(r(t))|ψ1(r(t))⟩ = 1 is used.

Note that because the following discussion will deviate from the adiabatic assumption, it

should be discussed based on the reference38–40 described later in subsection IVE.

When we asuume γd(C) = −1
ℏ{
∫ t1
0
E(r(s))ds −

∫ t2
0
E(r(s))ds} = −E

ℏ∆t, γ(C) can be

calculated as follows, where ∆t = t1 − t2 is the difference in travel time of the electron

motion along C1 and C2.

The time evolution eigenstate |ψ1(r(t))⟩ of the free (without potentials) electron wave

propagating in space with the angular frequency ω and energy E can be expressed as follows.

|ψ1(r(t))⟩ = exp(−iωt) exp(−iE
ℏ
t)|ψ1res(r(0))⟩ (66)
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The direct substitution of (66) into (62) leads to

γ(t) =

∫ t

0

ω +
E

ℏ
⟨ψ1res(r(0))|ψ1res(r(0))⟩ds+ i

∫ t

0

⟨ψ1res(r(0))|
∂

∂s
|ψ1res(r(0))⟩ds

=

∫ t

0

(ω +
E

ℏ
)ds (67)

Therefore

γ(C) + γd(C) = γ(C1)− γ(C2)−
E

ℏ
∆t = (ω +

E

ℏ
)∆t− E

ℏ
∆t = ω∆t (68)

Hence the expected charge intensity of the single electron interference (65) is as follows.

⟨Î⟩ ∝ 1

2
q +

1

2
q cos(ω∆t) (69)

This expression is identical to the following traditional calculation for the single electron

interference.35

P12 = |ϕ1 + ϕ2|2 = |ϕ1|2 + |ϕ2|2 + 2|ϕ1||ϕ2| cos δ (70)

where P12, ϕ1 and ϕ2 are given in (42) and (43), δ is the phase difference between ϕ1 and ϕ2.

In the above discussion does not include the varying potentials utilizing some devices

such as an infinite length solenoid coil or annular solenoid coil that penetrates the integral

loop. In such case, external potentials Aext is generated and varies according to the flux

generated by the device, which shifts the fringe pattern of the expected charge intensity.

This kind of fringe shift originate in Aharonov-Bohm effect has been experimentally verified

by A. Tonomura.42

As described in the above (though the description should be replaced by BAA phase

discussed in later subsection IVE), we can obtain the picture of the objective physical reality

that the space is divided by two pinholes which causes an oscillatory field (phase distribution)

similar to the scalar potential corresponds to the indefinite metric, and a single electron

passes through one pinhole placed in the oscillatory field (or geometrical phase distribution)

and arrives at the detector placed in the same oscillatory field.
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FIG. 3. Typical setup for the Quantum Eraser. Pol1 and Pol2 are fixed linear polarizers with

polarizing axes perpendicular (x and y). Pol3 is a revolvable linear polarizer.2,43

C. EPR correlation

1. Calculation using probability interpretation

For the calculation of EPR correlation using photon polarization by probability interpre-

tation, it is helpful to first examine an experimental setup using polarizers called Quantum

Eraser shown in figure 3.2,43

The phenomenon of the Quantum Eraser is outlined below.

In case of no polarizers, we can observed an interference pattern composed of dark and

bright fringes on the screen because light passing on the left of the wire is combining, or

“interfering,” with light passing on the right-hand side. This means “ we have no information

about which path each photon went”.

In case of polarizers 1 and 2, which are called “which-path markers”, are positioned right

behind the wire as shown in Figure 3, the launched light polarized in 45◦ direction from the

laser is polarized in perpendicular (x-polarized and y-polarized) by these polarizers. This

means “which-path makers” have made available the information about which path each

photon went. Therefore we can observe no interference pattern on the screen .

When polarizer 3 with the polarization angle +45◦ or -45◦ is subsequently inserted in front

of the screen in addition to the “which-path makers”, the interference pattern reappears due

to the invalidation of the information of “which-path makers” by polarizer 3.

The mathematical description of the erasure and reappearance of the interference pattern

is as follows. The x- and y-polarized photon passing through polarizer 1 and 2 can be

32



expressed by following quantum-superposition state.

|x⟩ = 1√
2
|+⟩+ 1√

2
|−⟩ (71)

and

|y⟩ = 1√
2
|+⟩ − 1√

2
|−⟩ (72)

where “+” and “-” stand for polarizations +45◦ and -45◦ with respect to x.

As seen in the left-hand side of equations. (71) and (72), the photons passing through

polarizers 1 and 2 are polarized at right angles to each other. This prevent the interference

pattern. In other words, “which-path makers” have enabled information about which path

each photon went. The right side of equations (71) and (72) have the same polarization

states, but the interference patterns created by the polarizer states of +45◦ and -45◦ are

inverse fringes and annihilate each other. Therefore, there are no interference patterns in

the sum total of the images.

The subsequent insertion of the polarizer 3 with the polarization angle +45◦ or -45◦ can

allow only |+⟩ or |−⟩ to pass through polarizer 3. Therefore, either |+⟩ or |−⟩ of both

equations (71) and (72) can create the interference pattern again, which means that we can

not identify which-path the photons had passed through, i.e., polarizer 3 has disabled the

information of “which-path makers”.

As is clear from (71) and (72), enable/disable information about which side of the wire

each photon passed through is interpreted by the states that contains +45◦ and -45◦ polarized

single photon with a probability of 1/2 even if the laser light intensity becomes extremely

low and it becomes an indivisible single photon.

In order to calculate the single photon interference by probability interpretation, we

replace the side of the polarizer 1 with path 1 and the side of polarizer 2 with path 2 of

MZI in the calculation of single photon interference in the previous section. In addition, the

ratio of photon passage by polarizers 1, 2 and 3 are replaced with those rotation angles. We

examine both x-polarized and y-polarized photon emitted from the laser in the calculation.

These calculations give the same results as the EPR correlation described later.

In the calculation, all angles of the polarizers are based on the x axis. The x-polarized

light beam emitted from the laser should not be able to pass through polarizer 2, which allows

only y-polarization to pass. However, probability interpretation asserts that x-polarized light

is a superposition of polarization states different from x-polarized light like (71). Therefore,
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the calculation is possible by replacing the probability that a photon can pass with a phase

that is proportional to the difference between the polarization angle of the photon and the

angle of the polarizer.

The probability that an x-polarized photon can pass through the side of the polarizer 1

is described as the angle of the polarizer 1. In this case, since it is originally polarized on

the x axis, the phase can be selected as 0. The photon polarized in the x-axis after passing

through the polarizer 1 is described by introducing the rotation angle |ϕ| of the polarizer 3

corresponding to the probability that the photon can pass through the polarizer 3 into the

phase.

On the other hand, the x-polarized photon passing through the polarizer 2 is described

as a rotation angle π/2 corresponding to the probability that the photon can pass through

the polarizer 2.

The rotation angle π
2
−|ϕ| by the polarizer 3 is further introduced into the photon passing

through the polarizer 2. In addition, the phase difference θ between the polarizer 1 and 2

is introduced on the x-polarized photon. Now we can define the following electric field

operator.

Ê =
1√
2
â1 exp (i|ϕ|+ θ) +

1√
2
â2 exp

(
i
π

2

)
exp

{
i
(π
2
− |ϕ|

)}
=

1√
2
â1 exp (i|ϕ|+ θ) +

1√
2
â2 exp {i (π − |ϕ|)} (73)

The interference on the screen is calculated as same as in the previous section.

⟨Î⟩ ∝ ⟨n|Ê†Ê|n⟩ = 1

2
⟨n|â†1â1|n⟩+

1

2
⟨n|â†2â2|n⟩ − cos (θ + 2|ϕ|) ⟨n|â†1â2|n⟩ (74)

⟨Î⟩ is the expected field intensity, which is proportional to the number of photons, as in the

previous section. In the probability interpretation, the above expected value is calculated

as follows, including the case of a single photon of which photon number is 1 (n = 1).

⟨Î⟩ ∝ 1

2
− 1

2
cos (2|ϕ|+ θ) (75)

In the case of the y-polarized light beam emitted from the laser, we transpose the phase θ

to the y-polarized side and introduce the phases of the polarizers in the same way as for the

x-polarized light. Then the electric filed operator can be calculated as follows,

Ê =
1√
2
â1 exp

{
i
(π
2
+ |ϕ|

)}
+

1√
2
â2 exp

{
i
(π
2
− |ϕ|+ θ

)}
(76)
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FIG. 4. Typical setup for the Delayed Choice Quantum Eraser. QWP1 and QWP2 are quarter-wave

plates aligned in front of the double slit with fast axes perpendicular. Pol1 is a linear polarizer. BBO

(β−BaB2O4) crystal generates entangled photons by spontaneous parametric down-conversion22..

Finally, we can obtain as follows.

⟨Î⟩ ∝ 1

2
+

1

2
cos (2|ϕ| − θ) (77)

Here, if the laser beam contains one or more x-polarized and y-polarized photons each with

a probability of 1/2, the intensity of the interference is given by the sum of (75) and (77) as

follows.

⟨Î⟩ ∝ 1− 1

2
cos (2|ϕ|+ θ) +

1

2
cos (2|ϕ| − θ) (78)

In the expression, when ϕ = ±π, ±1
2
π, it becomes ⟨I⟩ ∝ 1 and the interference fringes are

erased, ϕ = ±1
4
π becomes ⟨I⟩ ∝ 1± sin θ and the interference fringe is reproduced.

Even if the laser intensity is very weak and consists of an x-polarized single photon and

a y-polarized single photon, (78) is satisfied.

The delayed-choice Quantum Eraser for examining the EPR correlation below corre-

sponds to the case that the emitted photon from the laser is an x-polarized single photon

and a y-polarized single photon of this Quantum Eraser. The intensity of the photon inter-

ference obtained in the experiment is the same as (75) and (77).

Figure 4 shows the typical setup for the Delayed Choice Quantum Eraser for examining

EPR correlation. This experimental setup is similar setup where the polarizer 1 plays the

role of the polarizer 3 in figure 3 of Quantum Eraser. In this setup, the BBO is excited

by the light emitted from the laser to create p and s photons of which polarizations are

orthogonal to each other. These photons propagate in different paths, and p is scanned by

the polarizer 1 and measured by the detector Dp. The photon s is measured by Ds through
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the quarter-wave plates 1 and 2 of which fast axes are orthogonal to each other and the

double slit on the back surface thereof, and further through the slit and the filter.

In this experiment, the setup is arranged according to the following order, and the result

in each arrangements is obtained.

1. When polarizer 1, QWP1 and QWP2 are removed, the coincidence counts of Ds versus

Dp shows an intensity fluctuation of the photon which indicates the interference by

the double slit.

2. When QWP1 and QWP2 are installed, the intensity fluctuation of the coincidence

counts is erased.

3. The polarizer 1 is additionally installed in the direction that matches the fast axis

of QWP1. Then, the intensity fluctuation of the coincidence counts reappears as the

interference.

4. Subsequently, the angle of the polarizer 1 is rotated by 90 degrees. Then, the intensity

fluctuation of the coincidence counts shows the interference of which the bright and

dark reversed.

From this procedure, the polarizer 1 corresponds to the polarizer 3 of Quantum Eraser de-

scribed above and looks like erases or reappears the information about which path (QWP1 or

QWP2) each photon went. That is a phenomenon similar to the above-mentioned Quantum

Eraser. Moreover, although the polarization direction setting of the photon p and the ob-

servation of the interference by the photon s are performed at spatially separated positions,

the polarization of these photons is completely correlated with one side being x-polarized

and the other side being y-polarized. Here the interference in the opposite phase obtained

in steps 3 and 4 are given by (75) and (77) calculated by the Quantum Eraser described

above.

When the distance from BBO to Dp is arranged longer than the distance from BBO

to the double slit, such arrangement becomes a delayed choice because the choice of the

polarization direction of the photon p by the polarizer 1 is performed after the observation

of the interference by the photon s. In this arrangement, the presence or absence of the

interference can also be observed by the same procedure as above. This seems that the

erasing or reproduction of the information of “which-path marker” by the polarizer 1 was
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determined after the observation. Note that the experiment did not allow for the observer

to choose the polarization angle in the time period after photon s was detected and before

detection of p, as discussed in the reference22.

When s and p are single photons, the probability interpretation asserts that the photon

s and p do not have a state of x polarization (or y polarization) that is fixed from the

beginning such as |x⟩s or |y⟩s and |x⟩p or |y⟩p. Instead they are in the superposition states

of those polarizations as follows.

|ψ⟩ = 1√
2
(|x⟩s|y⟩p + |y⟩s|x⟩p) (79)

Such perfect correlated state existing in a spatially separated region is called correlated

photon pair state (Entanglement). According to the probability interpretation for the en-

tanglement, both photon s and p propagate each path as superposition of x-polarized and

y-polarized state (79).

This postulates the existence of long-range correlation beyond the causality that contra-

dicts the locality of physical laws, i.e., theory of relativity, because even if the photons are far

apart from each other, when the state of one photon (s or p) is observed and determined to be

|x⟩ then that of the other photon (p or s) suddenly changes from the quantum-superposition

state into |y⟩. Historically, EPR paper5 written by “Einstein, Podolsky and Rosen (EPR)”

first pointed out the imperfections of the standard quantum theory by taking up such non-

local correlation states. At present, the correlated photon pair state (Entanglement) is also

called the EPR state.

2. Calculation using alternate interpretation

Here we revise the incomprehensible probability interpretation such as correlated photon

pair state to alternate interpretation using objective physical reality.

The results of the interference (75) and (77) are obtained in both setups in figure 3 and

figure 4 as mentioned above. These results has been thought to be peculiar to quantum

theory, which cannot be obtained by classical calculation assuming that a single photon has

a fixed polarization. The violation of Bell’s inequality supports the calculation results of the

quantum theory.44,45

However, the obtaining the identical calculation results both probability and alternate
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interpretation using objective physical reality with locality means that Bell’s inequality

violates in both cases.

In the following, the results of the interference (75) and (77) are reproduced with a picture

of the objective physical reality by replacing the side of the polarizer 1 as the photon path

s and the side of the polarizer 2 as the photon path p in the setup of figure 4 respectively.

As a picture of objective physical reality, we assume the laser creates either fixed x- or

y-polarized single photon, or two photons with fixed x- and y-polarized single photon. Since

there is a scalar potential in whole space-time as described in the calculation of single photon

interference, the four-vector in the space from the laser output to immediately before passing

through the polarizer 1 and 2 is expressed as follows.

Aµ = (A0, A1, A2, 0) (80)

Where, in order to simplify the calculation, the non-physical longitudinal wave was ignored

as A3 = 0.

First, we calculate in the case of there exists an x-polarized single photon and scalar

potential. This case corresponds to the calculated situation for (75). When the x-polarized

single photon and the scalar potential pass through both polarizers, the x-polarized photon

can only pass through polarizer 1 but not polarizer 2. When the scalar potential is di-

vided on each side, a phase difference is introduced associated with the division. Therefore

the following expressions are appropriate for the four-vectors after passing through each

polarizer.

A(x pol 1) µ =

(
1

2
eiθx/2A(x)0, A(x)1, 0, 0

)
, A(x pol 2) µ =

(
1

2
e−i(θx/2+π/2)A(x)0, 0, 0, 0

)
(81)

Here, a phase shift π/2 based on x-polarized photon is introduced into the scalar potential

passing through the polarizer 2. Where, the phase difference due to the division of the scalar

potential is divided into both sides for the symmetrical description as θx.

When the x-polarized photon polarized by the polarizer 1 that represent the physical re-

ality of real x-polarized photon among this four-vector is trying to pass through the polarizer

3, it can not pass through the polarizer 3 of which rotation angle is not x axis. However, be-

cause the scalar potential passes through with obtaining |ϕ| phase shift, which corresponds

to the rotation angle of the polarizer 3, the phase term becomes i (|ϕ|+ θx/2).

38



On the other hand, the scalar potential that has passed through the polarizer 2 is polarized

in y-direction. Therefore in the case of the rotation angle of the polarizer 3 is measured

from the x-axis (x=0) , π/2 is added to the rotation angle of the polarizer 3, then the phase

becomes −i (|ϕ|+ θx/2 + π).

Hence the four-vector at the polarizer 3 is expressed as follows.

A(x pol 1, 2→3) µ ≡ A(x pol 1→3) µ + A(x pol 2→3) µ

=

(
1

2
ei(|ϕ|+θx/2)A(x)0 +

1

2
e−i(|ϕ|+θx/2+π)A(x)0, A(x)1, 0, 0

)
(82)

Here from Lorentz invariance, ⟨1|A†
0A0|1⟩ = ⟨1|A†

1A1|1⟩ = ⟨1|A†
2A2|1⟩ = 1 is required as in

single photon interference. Then the following interference can be obtained.

⟨Is⟩ ∝ ⟨1|A†
(x pol 1, 2→3)A(x pol 1, 2→3)|1⟩ =

1

2
+

1

2
cos(2|ϕ|+ θx) (83)

Note that A†A ≡ −gµνA
µ†Aν = −A†

0A0 + A†
1A1 + A†

2A2 + A†
3A3.

This can be interpreted that the interference between the oscillatory field caused by

the scalar potential and x-polarized photon determines the photon intensity that can pass

through the polarizer 3.

Similarly, in the case of there exists y-polarized single photon and scalar potential, the

phase difference of the divided scalar potential can be θy as follows.

A(y pol 1) µ =

(
1

2
ei(θy/2+π/2)A(y)0, 0, 0, 0

)
, A(y pol 2) µ =

(
1

2
e−iθy/2A(y)0, 0, A(y)2, 0

)
(84)

A(y pol 1, 2→3) µ ≡ A(y pol 1→3) µ + A(y pol 2→3) µ

=

(
1

2
ei(|ϕ|+θy/2+π/2)A(y)0 +

1

2
e−i(|ϕ|+θy/2+π/2)A(y)0, 0, A(y)2, 0

)
(85)

Then the following interference can be obtained.

⟨Ip⟩ ∝ ⟨1|A†
(y pol 1, 2→3)A(y pol 1, 2→3)|1⟩ =

1

2
+

1

2
cos(2|ϕ|+ θy) (86)

Choosing the phase difference due to the division of the scalar potential as θ ≡ θx−π = −θy,

the identical interferences (75) and (77) are calculated as follows..

⟨Is⟩ ∝
1

2
− 1

2
cos(2|ϕ|+ θ) , ⟨Ip⟩ ∝

1

2
+

1

2
cos(2|ϕ| − θ) (87)
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Furthermore, when there are x-polarized single photon, y-polarized single photon and

scalar potential, the four-vector at polarizer 3 is the sum of (82) and (85), we can reproduce

(78) by simple calculation as follows.

⟨1|A†
(x, y pol 1, 2→3)A(x, y pol 1, 2→3)|1⟩ = 1− 1

2
cos(2|ϕ|+ θ) +

1

2
cos(2|ϕ| − θ) (88)

Now, we have shown that the identical results (75), (77) and (78) can be obtained by

using the indefinite metric as it is. In addition, we show that the identical results can be

obtained by the simple calculation method.

In the simple calculation method, we consider the state that only the scalar potential

exists without real photon and forms the oscillatory field. This state is represented by |ζ⟩

as shown in the single photon calculation. Therefore, in this experimental setup, the state

of x-polarized single photon in the space should be replaced by |x⟩ + |ζ⟩ instead of |x⟩.

However, when the scalar potential exists in a space without division, the phase difference

due to the path difference is θ = 0, and the oscillatory field due to the interference of the

scalar potential is not formed, so ⟨ζ|ζ⟩ = 0.

Here we note the above and choose the states of the x-polarized single photon and the

y-polarized single photon as follows.

|x⟩+ |ζϕ,x⟩ = |x⟩+ 1

2
γei|ϕ|e−iθ/2|x⟩ − 1

2
γe−i|ϕ|eiθ/2|x⟩

|y⟩+ |ζϕ+ 1
2
π,y⟩ = |y⟩+ 1

2
γei(|ϕ|+

1
2
π)eiθ/2|y⟩ − 1

2
γe−i(|ϕ|+

1
2
π)e−iθ/2|y⟩ (89)

By using the states we can calculate the interference in the presence of the x-polarized single

photon as follows.

⟨I⟩ ∝ (⟨x|+ ⟨ζϕ,x|) (|x⟩+ |ζϕ,x⟩) = ⟨x|x⟩ − 1

2
⟨x|x⟩ − 1

2
⟨x|x⟩ cos (2|ϕ|+ θ)

=
1

2
− 1

2
cos (2|ϕ|+ θ) (90)

This is identical with (75). Similarly, we can calculate the identical interference (77) in the

presence of the y-polarized single photon.

Finally, we can calculate the interference in the presence of both x-polarized and y-

polarized photons as follows,

⟨I⟩ ∝
(
⟨x|+ ⟨ζϕ,x|+ ⟨y|+ ⟨ζϕ+ 1

2
π,y|
)(

|x⟩+ |ζϕ,x⟩+ |y⟩+ |ζϕ+ 1
2
π,y⟩
)

(91)
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where ⟨x|y⟩ = ⟨y|x⟩ = 0, then

⟨I⟩ ∝ (⟨x|+ ⟨ζϕ,x|) (|x⟩+ |ζϕ,x⟩) +
(
⟨y|+ ⟨ζϕ+ 1

2
π,y|
)(

|y⟩+ |ζϕ+ 1
2
π,y⟩
)

(92)

This is the sum of the result (75) when only x-polarized photon exists and the result (77)

when only y-polarized photon exists. Therefore (78) is reproduced.

⟨I⟩ ∝ 1− 1

2
cos (2|ϕ|+ θ) +

1

2
cos (2|ϕ| − θ) (93)

This simple calculation method is the Schrödinger picture in which the calculation of an

indefinite metric is imposed on the state vector. As in the case of single-photon interference,

we can calculate the interference using Heisenberg picture in which the calculation of an

indefinite metric is imposed on the operator. In Heisenberg picture, the photon number

operator is replaced with n = (Â†
1 + Â†

p)(Â1 + Âp). Where, Â1 and Âp (p : polarization =

x, y, · · · , etc.) are the photon annihilation operator that represents a real photon and a

photon annihilation operator that represents a scalar potential polarized in the p direction.

These operators can be defined as follows.

Âx =
1

2
γei|ϕ|e−iθ/2Â1 −

1

2
γe−i|ϕ|eiθ/2Â1 , Â†

x =
1

2
γe−i|ϕ|eiθ/2Â†

1 −
1

2
γei|ϕ|e−iθ/2Â†

1

(94)

We can reproduce (90) by using the above operators of Heisenberg picture.

⟨I⟩ = ⟨n|(Â†
1 + Â†

x)(Â1 + Âx)|n⟩ = ⟨n|n1|n⟩+ ⟨n|Â†
xÂx|n⟩ ∝

1

2
− 1

2
cos (2|ϕ|+ θ) (95)

Note that the Heisenberg picture imposes the indefinite metric calculation on the operator,

so we should replace the ordinary photon annihilation operator for x-polarization Â1 with

Â1 + Âx, where Âx is the photon annihilation operator derived from the scalar potential

Âx. Therefore, the photon number operator in the presence of x-polarized and y-polarized

photons is (Â1 + Âx) + (Â2 + Ây). We can reproduce (93) as follows by choosing the

appropriate phase of these replacements.

⟨I⟩ = ⟨n|(Â†
1 + Â†

x + Â†
2 + Â†

y)(Â1 + Âx + Â2 + Ây)|n⟩

= ⟨n|n1|n⟩+ ⟨n|Â†
xÂx|n⟩+ ⟨n|n2|n⟩+ ⟨n|Â†

yÂy|n⟩

∝ 1− 1

2
cos (2|ϕ|+ θ) +

1

2
cos (2|ϕ| − θ) (96)
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Where, we assume that there are the same number of x-polarized and y-polarized photons.

⟨n|n1|n⟩ ≡ ⟨n|Â†
1Â1|n⟩ = ⟨n|n2|n⟩ ≡ ⟨n|Â†

2Â2|n⟩ = n

Under the condition |n⟩ ≡ |n⟩x + |n⟩y, we can calculate equivalent relations to those

in conventional quantum theory such as Â1|n⟩ = Â1|n⟩x + Â1|n⟩y =
√
n|n − 1⟩x, Â2|n⟩ =

Â2|n⟩x + Â2|n⟩y =
√
n|n− 1⟩y and ⟨n|Â†

1Â2|n⟩ = ⟨n|Â†
2Â1|n⟩ = 0. Where |n⟩x, |n⟩y is the n

photon number state of the x- and y-polarized photon respectively.

Using the alternate interpretation, it is also possible that the polarization direction of

the photon pair created in BBO in figure 4 is controlled by the scalar potential as describe

below.

The scalar potential exists in whole space-time even if there is no photons. Therefore

when the angle of the polarizer 1 is set to |ϕ|, the scalar potential is affected by the setting.

This state can be expressed as the sum of |0⟩ where no photon exists and |ζ|ϕ|⟩ where the

scalar potential is oriented by the rotation of the polarizer 1. This state can be expressed

as follows by a simple calculation method.

|0⟩+ |ζ|ϕ|⟩ = |0⟩+ 1

2
γei(|ϕ|−|ψ|)eiθ/2|0⟩ − 1

2
γe−i(|ϕ|−|ψ|)e−iθ/2|0⟩ (97)

Where, ψ is the polarization angle of the photon s that would be created by the BBO and

propagates to the direction of the polarizer 1. The propagation speed of the scalar potential

is equal to the speed of light because it is an electromagnetic potential. Therefore, the state

that BBO creates photon |ψ⟩ with polarization angle |ψ| is calculated to be the product of

state which represents the scalar potential arrived at BBO and photon creation operator

Â|ψ|
†
of which polarization angle is |ψ| as follows.

Â|ψ|
†
|0⟩+ Â|ψ|

†
|ζ|ϕ|⟩ = |ψ⟩+ 1

2
γei(|ϕ|−|ψ|)eiθ/2|ψ⟩ − 1

2
γe−i(|ϕ|−|ψ|)e−iθ/2|ψ⟩ (98)

Note that the scalar potential propagates along a single path to BBO in this setup, hence

the phase is θ = 0. Therefore

⟨I⟩ ∝ 1

2
+

1

2
cos (2|ϕ| − 2|ψ|) (99)

Because a single photon is created, ⟨I⟩ = 1 is required and ψ = ϕ is obtained. That is to

say, photons are created at the setting angle of the polarizer 1.

Where, even if the photon pair is created with random polarization from BBO regardless

of the setting angle of the polarizer 1, the polarizations of the photon pair are orthogonal
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to each other. Hence, (87) is observed due to the interference between the classical local

perfect correlation determined when the photon pair is created and the oscillatory field of

the scalar potential.

Here, the alternate interpretation of the EPR correlation can be explained using the

objective physical reality, which the real photons move in the oscillatory field of the scalar

potential that causes interference. Then, at the polarizer, it is possible to interpret that

the photon of the polarization different from that before the interference is created by the

interference between the real photon and the scalar potential, and the photon before the

interference is annihilated. The alternate interpretation is consistent with the quantum field

theory that particles are created and annihilated by the excitation of vacuum. In addition,

it has been said that the conventional quantum theory based on probability interpretation

was proved to be correct due to the violation of Bell’s inequality by various experimental

setups of EPR correlation devised so as not to have a loophole.46 However even if we use

the alternate interpretation based on objective physical reality, we can obtain the identical

results as conventional quantum theory, therefore the violation of Bell’s inequality does not

show the denial of locality of physical laws and physical reality, nor does it support the

validity of conventional quantum theory based on probability interpretation.

Note that, in the above calculation of the alternate interpretation for EPR correlation,

the two phases are introduced, one is from the space division θ and the other is from the

rotation angle of the polarizer ϕ. The former is obviously a geometrical phase on real space

such as Aharonov-Bohm effect33 and the later can be identified as so-called Pancharatnam’s

phase47 which is a geometrical phase on Poincaré sphere. Therefore we can understand that

EPR correlation is caused by two types of the geometrical phases. The detailed study of the

relation between various physical phenomena and the geometrical phases must be needed

but it is the future work.
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IV. APPLICATION

We revealed that by examining photons, electrons, and scalar potentials as objective phys-

ical reality without using probability interpretation, the calculation results of single-photon

interference, single-electron interference, and EPR correlation agree with those obtained by

probability interpretation in the preceding chapters. Here, we will discuss some phenom-

ena peculiar to quantum theory that can be explained by alternate interpretation using the

objective physical reality.

For the discussion, it is first necessary to generalize the formation of the oscillatory

field by the scalar potential discussed in the preceding chapters. The discussions in the

preceding chapters are all setups where there is two paths that divides the space into two.

We will generalize the above setups and examine what kind of oscillatory field is formed

when the whole space-time is divided into three or four to any number (arbitrary geometrical

arrangement), and what kinds of physical phenomena are caused by that oscillatory field.

As a result of the examination, it is shown that the fluctuation of zero-point energy of the

electromagnetic field, Casimir effect, and the spontaneous symmetry breaking are naturally

derived with the image of objective physical reality.

We also present a general approach for single particle interference associated with the

generalization.
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A. Generalization of the geometrical arrangement

The division into two paths dealt with in the preceding chapters divides the scalar po-

tential into two, and the divided coefficient was set to 1/2 and the phase difference was

set to θ. In order to extend that into an arbitrary number of divided paths, we introduce

divided coefficients rj and phases θj of the scalar potential. Then, the scalar potential can

be expressed as follows, where M is the number of divided paths.

M∑
j=1

rje
iθjA0 (100)

where
∑M

j=1 rj = 1. The case of the preceding chapters correspond to M = 2, r1 = r2 = 1/2

and θ1 = −θ2 = θ/2 etc. Therefore, the expected value of the number of photons can be

calculated by the following photon annihilation operator when there is an x-polarize single

photon in arbitrary number of divided paths.

Âµ =

(
M∑
j=1

rje
iθj Â0, Â1, 0, 0

)
(101)

Then

⟨Î⟩ ∝ ⟨1| − gµνÂ†
µÂν |1⟩

= −

{
M∑

j=1, k=1

rjrke
i(θj−θk)

}
⟨1|Â†

0Â0|1⟩+ ⟨1|Â†
1Â1|1⟩

= −

{
(r21 + r22 + ·+ r2M) +

M∑
j ̸=k

rjrke
i(θj−θk)

}
+ 1 (102)

Because 0 ≦ rj ≦ 1, then 0 ≦ ⟨1| − gµνÂ†
µÂν |1⟩ ≦ 1. When M → ∞ and the phases are

completely random,
∑∞

j=1 rje
iθj converges with 0. The division of the path is caused by

the existence of matter in space-time, and M → ∞ can be regarded as the final physical

space where there are many innumerable matter with maximum entropy. We call this “final

vacuum” in this paper.

On the other hand, M = 1 in (100) can be regarded as a space-time without any geo-

metrical arrangement in space. We call this “initial vacuum” in this paper.

In addition, we call the vacuum with 1 < M < ∞ “real vacuum” and call the vacuum

with no potentials such like an empty container “ideal vacuum”.
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Expressing the generalization by a simple calculation method, the following operators

and states can be applied to arbitrary geometrical arrangement instead of (36) and (40).

Â′
0 = γ

∞∑
j=1

rje
iθj Â1 − γ

∞∑
j=1

rje
−iθj Â1

Â′†
0 = γ

∞∑
j=1

rje
−iθj Â†

1 − γ

∞∑
j=1

rje
iθj Â†

1 (103)

|ζ⟩ ≡

(
γ

∞∑
j=1

rje
iθj − γ

∞∑
j=1

rje
−iθj

)
|1⟩S (104)

From the generalization of the divided path, it can be seen that when some geometrical

arrangement is brought into the “initial vacuum” and the path is divided, the expected value

fluctuates depending on the oscillatory field.

46



B. Zero point energy of the electromagnetic fields

The photon creation and annihilation operators obtained from conventional quantization

procedure for quantum optics in Coulomb gauge have relationships with harmonic oscillator

as follows. (We examine only x-polarized photon for simplicity.)

Â1 =
1√
2ℏω

(ωq̂ + ip̂)

Â†
1 =

1√
2ℏω

(ωq̂ − ip̂) (105)

where q̂ and p̂ are position and momentum operators obeying the commutation relation

[q̂, p̂] = iℏ. Hamiltonian of harmonic oscillator is expressed as follows.

Ĥ =
1

2

(
p̂2 + ω2q̂2

)
(106)

Then following relations are obtained.

Â†
1Â1 =

1

2ℏω
(
p̂2 + ω2q̂2 + iωq̂p̂− iωp̂q̂

)
=

1

ℏω

(
Ĥ − 1

2
ℏω
)

Â1Â
†
1 =

1

ℏω

(
Ĥ +

1

2
ℏω
)

(107)

From (107) and ⟨0|Â†
1Â1|0⟩ = 0, zero-point energy conventionally has been recognized as

⟨0|Ĥ|0⟩ = 1
2
ℏω, i.e.,

⟨0|Â†
1Â1|0⟩ =

1

ℏω
⟨0|
(
Ĥ − 1

2
ℏω
)
|0⟩ = 1

ℏω

(
⟨0|Ĥ|0⟩ − 1

2
ℏω
)

= 0 (108)

This conventional fixed zero-point energy originates from the definition of the photon cre-

ation and annihilation operators in (105) without the scalar potentials. However we have

obtained the idea that there exists the potentials in whole space-time. Then we should

replace (105) with followings by using the operators in (36).

Â′
0 + Â1 =

1√
2ℏω

(ωq̂ + ip̂)

Â′†
0 + Â†

1 =
1√
2ℏω

(ωq̂ − ip̂) (109)

Therefore Hamiltonian will be the same expression of the interference as follows.

Ĥ = ℏω
(
−gµνÂ†

µÂν

)
+

1

2
ℏω (110)
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Hence the energy of single photon state also fluctuates.

⟨1|Ĥ|1⟩ = −1

2
ℏω⟨1|Â†

0Â0|1⟩ cos θ +
1

2
ℏω⟨1|Â†

1Â1|1⟩+
1

2
ℏω (111)

The single photon can be observed at some point with θ = ±Nπ, (N : oddnumber). By

using Lorentz invariance ⟨1|Â†
0Â0|1⟩ = ⟨1|Â†

1Â1|1⟩

⟨1|Ĥ|1⟩ =
1

2
ℏω⟨1|Â†

0Â0|1⟩+
1

2
ℏω⟨1|Â†

1Â1|1⟩+
1

2
ℏω

= ⟨1|Â†
1Â1|1⟩ℏω +

1

2
ℏω = ℏω (112)

Therefore, ⟨1|Â†
1Â1|1⟩ = 1

2
. This leads to the replacement of the expected photon number

as follows.

⟨0|Â†
1Â1|0⟩ = −1

2
, ⟨1|Â†

1Â1|1⟩ =
1

2
, ⟨2|Â†

1Â1|2⟩ =
3

2
, · · · (113)

Generally, ⟨0|Â†
1Â1|0⟩ is considered to be 0. However, we should accept ⟨0|Â†

1Â1|0⟩ = −1
2

which requires indefinite metric. We will revise this calculation later in this section. Even

with the revision, the conclusion that the zero-point energy fluctuates remains unchanged.

Then absolute value of the single photon interference moves depending on the selection

of ⟨0|Â†
1Â1|0⟩. However ⟨Î⟩ ∝ 1

2
± 1

2
cos θ remains unchanged.

By using the expectation value, zero-point energy is calculated to be as follows.

⟨0|Ĥ|0⟩ = −ℏω

{
(r21 + r22 + ·+ r2M) +

M∑
j ̸=k

rjrke
i(θj−θk)

}
⟨0|Â†

1Â1|0⟩

+ℏω⟨0|Â†
1Â1|0⟩+

1

2
ℏω

=
1

2
ℏω

{
(r21 + r22 + ·+ r2M) +

M∑
j ̸=k

rjrke
i(θj−θk)

}
(114)

This shows that the zero-point energy fluctuates such that 0 ≤ ⟨0|Ĥ|0⟩ ≤ 1
2
ℏω depending

on the path division. This also explains the spontaneous symmetry breaking. From this,

infinite zero-point energy due to infinite degrees of freedom is removed when the phase is

completely random with M → ∞ in (114).

In the above discussion, we replaced the operator (105) with (109). However, if the

operator Â0 is introduced, we should replace the commutation relation of the position and

momentum operators [q̂, p̂] = iℏ with [q̂µ, p̂ν ] = −gµνiℏ and examine the time axis component

48



as follows.

Â†
0Â0 =

1

2ℏω
(
p̂0

2 + ω2q̂0
2 + iωq̂0p̂0 − iωp̂0q̂0

)
=

1

ℏω

(
Ĥ0 +

1

2
iω[q̂0, p̂0]

)
=

1

ℏω

(
Ĥ0 +

1

2
ℏω
)

Â0Â
†
0 =

1

ℏω

(
Ĥ0 −

1

2
ℏω
)

(115)

where Ĥ0 is the Hamiltonian corresponds to the energy of time axis. Hence, the total

Hamiltonian Ĥ can be calculated as follows using Ĥ1 (Hamiltonian of the spatial component

of (107))

Ĥ ≡ Ĥ1 − Ĥ0 = ℏω
(
−gµνÂ†

µÂν

)
+

1

2
ℏω +

1

2
ℏω (116)

Here we note that similar to the discussion the above, the last term obtained from the com-

mutation relation between the position and momentum operator of the time axis component

should include a mathematical expression that incorporates the phase by the path division,

similar to { } in (102). We set the mathematical expression to f , then the zero-point

energy can be expressed as follows.

⟨0|Ĥ|0⟩ = ℏω⟨0|
(
−gµνÂ†

µÂν

)
|0⟩+ 1

2
ℏω⟨0|0⟩+ 1

2
ℏω⟨0|f |0⟩

=
1

2
ℏω +

1

2
ℏωf (117)

In order to determine f , we calculate the energy of 1-photon state with the help of (102).

Finally, the following zero-point energy is obtained.

⟨1|Ĥ|1⟩ = ℏω⟨1|
(
−gµνÂ†

µÂν

)
|1⟩+ 1

2
ℏω⟨1|1⟩+ 1

2
ℏω⟨1|f |1⟩

= ℏω − ℏω

{
(r21 + r22 + ·+ r2M) +

M∑
j ̸=k

rjrke
i(θj−θk)

}
+

1

2
ℏω +

1

2
ℏωf (118)

This is always single photon energy ℏω in whole space-time. Therefore, in the case of “initial

vacuum” with M = 1 split path, { } will be 1, i.e., f = 1. In the case of “final vacuum”

with M → ∞ split paths, { } will be 0, i.e., the value will be f = −1. Otherwise, i.e.,

“real vacuum”, the value fluctuates such as −1 < f < 1 depending on { }. Therefore, the

zero-point energy fluctuates as follows depending on the geometrical arrangement existing

in the space.

0 ≤ ⟨0|Ĥ|0⟩ = 1

2
ℏω +

1

2
ℏωf ≤ ℏω (119)
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C. Casimir effect

The zero-point energy has been measured through Casimir effect.48–52 The following cir-

cumstance can be identified as a typical setup for the measurement of Casimir effect. From

the discussion in the zero-point energy, if a certain space that is not “ideal vacuum” but “ini-

tial vacuum” is prepared and a certain geometrical arrangement, e.g. two parallel plates,

is placed in the space, then the zero-point energy of the space and geometrical arrange-

ment are calculated to be 1
2
ℏω and 0 ≤ ⟨0|Ĥ|0⟩ ≤ 1

2
ℏω using (114) respectively or ℏω

and 0 ≤ ⟨0|Ĥ|0⟩ ≤ ℏω using (119) respectively. Because the energy of the geometrical

arrangement is not exceed that of the space, the geometrical arrangement is subjected to a

compressive stress from the space in both calculations.

This kind of attractive force derived from the energy difference between the geometrical

arrangements is identical with the basic concept of Van der Waals force which will be the

origin of Casimir effect.53
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D. Spontaneous symmetry breaking

Conventional approach of the spontaneous symmetry breaking, which explores the pos-

sibility of Q|0⟩q ̸= 0 or |0⟩q is not an eigenstate of Q, has been discussed using Goldstone

boson or Higgs boson.28,54. Where |0⟩q is vacuum state.

However, as mentioned in the previous chapters the phase difference is generated by the

geometrical arrangement of the space which corresponds to oscillatory field of the scalar

potential. According to (65), when the phase difference γ(C) = nπ (n = oddnumber),

the single electron state |ψ(t)⟩ of (64) can be identified as the initial vacuum |ϕ0⟩ because

|ϕ0⟩⟨ϕ0|Q|ϕ0⟩ = 0 instead of |0⟩q which can be identified as “ideal vacuum”. If |ϕ0⟩ is

an eigenstate of Q, i.e., Q|ϕ0⟩ = α|ϕ0⟩, then ⟨ϕ0|Q|ϕ0⟩ = α⟨ϕ0|ϕ0⟩ = 0, where α is an

eigenvalue. Therefore the “initial vacuum” |ϕ0⟩ is an eigenstate of Q.

When the phase difference θ of the scalar potentials changes, the vacuum state |ϕ0⟩

becomes “real vacuum” of which eigenvalue fluctuates between q and 0. The eigenvalue

fluctuation means the vacuum state is not an eigenstate of Q but the function of the phase

difference θ and geometrical arrangement typified by M in the previous chapters. This

expresses the spontaneous symmetry breaking.

There is no fluctuation in the space with completely random phases as shown in section

IVA. That is to say, there is symmetry. We can identify such space as “final vacuum”.

However the fluctuation gains entrance into the “final vacuum” when the geometrical ar-

rangement in the space changes, and eventually the symmetry is broken towards “initial

vacuum” where has no geometrical arrangement.

This idea seems little uncomfortable but reasonable when the origin is vice versa, i.e.,

“initial vacuum” instead of “final vacuum”, i.e., we should consider the real physical space

has no symmetry but the space gains symmetry when M → ∞. This vice versa idea is

similar to the fact that the magnetic poles of a ferromagnetic are aligned in one direction

at extremely low temperatures which corresponds to “initial vacuum” with no symmetry,

but are dispersed in some directions as the temperature rises which corresponds to “real

vacuum”, and finally dispersed in completely random directions above Curie temperature

and the magnetism disappears which corresponds to “final vacuum” with symmetry.

The above discussion that the real vacuum is filled with potentials of which state exists

under (or above) the original ground state is identical with the spontaneous symmetry
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breaking using the analogy of superconductivity when we replace Q or Ĥ with energy level

reported by Y. Nambu and G. Jona-Lasinio.55,56 When the geometrical arrangement and

phase is fixed, the one vacuum is selected and the selection breaks the symmetry of vacuum.

In addition, as described in section IVB, the fluctuation of the zero-point energy of

electromagnetic fields 0 ≤ ⟨0|Ĥ|0⟩ ≤ 1
2
ℏω (or ℏω) also shows that the vacuum is not the

eigenstate of the photon number. That is the spontaneous symmetry breaking. Eventually,

the spontaneous symmetry breaking is caused by the geometrical arrangement of space-time

and phase, which produces the oscillatory field of the scalar potential (time-axis component

of a vector field). This argument derived from the oscillatory field might seem like peculiar

but it is consistent with the conventional idea of spontaneous symmetry breaking that the

vacuum is degenerate.
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E. General approach for single particle interference

By generalizing (35), single particle interference can be described as follow.

⟨I⟩ = (⟨ϕ|+ ⟨ζ|)F (|ϕ⟩+ |ζ⟩)

= f + ⟨ζ|F|ζ⟩+ f⟨ϕ|ζ⟩+ f⟨ζ|ϕ⟩ (120)

When ⟨ζ|F|ζ⟩+f⟨ϕ|ζ⟩+f⟨ζ|ϕ⟩ = −1
2
f+ 1

2
f cos θ, single particle interferences of F by 2-path

geometrical arrangement, i.e., ⟨I⟩ = f
{

1
2
+ 1

2
cos θ

}
is generated. Where F is an arbitrary

observable operator of the particle, |ϕ⟩ is an eigenstate of F, f is the eigenvalue of F under

state |ϕ⟩ and |ζ⟩ is an indefinite metric vector expressing the oscillatory field of the scalar

potential.

When F is number operator of the particle n, and |ϕ⟩ is the single particle state of (120),

the expected number of the particle fluctuates as follows.

(⟨1|+ ⟨ζ|)n (|1⟩+ |ζ⟩) = 1 + ⟨ζ|n|ζ⟩+ ⟨1|ζ⟩+ ⟨ζ|1⟩

=
1

2
+

1

2
cos θ (121)

In the case of arbitrary geometrical arrangement, the expected number of the particle can

be calculated as follows using similar expression (103), (104) and (102).

⟨Î⟩ ∝ −

{
(r21 + r22 + ·+ r2M) +

M∑
j ̸=k

rjrke
i(θj−θk)

}
+ 1 (122)

The above generalization is based on the electromagnetic field, which is a commutative

(Abelian) gauge field, i.e., U(1) gauge field : unitary group of dimension 1, in the preceding

chapters. The above discussion can be generalized to the non-commutative (non-Abelian)

gauge field as follows.

The existence of the electromagnetic field can be derived, so called gauge transformation

of the second kind, as a gauge field by gauge invariance of the phase transformation of the

electron wave function ψ with conservation of charge Q as follows.

ψ′ = Uψ (123)

where U = eiχQ is a unitary transformation, χ is an arbitrary function of space-time point

(x) ≡ (x, t).
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Note that the conservation of charge Q means as follows. We can express the wave func-

tion Ψ in the initial state composed of elementary particles a, b, · · · with charges Qa, Qb, · · ·

as the product of the wave functions of each elementary particle ψa, ψb, · · · . Even if the

initial state changes to the final state composed of elementary particles a′, b′, · · · , the law of

conservation of charge holds, i.e., Qa +Qb + · · · = Qa′ +Qb′ + · · · .

When the phase factors eiχQa , eiχQb , · · · are multiplied to the wave functions, the phase

factor eiχ(Qa+Qb+··· ) = eiχQ is multiplied to the initial wave function, where Q is the total

charge of the initial state. From the law of conservation of charge, the same phase factor

eiχ(Qa+Qb+··· ) = eiχ(Qa′+Qb′+··· ) = eiχQ is applied to the final state.

However, the derivative operation by ∂µ to the above transformation Uψ is calculated to

be as follows.

∂µψ
′ = eiχQ {∂µ + iQ∂µχ}ψ (124)

While the kinetic term which includes derivative operators such as momentum changes, the

gauge transformation of the second kind should be the phase transformation that does not

change in physical quantities because of the local causality.

Therefore the derivative operator ∂µ is replaced with covariant derivative Dµ = ∂µ−iQAµ
to recover the invariance of the physical quantities, where Aµ is a four-vector. By using this

replacement with the following gauge transformations,

ψ′ = eiχQψ

A′
µ = Aµ + ∂µχ (125)

we can calculate as follows.

(Dµψ)
′ =

{
∂µ − iQA′

µ

}
eiχQψ

= eiχQ {(∂µ + iQ∂µχ)− i(QAµ +Q∂µχ}ψ

= eiχQ {∂µ − iQAµ}ψ = eiχQDµψ (126)

Hence, the invariance of the physical quantities, e.g., momentum pµ = (E/c,p) = iℏ∂µ, is

obtained.

< ψ′, P ′
µψ

′ >=< eiλQψ, eiλQPµψ >=< ψ,Pµψ > (127)

where Pµ = iℏDµ = iℏ(∂µ − iQAµ).
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The gauge field Aµ, as described above, is introduced because of the existence of the

gauge transformation associate with the conservation of charge Q and the local causality. In

quantum electrodynamics, the gauge field Aµ is equated with the electromagnetic potential

Aµ. Because U = eiχQ is a unitary transformation of dimension 1, the gauge field Aµ is

called U(1) gauge field.

Extending the above procedure to a multicomponent wave function such as nucleon with

isotopic spin conservation, the non-commutative (non-Abelian) gauge field Bµ is introduced.

For example, the wave function of nucleon ψ can be described by two-component com-

posed of proton p and neutron n which are spin 1/2 fermions with z-axis isotopic spin

I3 = 1/2 and I3 = −1/2 respectively. The subscript 3 of the isotopic spin I is used be-

cause it is not the rotation of real three-dimensional space x, y, z, but the rotation of the

three-dimensional isotopic space. The invariance under local isotopic spin rotations leads to

formulating a principle of isotopic gauge invariance and the existence of a vector field Bµ

(= 2bµ · I) which has the same relation to the isotopic spin that the electromagnetic field

has to the electric charge as discussed above. The specific expression is as follows.

ψ′ = Sψ (128)

where S = eiθ·I is a 2 × 2 special unitary (SU(2)) matrix, θ is the vector that specifies the

axis and angle of the rotation in isotopic space. The isotopic spin I is described as I = τ
2

using following Pauli matrix τ .

τ1 =

 0 1

1 0

 , τ2 =

 0 −i

i 0

 , τ3 =

 1 0

0 −1

 (129)

The subscripts 1, 2, 3 are used accordance with those of I.

When θ is extended as an arbitrary function of space-time point (x) ≡ (x, t), the deriva-

tive operator ∂µ is replaced with the following covariant derivative Dµ by introducing the

vector fields Bµ not to change in physical quantities, as same in the case of U(1) gauge

transformation.57

Dµ = (∂µ − iϵBµ)ψ (130)

with the following gauge transformation.

B′
µ = SBµS

−1 +
i

ϵ
S∂µS

−1 (131)

55



where ϵ is an arbitrary constant called coupling constant and Bµ = 2bµ · I respectively.

(Bold-face letters denote three-component vectors in isotopic space.)

Because S = eiθ·I is a special unitary transformation of dimension 2, the vector field Bµ

(bµ) is called SU(2) gauge field. The generalized Aharonov-Bohm effect by the SU(2) gauge

field had been discussed by Wu and Yang.34.

Therefore the vacuum is filled with the gauge fields which interact with the particle (e.g.,

nucleon) as same as in the discussion of subsection III B.

We can obtain the similar discussion and calculation of the uncharged particle such as

neutron interference58 originating from Bµ field by replacing the four-vector potential Aµ in

subsection III B with Bµ.

Even if there are no Bµ in space, the geometrical phase γ(C) is introduced by the similar

calculations as in (60) to (68) where |ψ(t)⟩ and γ(t) are replaced with multicomponent state

and unitary matrix respectively. Generalizing the geometrical phase of the non-Abelian

gauge fields instead of Abelian gauge fields has been discussed by Frank Wilczek and A.

Zee59.

Note that The neutron couples to magnetic fields via its permanent magnetic dipole

moment which can cause the Larmor precession. Therefore the neutral particle possessing

magnetic dipole moment encircling a line charge shows phase shift similar to Aharonov-

Bohm effect, which has been theoretically shown by Aharonov and Casher60. In addition,

the neutrons interferences by the geometrical phase (Berry’s phase) had been experimentally

reported in61,62 and introduced in58. In these experiments, the Berry’s phase have been

treated as an additional phase that adds to the dynamic phase caused by the external

magnet field interacting with the magnetic moment of the neutral particle.

Here we take the neutron interference caused by precession in a magnetic field B, which

was devised to experimentally demonstrate spinor rotation in references63,64, to calculate

the single neutron interference. These experimental results and standard mathematical

treatments are summarized in65.

The experimental setup is similar to the single-electron interference shown in Figure

2, with the electron source replaced by a thermal neutron source, a DC magnetic field B

inserted in the path from the neutron source to the screen via pinhole 2 and the two detectors

placed on the extension of path 1 and path 2 of the x = 0 instead of a moving detector on

the screen. In addition, the pinholes are replaced with a single silicon perfect crystal which
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act as a mirror. For the sake of explanation, the term “pinhole” will be used in place of this

mirror in the following.

The conventional interpretation in this setup, the state ket vector going via pinhole 2

suffers a phase change exp∓iωT/2, where T is the time spent in the B ̸= 0 region and ω is

the spin-precession frequency

ω =
gneB

mpc
, (gn ≃ −1.91) (132)

for the neutron with a magnetic moment of gneℏ/2mpc, where mp is the neutron mass and

gn ≃ −1.91 is the neutron magnetic moment in units of −eℏ/2mpc.

When path from the neutron source to the screen via pinhole 1 and via pinhole 2 meet

again in the interference region (screen) of Figure 2, the amplitude of the neutron arriving

via pinhole 2 is

c2 = c2(B = 0) exp∓iωT/2 (133)

while the amplitude of the neutron arriving via pinhole 1 is c1, independent of B.

where c1,2 are the coefficients of the time evolution of the state ket from a general ket

|α⟩ for this setup as follows. Note that since the experiment was done with mono-energetic

unpolarized neutrons, each interference is due to one of the spins, but the spin-up and

spin-down neutron contributions must be considered together.

|α; t⟩ = c1,2|+⟩⟨+|α⟩, or c1,2|−⟩⟨−|α⟩ (134)

The base kets of the spin 1
2
systems |Sz;±⟩ are denoted for brevity as |±⟩ and

|+⟩ =

 1

0

 , |−⟩ =

 0

1

 , 1 = |+⟩⟨+|+ |−⟩⟨−| (135)

Therefore the intensity observable in the interference region (∝ ⟨α; t|α; t⟩) must exhibit a

sinusoidal variation

cos

(
∓ωT
2

+ δ

)
(136)

where δ is the phase difference between c1 and c2(B = 0).

The above result is based on the quantum superposition state as follows.

|α; t⟩ = c1|+⟩⟨+|α⟩+ c2|+⟩⟨+|α⟩ or |α; t⟩ = c1|−⟩⟨−|α⟩+ c2|−⟩⟨−|α⟩ (137)
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When we take c1 = 1/2, c2 = ±1/2 exp∓iωT/2+δ on the extension of path 1 (take + of ±)

and path 2 (take - of ±) respectively, the counting rates at detectors are expected to be as

follows considering the spin-up and spin-down neutron contributions.

I1 = I1(+) + I1(−) =

[
1

2
− 1

2
cos

(
ωT

2
+ δ

)]
+

[
1

2
− 1

2
cos

(
−ωT

2
+ δ

)]
= 1− cos δ cos

(
ωT

2

)
(138)

and

I2 = I2(+) + I2(−) =

[
1

2
+

1

2
cos

(
ωT

2
+ δ

)]
+

[
1

2
+

1

2
cos

(
−ωT

2
+ δ

)]
= 1 + cos δ cos

(
ωT

2

)
(139)

The instrumental parameters α and γ with an average intensity ratio γ/α = 2.6, experimen-

tally confirmed in Ref66, have been adopted in Ref63 and the following counting rates have

been shown.

I1 = γ − α cos δ cos

(
ωT

2

)
I2 = α

[
1 + cos δ cos

(
ωT

2

)]
(140)

On the other hand, the alternate interpretation does not need quantum superposition

state. Instead the phase term depending on the geometrical arrangement is incorporated.

The calculation process for the phase term is the same as (51) through (55), where along

the path 2 in the B ̸= 0 the following potential is added to Hamiltonian instead of qϕ.

V = −
(

e

mpc

)
S ·B = ωSz (141)

Sz =
ℏ
2

 1 0

0 −1

 =
ℏ
2
{|+⟩⟨+| − |−⟩⟨−|} (142)

where S and Sz are a spin matrix and z-axis component of the matrix respectively. Hence

the time dependent coefficient (54) in this case can be expressed as follows.

c1(t) = c1 exp(−i
1

ℏ

∫
1

ωSzdt) + c2 exp(−i
1

ℏ

∫
2

ωSzdt) (143)
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Because B = 0 along path 1, the integral of the first term is 0. Therefore

c1(t) = c1 + c2 exp(−i
1

ℏ

∫
2

ωSzdt) = c1 + c2 exp(−i
ωT

2
τ3)

= c1 + c2 exp(−i
ωT

2
{|+⟩⟨+| − |−⟩⟨−|})

= c1 + c2 exp(∓i
ωT

2
) (144)

where we split the Pauli matrix by the sign of the spin-up and spin-down cases in the last

row. The expression of the ket vector substituting this coefficient is identical to the quantum

superposition state for the above conventional interpretation (137). Therefore, regardless of

which path the launched neutron passes, the phase depending on the geometrical arrange-

ment is incorporated into the ket vector which is exactly the same expression as the quantum

superposition state in the conventional interpretation.

Hence, the single particle interference, whether charged or not, can be caused by the

geometrical arrangement of the space. Note that the potential qϕ from (51) through (55)

is replaced by V of (142), which can be regarded as the interference is caused by the scalar

potential.

Even if V = 0, the interference is also generated by so-called Berry’s phase (Berry-

Aharonov-Anandan phase), geometrical phase γ(C), as described in subsection III B 2 but

generalized version38–40, which depends only on the geometry of the space and not on the

charge or magnetic dipole moment of the particle.

The original Berry phase was reformulated and generalized from nonadiabatic cyclic

evolutions to all quantum evolutions, not merely cyclic evolutions by using the projective

Hilbert space PH, which is defined as the set of rays of the Hilbert space H.

According to38, arbitrarily |ψ⟩, |φ⟩ ∈ SH(Hilbert sphere) ≡ {|ψ⟩ ∈ H | ⟨ψ|ψ⟩ = 1} which

evolves according to the Schrödinger equation H(t)|ψ(t)⟩ = iℏ(d/dt)|ψ(t)⟩, are regarded as

an equivalence relation associated with eiη ∈ U(1), i.e., |ψ⟩ = eiη|φ⟩ → |ψ⟩ ∼ |φ⟩.

Hence the projection map

π : SH → PH , i.e., π(|ψ⟩) = {|ψ̃⟩ : |ψ̃⟩ = c|ψ⟩ ∼ |ψ⟩, c is a complex number} (145)

can be defined. Then |ψ(t)⟩ defines a curve C : [0, τ ] in SH with C̃ ≡ π(C) being a closed

curve in PH.

When the state |ψ(t)⟩ ∈ H is defined as |ψ̃(t)⟩ = e−if(t)|ψ(t)⟩ where e−if(t) ∈ U(1), f(t)
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is calculated by substituting into the Schrödinger equation as follows.

f(t) =

∫ t

0

⟨ψ̃(s)|i d
ds

|ψ̃(s)⟩ds− 1

ℏ

∫ t

0

⟨ψ(s)|H|ψ(s)⟩ds

= γ(t) + γd(t) (146)

where

γ(t) =

∫ t

0

⟨ψ̃(s)|i d
ds

|ψ̃(s)⟩ds = i

∫ p(t)

p(0)

⟨ψ̃|d|ψ̃⟩ (147)

γd(t) = −1

ℏ

∫ t

0

⟨ψ(s)|H|ψ(s)⟩ds (148)

This description is an extension of (60) to the projective Hilbert space PH. This γ(t) does

not need adiabatic assumption and closed loop C formed by r(t) on [0, T ], instead only needs

a curve p : [0, t] → PH with p(0) = p(T ) which forms closed curve C̃ in PH. By utilizing the

projective Hilbert space PH, the single particle interference can be calculated in the same

way as discussed after (60). Since the setup has no interaction term with the spins, the

following calculation is a neutron interference for one of the spins. The setup of the original

neutron interference63,64,67 consisted of mirrors, analyzer, etc. made of perfect Si crystals

instead of pinholes and screen, but in the following, the terms pinholes and screen, etc. are

replaced by the corresponding components.

The two paths along C1 ≡ s → Pinhole1 → screen and C2 ≡ s → Pinhole2 → screen in

real space correspond to C̃1 and C̃2 in PH. Therefore the state passed through Pinhole 1 is

expressed as follows, as in (64).

|ψ(t)⟩ =
1

2
exp

[
iγ(C̃1) + iγd(C1)

]
|ψ̃1(t)⟩

+
1

2
exp

[
iγ(C̃2) + iγd(C2)

]
|ψ̃1(t)⟩ (149)

where |ψ̃1(t)⟩ = π(|ψ1(t)⟩) ∈ PH is the projective state of one neutron state heading to

pinhole 1 in H, the real single neutron travels along C1 in real space.

The initial state |ψ(0)⟩ ∈ H at the particle source s and the final state |ψ(T )⟩ ∈ H at

the particle source s (where this is the final s of s → Pinhole1 → screen → Pinhole2 → s)

can be different, but the difference is only phase factor when the system of single particle

interference with only geometrical arrangements like pinholes or slits which has no interaction

term. This indicates |ψ̃(0)⟩ = ψ̃(T )⟩ ∈ PH, i. e., C̃ is closed curve in PH.

Therefore the intensity of single particle interference, including neutrons, electrons, and

any other particles which obey Schrödinger equation, is calculated as follows.
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⟨Î⟩ ∝ ⟨ψ(t)|ψ(t)⟩

=
1

4
+

1

4
+

1

4
exp

[
iγ(C̃) + iγd(C)

]
+

1

4
exp

[
−iγ(C̃)− iγd(C)

]
=

1

2
+

1

2
cos(γ(C̃) + γd(C)) (150)

where the normalization of the projective state ⟨ψ̃1(t)|ψ̃1(t)⟩ = 1 is used.

When the energy of the system is E, γd(C) = −1
ℏ

∮
C
Edt = −E

ℏ (t1 − t2) ≡ −E
ℏ∆t, where

∆t = t1 − t2 is the difference in travel time of the neutron motion along C1 and C2.

Then γ(C̃) can be calculated as same manner in (66). The time evolution projective

state |ψ̃(t)⟩ ∈ PH without interaction having the angular frequency ω and energy E of the

neutron wave propagating in space can be chosen as follows.

|ψ̃1(t)⟩ = exp i(−ωt) exp i(−E
ℏ
t)|ψ̃1(0)⟩ (151)

where ω + E
ℏ = 2nπ/T (n: integer) due to |ψ̃1(0)⟩ = |ψ̃1(T )⟩

The direct substitution of (151) into (147) leads to

γ(t) =

∫ t

0

(ω +
E

ℏ
)ds (152)

Therefore

γ(C̃) ≡ γ(C̃1)− γ(C̃2) (153)

is calculated as (ω+ E
ℏ )∆t, where ∆t = t1−t2 is the difference in travel time of the projective

neutron motion along C̃1 and C̃2, which is identical to the real neutron motion along C1 and

C2.

Because γ(C̃) + γd(C) = (ω + E
ℏ )∆t −

E
ℏ∆t = ω∆t, the expected neutron flux intensity

of the single neutron interference (150) is as follows.

⟨Î⟩ ∝ 1

2
+

1

2
cos(ω∆t) (154)

This is identical to the intensity modulation of the neutron beam by the phase shifter made

of Al-sheet in reference67.

Although the above calculation differs from the standard probability interpretation using

quantum-superposition state (137), it can be expressed in the same form as the quantum-

superposition state by introducing a phase difference due to the geometric arrangement of

the system with two paths.
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We can identify i⟨ψ̃| d
dt
|ψ̃⟩ in (147) as the scalar potential ϕ, the transformation |ψ̃⟩ →

|ψ̃′⟩ = exp(−iΛ)|ψ̃⟩ yields ϕ′ = ϕ+ d
dt
Λ. Then we again can identify i⟨ψ̃|d|ψ̃⟩ = i⟨ψ̃|∇|ψ̃⟩·dx

in (147) using ϕ after transformation as the vector potential −A · dx. Choosing Λ = ωt

yields

γ(C) =

∮
ωdt−

∮
A · dx (155)

This corresponds to replacing ϕ with ω in Aharonov-Bohm phase.

The choice (151) makes the scalar potentials extract, the vector potential vanish and

cancels out γd(C).

In this correspondence suggests that the single neutron interference is caused by the

oscillatory field (phase distribution) similar to the scalar potential which corresponds to the

indefinite metric formed due to the geometrical arrangement.

As can be seen from the above calculation process, this interference is an effect of the

geometrical arrangement of the space that appears for all particles, regardless of the presence

or absence of charge or interaction.

The same discussion above can be used to explain several single-particle self-oscillations,

including neutrino oscillations68,69.
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V. ORIGIN OF THE INDEFINITE METRIC POTENTIAL

In this paper, we have revised the quantum theory using the oscillatory field of the scalar

potential, which is the source of the indefinite metric. Although this scalar potential is a

well-known quantity in classical electromagnetism, we examine this scalar potential again

and extract the meaning of the alternate interpretation of this paper and future issues.

In quantum optics, we can usually use Coulomb gauge to divide the electric field and

current density as follows.32

E = ET + EL, ∇ · ET = 0, ∇× EL = 0

i = iT + iL, ∇ · iT = 0, ∇× iL = 0 (156)

where the indexes “T” and “L” stand for “Transverse” and “Longitudinal”, respectively.

“Transverse” components of Maxwell’s equations using electromagnetic potentials can be

expressed as follows.

∇× ET = −∂B
∂t

, ∇×B =
1

c2
∂ET

∂t
+ µ0iT

ET = −∂A
∂t

, ∇ ·B = 0 (157)

where B is the magnetic field. In addition, “Longitudinal” components can be expressed as

follows.

EL = −∇ϕ , ∇ · EL =
ρ

ϵ0

iL = ϵ0∇
∂ϕ

∂t
= −ϵ0

∂EL

∂t
(158)

Therefore the transverse and longitudinal components seem associated with the magnetic

field variation and with charges as the regular scalar potential, respectively.

However, these associations depend on coordinate systems. “Transverse” and “Longitudi-

nal” components are mixed by Lorentz transformation. Then the associations lost meaning,

which is the important assertion of relativity.70

This relative association justifies the identification of scalar potentials and vector poten-

tials, i.e., identify the number operators as ⟨1|A†
0A0|1⟩ = ⟨1|A†

1A1|1⟩ = ⟨1|A†
2A2|1⟩ = 1 by

Lorentz invariance. Hence we would better use Maxwell’s equations (4) in Lorentz gauge,

because Coulomb gauge removes the explicit covariance of Maxwell’s equations.
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Maxwell’s equations in Lorentz gauge can be express as follows by utilizing the linearity

of the equation (4).

□Aµ = □(Aµ(mat) + Aµ(vac)) = µ0j
µ

∂µA
µ = ∂µ(A

µ
(mat) + Aµ(vac)) = 0

(159)

where index “mat” and “vac” mean “matter” associated with four-current and “vacuum”,

respectively. Because we can naturally assume that there are no four-current in vacuum,

Aµ(mat) and A
µ
(vac) obey the following Maxwell’s equations respectively.

□Aµ(mat) = µ0j
µ , ∂µA

µ
(mat) = 0 (160)

□Aµ(vac) = 0 , ∂µA
µ
(vac) = 0 (161)

The substantial photon excited by the four-current will be expressed by equation (160).

Note that equation (161) replaced Aµ(vac) with A
µ
(mat) can express the motion of the potentials

associated with the four-current in the spatial domain where is far from and does not contain

the four-current.

In contrast, equation (161) expresses the motion of the potentials that have nothing to do

with “matter” in vacuum. This evokes us the concept of an ether such that vacuum is the

sea filled with the potentials. The special relativity70 has negated the static ether, but the

above filling potentials propagate at the speed of light rather than static entities. Aharonov-

Bohm effect clearly indicates that not only electromagnetic fields but also the potentials can

make electron interference.33,71,72 Similarly, the filling potentials in equation (161) can make

interference with substantial photon. This is similar to the concept of the non-integrable

phase factor associated with the multiple-connected region of the space, which was also

noted in Aharonov-Bohm effect.34 As the space is divided, a phase term associated with the

division is introduced and cause interference.

We generally use Aµ in equation (159) to calculate photon related phenomena uncon-

sciously, i.e., without separating them into “matter” and “vacuum”. Unfortunately, we will

not be able to distinguish between Aµ(mat) and A
µ
(vac). This is very similar to distinguishing be-

tween sea spray and seawater. In fact, no separation is necessary, as both are ever-changing

potentials derived from the same Maxwell’s equations (159). Hence the filling potentials in

vacuum can expel and incorporate the potentials associated with “matter”, which gives us

the description that vacuum creates and annihilates substantial photon.
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The source of the indefinite metric scalar potential examined in this paper seems to be the

time-axis component of the potential (161) in vacuum though it is difficult to distinguish.

On the other hand, Maxwell’s equations, which has been formulated as a compilation of

classical electromagnetism based on experimental facts of electric and magnetic phenomena

from the Faraday era, can be considered as (160).

Here we recognize that (160) is derived from experimental facts, and (161) is derived as

a gauge field under the local commutative gauge transformation regardless of experimental

facts. Then the recognition emphasize the similarity between the introduction of the gauge

field due to the invariance of the local phase transformation on the space-time structure and

the phenomenon of vacuum fluctuation due to the geometrical arrangement of the space

examined in this paper.

In the analogy of the electronic circuit or the communication using homodyne detection

mentioned in the preceding chapter, (161) corresponds to the bias current (voltage) or the

continuous wave generated from the local oscillator, and (160) corresponds to the signal

wave. If the bias is a stable DC current (voltage), there is no problem in extracting only

the AC current (voltage) as a signal. However when the DC current (voltage) fluctuates,

the signal as the AC current (voltage) also fluctuates.

It is useful for engineering applications to examine the actual physical phenomenon as

the circuit or communication in which the DC current (voltage) fluctuates.

65



VI. CONTRADICTION OF THE COVARIANT CANONICAL

QUANTIZATION

In this chapter, we examine the contradiction between Lorentz gauge and commutation

relations in covariant canonical quantization of Maxwell’s equations on conventional method,

and propose alternate method.

A. Canonical quantization and contradiction of commutation relations

First, an overview of canonical quantization and conventional method are outlined below.

The subject is Maxwell’s equations in free space with zero four-current as follows again.

□Aν − ∂µ∂
νAµ = 0 (162)

In order to adopt canonical quantization, the following classical lagrangian density has been

introduced.

£class = −1

4
FµνF

µν ≡ −1

4
(∂µAν − ∂νAµ)(∂

µAν − ∂νAµ)

= −1

2
∂µAν∂

µAν +
1

2
∂µAν∂

νAµ (163)

Indeed the following Euler-Lagrange equation gives Maxwell’s equations (162).

∂µ
∂£class

∂(∂µAν)
− ∂£class

∂Aν
= 0 (164)

By using this lagrangian density, the canonically conjugate variables πi, i = (1, 2, 3) can

be defined as follows.

πi =
∂£class

∂Ȧi
= −1

4

∂

∂Ȧi
(F0iF

0i)

= −1

4

∂

∂Ȧi
((∂0Ai − ∂iA0)(∂

0Ai − ∂iA0) + (∂iA0 − ∂0Ai)(∂
iA0 − ∂0Ai))

= ∂iA0 − ∂0Ai (165)

However the conjugate variable π0 can not be defined as follows.

π0 =
∂£class

∂Ȧ0

= 0 (166)
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Therefore a number of fixing gauge conditions have been proposed. Well-known gauges are

Coulomb gauge ∇ ·A = 0 and Lorentz gauge ∂µA
µ = 0. Because Coulomb gauge spoils the

explicit covariance due to the separation of A0 from the four-vector, fixing Lorentz gauge

has been examined by using following lagrangian density.

£0 = −1

4
FµνF

µν − 1

2
(∂ρA

ρ)2 (167)

When we use the lagrangian density (167), Maxwell’s equations in Lorentz gauge can be

obtained from Euler-Lagrange equation (164).

□Aν = 0 (168)

Here the action integral of (163) is as follows.

S ≡
∫
d4x£class

=

∫
d4x(−1

2
∂µAν∂

µAν +
1

2
∂µAν∂

νAµ) (169)

The second term of the above integral is calculated to be 1
2
(∂µA

µ)2 by partial integration.

Then the lagrangian density (167) which derives Maxwell’s equations (168) can be calculated

to be following lagrangian density.

£′
0 = −1

2
∂µAν∂

µAν (170)

The canonically conjugate variables can be obtained by using this lagrangian density as

follows .

πµ =
∂£′

0

∂Ȧµ
= −Ȧµ (171)

Here quantization is performed by replacing the fields with operators and set the following

equal-time commutation relations.

[Aµ(x, t), πν(x′, t)] = −[Aµ(x, t), Ȧν(x′, t)]

= igµνδ3(x− x′) (172)

[Aµ(x, t), Aν(x′, t)] = [πµ(x, t), πν(x′, t)] = 0 (173)

However (172) and (173) derive the following relations.

[∂µA
µ(x, t), Aν(x′, t)] = ig0νδ3(x− x′) ̸= 0 (174)
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Hence (174) is inconsistent with Lorentz gauge ∂µA
µ = 0 as an operator.

Therefore some other lagrangian densities have been proposed. The following lagrangian

with auxiliary scalar field B, which is called Nakanishi-Lautrup formalism, will be the most

comprehensive form31.

£NL = −1

4
FµνF

µν +B∂µAµ +
1

2
αB2 (175)

Where α is an arbitrarily real parameter. The inconsistency between Lorentz gauge ∂µA
µ = 0

and (174) can be avoided by using the lagrangian (175), introduction of physical states |phys⟩

and a restriction of Lorentz gauge in terms of the physical states defined by a subsidiary

condition, i.e., ⟨phys|∂µAµ|phys⟩ = 0.

B. Extended Lorentz gauge

The approach using (175) seems to be an artificially imposed mathematical technique by

introducing an unreal physical field B and unphysical man-made mathematical formality

called “subsidiary condition”. That is to say, there is a tendency to describe by artificial

mathematical techniques to be consistent with probability interpretation and seem to de-

viate from the mathematical description of natural laws. In addition, the approach has

been introduced for avoidance of negative norm as premises for “probability interpretation”.

However, as mentioned in this paper, the indefinite metric can express the physical reality

that is inevitably required by theory, which is indispensable to the law of nature. Just

because it violates the probability interpretation, it might be fatal fault to remove the in-

definite metric by making full use of mathematical techniques according to the artificially

introduced hypothesis and conditions.

Hence, we examine the lagrangian density (170) and Maxwell’s equations in Lorentz gauge

(168) again. It is to be noted that Lorentz gauge is dispensable for deriving (168). Indeed

(168) is derived from lagrangian density (167) or (170) independently of Lorentz gauge.

Alternatively the following condition is indispensable from (162).

∂µ∂
νAµ = 0 (176)

Hence from Lorentz invariance

∂µA
µ = ϵ(scaler) (177)
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This condition (we call this “extended Lorentz gauge”) also has the following gauge invari-

ance of (162) by introducing an arbitrary scalar function χ.

A′µ = Aµ + ∂µχ (178)

Although this replacement has been well known, we can imagine that four-vector Aµ move

on the bias vector ∂µχ such as AC signal and bias current (voltage) of an electric circuit or

communication using homodyne detection.

By choosing □χ = 0, (177) can be obtained repeatedly as follows.

∂µA
′µ = ∂µA

µ +□χ = ∂µA
µ = ϵ (179)

Hence

Aµ = AµL + fµ (180)

where AµLand f
µ = fµ(x, t) are a general solution of Lorentz gauge, i.e., ∂µA

µ
L = 0, and a

linear formula as a function of x, t with ∂µf
µ = ϵ respectively. The most common linear

formula fµ is the same as a coordinate transformation in form described as follows.

fµ = β(aµνx
ν + bµ) (181)

where β is a constant for fixing the appropriate dimension. Therefore

ϵ = β(a00 + a11 + a22 + a33) = Tr(ε) (182)

Where, ε is 4 × 4 matrix with matrix elements aµν multiplied by β. Here we replace ϵ with

operator ϵ̂ and substitute for (174)

[∂µA
µ(x, t), Aν(x′, t)] = [ϵ̂, Aν(x′, t)] = ig0νδ3(x− x′) ̸= 0 (183)

C. Discussion

We examine the commutation relation [∂µA
µ, A] = [ϵ̂, A] ≡ ϵ̂A − Aϵ̂ ̸= 0 by using ma-

trix representation of the operator. The matrix representation of the photon creation and

annihilation operators, A† and A, and photon number state vectors |n⟩ are expressed as

follows.
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A =



0 1 0 0 · · ·

0 0
√
2 0 · · ·

0 0 0
√
3 · · ·

0 0 0 0 · · ·
...
...

...
...
. . .


, A† =



0 0 0 0 · · ·

1 0 0 0 · · ·

0
√
2 0 0 · · ·

0 0
√
3 0 · · ·

...
...

...
...
. . .


(184)

|0⟩ =



1

0

0

0
...


, |1⟩ =



0

1

0

0
...


, |2⟩ =



0

0

1

0
...


, |3⟩ =



0

0

0

1
...


, · · · (185)

When ϵ̂ = ϵI, where I is an identity matrix or operator, the operator ϵ̂ just serves as the

constant scalar [ϵ̂, A] = ϵ[I, A] = ϵ(IA − AI) = 0, then (183) can not be obtained. From

(182), we should adopt the operator ε̂ that satisfies Tr(ε̂) = Σεii = ϵ when we replace ϵ with

the operator ϵ̂. Hence, the following matrix representation can be adopted as ϵ̂, where we

set all diagonal elements to 0 for simplicity. Even if the diagonal element is not 0, the same

result as below can be obtained.

ϵ̂ =



ε00 0 0 0 · · ·

0 ε11 0 0 · · ·

0 0 ε22 0 · · ·

0 0 0 ε33 · · ·
...

...
...

...
. . .


(186)
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Here we can calculate as follows.

[ϵ̂, A] ≡ ϵ̂A− Aϵ̂

=



0 ε00 0 0 · · ·

0 0
√
2ε11 0 · · ·

0 0 0
√
3ε22 · · ·

0 0 0 0 · · ·
...

...
...

...
. . .


−



0 ε11 0 0 · · ·

0 0
√
2ε22 0 · · ·

0 0 0
√
3ε33 · · ·

0 0 0 0 · · ·
...

...
...

...
. . .



=



0 ε00 − ε11 0 0 · · ·

0 0
√
2(ε11 − ε22) 0 · · ·

0 0 0
√
3(ε22 − ε33) · · ·

0 0 0 0 · · ·
...

...
...

. . .


(187)

Hence if at least one εii(i > 0) is εii ̸= εi±1i±1 then [ϵ̂, A] ̸= 0 will be satisfied.

By utilizing the relationship (182), we can define the operator 0̂ ≡ ϵ̂ that satisfies Tr(ε̂) =

Σεii = 0 because ϵ̂ satisfies Tr(ε̂) = Σεii = ϵ like (186). Therefore 0̂ ≡ ∂µA
µ(x, t) satisfies

(174) as the conventional Lorentz gauge

As described in single photon calculation, even if the number of photon becomes 0 due

to interference, the invisible photons are there at the space-time due to the interference of

the opposite phase waves.

Even if the photon number becomes 0 due to interference, there is the invisible photons

at the space-time point due to the interference of waves with opposite phases. It is necessary

to identify that space with a space-time of the phase state such that f(θ) = 0, and it cannot

be set to 0 as an empty space-time.

Similarly, considering the right side of the Lorentz condition ∂µA
µ = 0 as empty 0 and

quantizing it as 0 will ignore the space-time that has some geometrical arrangement.

Since classical Lagrangian density (163) assumes free space which is an ideal vacuum with

no geometrical arrangement, the same approach will be applicable by introducing a phase

into A0 that includes the existence of the geometrical arrangement.
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VII. SUMMARY

Probability interpretation, which is the basic concept of quantum theory, has been con-

sidered essential in order to match the observation results of quantum phenomena with

theory. However, the probability interpretation had not been able to provide the picture

of objective physical reality like classical physics and gave rise to the famous paradox that

an indivisible particle is in a quantum superposition state divided into two or more paths

instead of objective physical reality.

In addition, the probability interpretation asserts that the divided two particle in EPR

state have a correlation even if they are far apart, and one of pair is suddenly changed

from probability existence to a particle as an objective physical reality at the very moment

when the other of pair is observed. This correlation leads to a physical phenomenon that

exceeded the speed of light that contrary to relativity. However, a technology called quantum

teleportation has been tried to develop by applying the physical phenomena that exceed the

speed of light.

In this paper, we have discarded the probability interpretation that conflicts with com-

mon sense and proposed an alternate interpretation of the quantum theory using objective

physical reality, which reproduces the same observation results as the conventional standard

quantum theory.

For the alternate interpretation in single photon interference and EPR correlation, we

have used an indefinite metric associate with covariant quantization of Maxwell’s equations.

Although some mathematical procedures have been developed to remove it because the in-

definite metric contradicts the probability interpretation, in this paper, we pay attention to

the fact that the indefinite metric is inevitably required from the theory, and have approved

that the probability interpretation should be removed instead. Therefore we have incorpo-

rated the indefinite metric into the calculations of single photon and EPR correlation as

it is. Then by using covariant description and simple calculation method, we have shown

when the space is divided into two paths, the scalar potential, which is the source of the

indefinite metric, forms an oscillatory field by the division. We have clarified the objective

physical realities that the single photon and photon pair having opposite polarizations move

in the oscillatory field which occurs the interferences and correlations, and shown that the

calculation results agree with the conventional standard quantum theory. As for single elec-
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tron interference and uncharged particle interference, we have shown the geometrical phase

so-called Berry’s phase which can be formally identified with scalar potential can generate

the interference.

For EPR correlation, various reports have been made that suggest there exists a long-

range correlation beyond the causality.19–21,46,73–75 We believe that these reports can be

explained by the oscillatory field of the scalar potential caused as the result of path division

and the indefinite metric in this paper.

We have also shown that the number of space division in “initial vacuum” or “final

vacuum” corresponds to 1 (no division) or ∞ respectively by generalizing the number of the

division of “real vacuum” from two into an arbitrary number. Then we have clarified that

the oscillatory field due to the scalar potential is formed when some geometrical arrangement

come into in the “initial vacuum”.

Furthermore, we have shown that the zero-point energy fluctuates due to the oscillatory

field of the scalar potential, the removal of the infinite zero-point energy which was difficult

for conventional quantum theory and the Casimir effect originating from zero-point energy

can be calculated.

Conventionally, there is an argument that the zero-point energy is simply subtracted

to erase in engineering applications. By using an analogy from an electric circuit, we have

discussed that this kind of approach corresponds to the signal of AC coupling which subtract

DC bias voltage (current). And a real physical phenomenon corresponds to the electric

circuit of which bias voltage (current) is not DC component but AC component, which

causes interference with the AC component of the signal.

In addition, we have clarified that the space has symmetry when the number of division

of the space is 1 (no division) or ∞ and at other number of division the oscillatory field of

the scalar potential is generated which breaks the symmetry.

Moreover, we have discussed the generalization of a single particle interference and sug-

gested that the neutrino oscillation may be caused by the self-interference fluctuation due

to the oscillatory field of the physical quantity corresponding to the geometrical phase.

We have discussed the origin of the scalar potential, which is the essence of this paper,

by separating Maxwell’s equations into two equations associate with matter and vacuum

and shown the picture that vacuum create and annihilate photons as the objective physical

reality.
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Finally, we have discussed the contradiction between Lorentz condition as an operator

and commutation relation in covariant canonical quantization of Maxwell’s equations, and

proposed the alternate method that can avoid the contradiction by introducing the extended

Lorentz gauge.

Despite the different interpretation and calculation methods, both the conventional prob-

ability and the alternate interpretation in this paper give the same calculation results. This

can be regarded as a one-to-one correspondence of the inverse problem. The conventional

standard quantum theory is not a systematic representation of physical observations (out-

come) by mathematical expression using objective physical reality, but the assumption re-

placed by non-physical state (pseudo-reality) called probability interpretation, because it

was initially difficult to explain the observation result (outcome) by objective physical re-

ality. For example, we can estimate the sound (outcome) from the shape and state of the

musical instrument (reality). On the contrary, from the sound (outcome), we can estimate

some of sound sources, for example, an electric sound devices (pseudo-reality), in addition

to the musical instrument (reality) that actually makes the sound. Even if the observations

(sounds or outcomes) are identical, the true reality must be unique.

The alternate interpretation seems to be superior to probability interpretation because

intuitively reasonable and exactly follows from Maxwell’s equations, relativity, scattering

problem of Schrödinger equation with geometrical phases and the indefinite metric derived

from covariant quantization and gives the same result as the conventional standard quantum

theory that reproduces the experimental results.

Despite the reproduction of such identical results and the theoretical derivation, no new

concept has been introduced. The conventional concepts such as state vectors, operators

as physical quantities, commutation relations and gauge transform remain unchanged. This

seems to be evidence that such concepts of conventional quantum theory is in the theoret-

ically correct direction. However the probability interpretation and applications based on

it seems to result in pseudoscience, in addition, mathematical procedures associated with it

might be extra things for physics.

From the alternate interpretation, the incompleteness of quantum theory, which has been

alerted by A. Einstein, might originate from lack of introduction of indefinite metric and

geometrical phase as an objective physical reality.

As A. Einstein continued to insist5, we also insist that quantum theory should be debated
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and reconstructed using an objective physical reality without probability interpretation.
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