On a Modular Property of Odd Numbers Under Tetration

Pranjal Jain pranjal.jain@students.iiserpune.ac.in

October 2020

Abstract

The aim of this paper is to generalize problem 3 of the 2019 PROMYS exam, which asks to show that the last 10 digits (in base 10) of t_n are same for all $n \ge 10$, where $t_0 = 3$ and $t_{k+1} = 3^{t_k}$. The generalization shows that given any odd positive integer p, $t_m \equiv t_n \pmod{(p^2+1)^n}$ for all $m \ge n \ge 1$, where $t_0 = p$ and $t_{k+1} = p^{t_k}$.

1 Introduction

The aim of this paper is to generalize the result of Problem 3 of the 2019 PROMYS exam.

Problem definition

Define the sequence $\{t_k\}_{k\in\mathbb{N}_0}$ as

$$t_0 = p, t_{k+1} = p^{t_k} \,\forall k \in \mathbb{N}_0$$

where p is odd, $\mathbb{N}_0 = \{0, 1, 2, ...\}$ and $\mathbb{N} = \{1, 2, ...\}$. We shall show that given any $n, m \in \mathbb{N}$, with $m \ge n$,

$$t_m \equiv t_n \pmod{(p^2 + 1)^n}$$

In the original question that was in PROMYS 2019, only the special case of p = 3 and n = 10 was considered.

Since the claim is trivially true for p = 1, we will be neglecting that case. Henceforth it is assumed that $p \ge 3$.

The arguments used in this paper have their origins in the generalization of several numerical patterns noticed on computing the values of the functions involved for the special case of p = 3 and values of n as large as computational limits allowed.

2 Some useful identities and definitions

Identity 1. $ad \equiv bd \pmod{c} \implies a \equiv b \pmod{c}$, where $d, c \neq 0$ and d and c are co-prime, for $a, b, c, d \in \mathbb{Z}$.

Identity 2. $1+x+x^2+\ldots+x^{4k-1} = (x+1)(x^2+1)(1+x^4+x^8+\ldots+x^{4(k-1)})$

Proof.

$$1 + x + x^{2} + \ldots + x^{4k-1} = \frac{x^{4k} - 1}{x - 1}$$

= $\frac{x^{4k} - 1}{x^{4} - 1}(x + 1)(x^{2} + 1)$
= $(x + 1)(x^{2} + 1)(1 + x^{4} + x^{8} + \ldots + x^{4(k-1)})$

Definition 1. Define $mod_a(b)$ (for integers a and b, with $a \neq 0$) to be the smallest non-negative integer s.t. (such that)

$$mod_a(b) \equiv b \pmod{a}$$

Definition 2. Define $\phi(n) \in \mathbb{N}$ to be the smallest positive integer s.t.

$$p^{\phi(n)} \equiv 1 \pmod{(p^2+1)^n}$$

Claim. Such a $\phi(n)$ must exist.

Proof. We know that the sequence $\{mod_{(p^2+1)^n}(p), mod_{(p^2+1)^n}(p^2), mod_{(p^2+1)^n}(p^3), \ldots\}$ is periodic. If we assume that its period is some $a \in \mathbb{N}$ s.t. \forall positive integers k greater than or equal to some positive integer $A \geq 1$, we have

$$p^{k+a} \equiv p^k \pmod{(p^2+1)^n}$$

Using *Identity* 1, we can 'cancel' p^k from both sides (since p and $p^2 + 1$ are co-prime), which yields that $a = \phi(n)$.

3 Some lemmas about the setup

Lemma 1. $\phi(n)$ is a multiple of $4 \forall n \in \mathbb{N}$.

Proof. For a proof by contradiction, assume $\phi(n) = 4a + b$, where $a, b \in \mathbb{N}_0$ and $1 \leq b \leq 3$. We will now show that this leads to the contradiction that $b \neq 1, 2, 3$.

Since $p^{\phi(n)} \equiv 1 \pmod{(p^2 + 1)^n}$ (by definition), we have

$$\frac{p^{4a+b}-1}{p^2+1}\in\mathbb{N}$$

$$\implies \frac{p-1}{p^2+1}(1+p+p^2+\ldots+p^{4a+b-1}) \in \mathbb{N}$$
(1)

Let $k_1 = 1 + p + p^2 + \ldots + p^{4a-1}$. Hence, *Identity* 2 guarantees that $\frac{p-1}{p^2+1} \times k_1 \in \mathbb{N}$. Also define k_2 as

$$k_2 = \sum_{r=4a}^{4a+b-1} p^r$$

In order for (1) to hold, we must have $\frac{p-1}{p^2+1} \times k_2 \in \mathbb{N}$.

Case I : b = 1

In this case, $k_2 = p^{4a}$. Since p and $p^2 + 1$ are co-prime, this means that p - 1 must be a multiple of $p^2 + 1$, which is clearly false. Hence, b = 1 isn't possible.

Case II : b = 2

In this case, $k_2 = p^{4a} + p^{4a+1} = p^{4a}(p+1)$. Since p^{4a} and $p^2 + 1$ are co-prime, this must mean that $(p-1)(p+1) = p^2 - 1$ is a multiple of $p^2 + 1$, which is clearly false. Hence, b = 2 isn't possible.

Case III : b = 3

In this case, $k_2 = p^{4a} + p^{4a+1} + p^{4a+2} = p^{4a}(p^2 + p + 1)$. Since p^{4a} and $p^2 + 1$ are co-prime, this must mean that $(p-1)(p^2 + p + 1) = (p-1)(p^2 + 1) + (p-1)p$

is a multiple of $p^2 + 1$. Hence, $(p-1)p = p^2 - p$ is a multiple of $p^2 + 1$, which is clearly false. Hence, b = 3 isn't possible.

Lemma 2. $\forall n \in \mathbb{N} \exists k \in \mathbb{N} s.t. \phi(n+1) = k \phi(n).$

Proof. Assume that $\phi(n+1) = a \phi(n) + b$, where $a, b \in \mathbb{N}_0$ and $b < \phi(n)$.

Since $p^{\phi(n+1)} \equiv 1 \pmod{(p^2+1)^{n+1}}$, that must also mean that $p^{\phi(n+1)} \equiv 1 \pmod{(p^2+1)^n}$. Hence, we have

$$p^{a\phi(n)+b} \equiv 1 \pmod{(p^2+1)^n}$$

 $p^{a\phi(n)} \equiv 1 \pmod{(p^2+1)^n}$, so we have

 \iff

$$p^b \equiv 1 \pmod{(p^2 + 1)^n}$$

which is only possible if b = 0, since any other value of b would contradict the definition of $\phi(n)$.

Lemma 3. $\forall n \in \mathbb{N} \exists k \in \mathbb{N} s.t \phi(n+1) = k \phi(n) and k | p^2 + 1 (k divides p^2 + 1).$

Proof. Let $\phi(n) = 4q$ for some $q \in \mathbb{N}$ (using Lemma 1), and hence, let $\phi(n+1) = 4kq$ (using Lemma 2). Hence, we have

$$\frac{p^{4q} - 1}{(p^2 + 1)^n} = j \in \mathbb{N}$$

$$\frac{p^{4qk} - 1}{(p^2 + 1)^{n+1}} \in \mathbb{N}$$

$$\frac{p^{4q} - 1}{(p^2 + 1)^n} \times \frac{1 + p^{4q} + p^{8q} + \dots + p^{4q(k-1)}}{p^2 + 1} \in \mathbb{N}$$
(2)
$$(3)$$

Since $p^{4q} \equiv 1 \pmod{(p^2 + 1)^n}$, that also means that $p^{4q} \equiv 1 \pmod{p^2 + 1}$. Hence (3) gives us

$$j \times \frac{1 + p^{4q} + p^{8q} + \ldots + p^{4q(k-1)}}{p^2 + 1} \in \mathbb{N}$$

$$\iff j(1 + p^{4q} + p^{8q} + \ldots + p^{4q(k-1)}) \equiv 0 \pmod{p^2 + 1}$$

$$\iff jk \equiv 0 \pmod{p^2 + 1} \tag{4}$$

Since k is the smallest positive integer s.t. (4) holds (since the existence of some positive integer lesser than k with this property will violate the definition of $\phi(n+1)$), k must be a factor of $p^2 + 1$.

Lemma 4. $\phi(n)$ is a factor of $(p^2 + 1)^{n-1} \quad \forall n \ge 3$.

We will perform a proof by induction on n.

=

(I) For n = 3

Proof. We have

$$p^4 = (p^2 + 1)(p^2 - 1) + 1 \equiv 1 \pmod{p^2 + 1}$$

Hence, $\phi(1) = 4$ (using Lemma 1 and the definition of $\phi(1)$).

Assume $\phi(2) = 4k$ for some $k \in \mathbb{N}$ (using Lemma 1). Also, we have $k \mid p^2 + 1$ (using Lemma 3). Using (4) (from the proof for Lemma 3), we have

$$\frac{p^4 - 1}{p^2 + 1} \times k \equiv 0 \pmod{p^2 + 1}$$

$$\implies (p^2 - 1) \times k \equiv 0 \pmod{p^2 + 1}$$
(5)

Since p is odd, $p^2 - 1$ and $p^2 + 1$ are multiples of 2. More importantly, $p^2 - 1$ is a multiple of 4 (since all odd numbers leave a residue of 1 or 3 modulo 4), whereas $p^2 + 1$ is an odd multiple of 2.

Hence, it suffices for k to be a factor of $\frac{p^2+1}{2}$ for (5) to hold. Hence, $\phi(2)$ is a factor of $2(p^2+1)$.

Assume that $\phi(3) = 4kk'$, for some $k' \in \mathbb{N}$ (using Lemma 3). Hence, (4) (from the proof Lemma 3) yields

$$\frac{p^{4k} - 1}{(p^2 + 1)^2} \times k' \equiv 0 \pmod{p^2 + 1}$$
(6)

Note that k' is also the smallest positive integer which satisfies (6) (by definition of $\phi(3)$).

p is odd, so that must mean that p^4 (and hence, p^{4k}) leaves residue 1 modulo 16. Moreover, since $p^2 + 1$ is an odd multiple of 2, this must mean that $\frac{p^{4k}-1}{(p^2+1)^2}$ is a multiple of 4. Hence, it suffices for k' to be a factor of $\frac{p^2+1}{2}$ for (6) to hold. Hence, $4kk' = \phi(3)$ is a factor of $(p^2 + 1)^2$, as desired. \Box

(II) For n+1 assuming true for $n \ge 3$

Proof. Assume that $\phi(n)$ is a factor of $(p^2 + 1)^{n-1}$ for some $n \ge 3$. Hence, Lemma 3 implies that $\phi(n+1)$ must be a factor of $(p^2 + 1)^n$, as desired. \Box

Lemma 5. $t_m \equiv t_n \pmod{\phi(n+1)} \quad \forall m \ge n \ge 0.$

We will perform a proof by induction in n.

(I) For n = 0

Proof. Consider the following pair of mutually exclusive cases which cover all possibilities. Also, recall that $\phi(1) = 4$.

Case $a : p \equiv 1 \pmod{4}$ In this case, $t_m \equiv 1 \pmod{4} \forall m \ge 0$, hence proving the desired result.

Case $b : p \equiv -1 \pmod{4}$ In this case, $t_m \equiv -1 \pmod{4} \forall m \ge 0$ (since t_k is odd $\forall k \in \mathbb{N}_0$), hence proving the desired result.

(II) For n = 1, by induction on m

Proof. It's trivially true for m = 1. We shall now prove it for m + 1 assuming it's true for some $m \ge 1$. The induction hypothesis guarantees that

$$t_m \equiv t_1 \pmod{\phi(2)}$$
$$\implies p^{t_m} \equiv p^{t_1} \pmod{(p^2 + 1)^2}$$
$$\implies t_{m+1} \equiv t_2 \pmod{(p^2 + 1)^2} \tag{7}$$

 $\phi(2)$ is a factor of $2(p^2 + 1)$, so that must mean that it's also a factor of $(p^2 + 1)^2$ (since $p^2 + 1$ is even). Hence, the desired result is trivially implied from (7).

(III) For $n \ge 2$ assuming true for n-1

Proof. The induction hypothesis guarantees that

$$t_m \equiv t_{n-1} \pmod{\phi(n)} \forall m \ge n-1$$

$$\implies p^{t_m} \equiv p^{t_{n-1}} \pmod{(p^2+1)^n}$$

$$\implies p^{t_m} \equiv p^{t_{n-1}} \pmod{\phi(n+1)} \pmod{2n}$$

$$\implies t_m \equiv t_n \pmod{\phi(n+1)} \forall m \ge n \quad \Box$$

4 Proving the final result

Proof. Lemma 5 grants us

$$t_m \equiv t_n \pmod{\phi(n+1)} \quad \forall \ m \ge n \ge 0$$
$$\implies p^{t_m} \equiv p^{t_n} \pmod{(p^2+1)^{n+1}} \quad \forall \ m \ge n \ge 0$$
$$t_{m+1} \equiv t_{n+1} \pmod{(p^2+1)^{n+1}} \quad \forall \ m \ge n \ge 0$$
$$t_m \equiv t_n \pmod{(p^2+1)^n} \quad \forall \ m \ge n \ge 1 \quad \Box$$