# On a Modular Property of Odd Numbers Under Tetration 

Pranjal Jain<br>pranjal.jain@students.iiserpune.ac.in

October 2020


#### Abstract

The aim of this paper is to generalize problem 3 of the 2019 PROMYS exam, which asks to show that the last 10 digits (in base 10) of $t_{n}$ are same for all $n \geq 10$, where $t_{0}=3$ and $t_{k+1}=3^{t_{k}}$. The generalization shows that given any odd positive integer $p, t_{m} \equiv t_{n}\left(\bmod \left(p^{2}+1\right)^{n}\right)$ for all $m \geq n \geq 1$, where $t_{0}=p$ and $t_{k+1}=p^{t_{k}}$.


## 1 Introduction

The aim of this paper is to generalize the result of Problem 3 of the 2019 PROMYS exam.

## Problem definition

Define the sequence $\left\{t_{k}\right\}_{k \in \mathbb{N}_{0}}$ as

$$
t_{0}=p, t_{k+1}=p^{t_{k}} \forall k \in \mathbb{N}_{0}
$$

where $p$ is odd, $\mathbb{N}_{0}=\{0,1,2, \ldots\}$ and $\mathbb{N}=\{1,2, \ldots\}$. We shall show that given any $n, m \in \mathbb{N}$, with $m \geq n$,

$$
t_{m} \equiv t_{n}\left(\bmod \left(p^{2}+1\right)^{n}\right)
$$

In the original question that was in PROMYS 2019, only the special case of $p=3$ and $n=10$ was considered.

Since the claim is trivially true for $p=1$, we will be neglecting that case. Henceforth it is assumed that $p \geq 3$.

The arguments used in this paper have their origins in the generalization of several numerical patterns noticed on computing the values of the functions involved for the special case of $p=3$ and values of $n$ as large as computational limits allowed.

## 2 Some useful identities and definitions

Identity 1. $a d \equiv b d(\bmod c) \Longrightarrow a \equiv b(\bmod c)$, where $d, c \neq 0$ and $d$ and $c$ are co-prime, for $a, b, c, d \in \mathbb{Z}$.
Identity 2. $1+x+x^{2}+\ldots+x^{4 k-1}=(x+1)\left(x^{2}+1\right)\left(1+x^{4}+x^{8}+\ldots+x^{4(k-1)}\right)$
Proof.

$$
\begin{aligned}
1+x+x^{2}+\ldots+x^{4 k-1} & =\frac{x^{4 k}-1}{x-1} \\
& =\frac{x^{4 k}-1}{x^{4}-1}(x+1)\left(x^{2}+1\right) \\
& =(x+1)\left(x^{2}+1\right)\left(1+x^{4}+x^{8}+\ldots+x^{4(k-1)}\right)
\end{aligned}
$$

Definition 1. Define $\bmod _{a}(b)$ (for integers $a$ and $b$, with $a \neq 0$ ) to be the smallest non-negative integer s.t. (such that)

$$
\bmod _{a}(b) \equiv b(\bmod a)
$$

Definition 2. Define $\phi(n) \in \mathbb{N}$ to be the smallest positive integer s.t.

$$
p^{\phi(n)} \equiv 1\left(\bmod \left(p^{2}+1\right)^{n}\right)
$$

Claim. Such a $\phi(n)$ must exist.
Proof. We know that the sequence $\left\{\bmod _{\left(p^{2}+1\right)^{n}}(p), \bmod _{\left(p^{2}+1\right)^{n}}\left(p^{2}\right), \bmod _{\left(p^{2}+1\right)^{n}}\left(p^{3}\right), \ldots\right\}$ is periodic. If we assume that its period is some $a \in \mathbb{N}$ s.t. $\forall$ positive integers $k$ greater than or equal to some positive integer $A \geq 1$, we have

$$
p^{k+a} \equiv p^{k}\left(\bmod \left(p^{2}+1\right)^{n}\right)
$$

Using Identity 1 , we can 'cancel' $p^{k}$ from both sides (since $p$ and $p^{2}+1$ are co-prime), which yields that $a=\phi(n)$.

## 3 Some lemmas about the setup

Lemma 1. $\phi(n)$ is a multiple of $4 \forall n \in \mathbb{N}$.
Proof. For a proof by contradiction, assume $\phi(n)=4 a+b$, where $a, b \in \mathbb{N}_{0}$ and $1 \leq b \leq 3$. We will now show that this leads to the contradiction that $b \neq 1,2,3$.

Since $p^{\phi(n)} \equiv 1\left(\bmod \left(p^{2}+1\right)^{n}\right)$ (by definition), we have

$$
\begin{gather*}
\frac{p^{4 a+b}-1}{p^{2}+1} \in \mathbb{N} \\
\Longrightarrow \frac{p-1}{p^{2}+1}\left(1+p+p^{2}+\ldots+p^{4 a+b-1}\right) \in \mathbb{N} \tag{1}
\end{gather*}
$$

Let $k_{1}=1+p+p^{2}+\ldots+p^{4 a-1}$. Hence, Identity 2 guarantees that $\frac{p-1}{p^{2}+1} \times k_{1} \in$ $\mathbb{N}$. Also define $k_{2}$ as

$$
k_{2}=\sum_{r=4 a}^{4 a+b-1} p^{r}
$$

In order for (1) to hold, we must have $\frac{p-1}{p^{2}+1} \times k_{2} \in \mathbb{N}$.
Case I : b=1
In this case, $k_{2}=p^{4 a}$. Since $p$ and $p^{2}+1$ are co-prime, this means that $p-1$ must be a multiple of $p^{2}+1$, which is clearly false. Hence, $b=1$ isn't possible.

Case II : b=2
In this case, $k_{2}=p^{4 a}+p^{4 a+1}=p^{4 a}(p+1)$. Since $p^{4 a}$ and $p^{2}+1$ are co-prime, this must mean that $(p-1)(p+1)=p^{2}-1$ is a multiple of $p^{2}+1$, which is clearly false. Hence, $b=2$ isn't possible.

Case III : b=3
In this case, $k_{2}=p^{4 a}+p^{4 a+1}+p^{4 a+2}=p^{4 a}\left(p^{2}+p+1\right)$. Since $p^{4 a}$ and $p^{2}+1$ are co-prime, this must mean that $(p-1)\left(p^{2}+p+1\right)=(p-1)\left(p^{2}+1\right)+(p-1) p$
is a multiple of $p^{2}+1$. Hence, $(p-1) p=p^{2}-p$ is a multiple of $p^{2}+1$, which is clearly false. Hence, $b=3$ isn't possible.

Lemma 2. $\forall n \in \mathbb{N} \exists k \in \mathbb{N}$ s.t. $\phi(n+1)=k \phi(n)$.
Proof. Assume that $\phi(n+1)=a \phi(n)+b$, where $a, b \in \mathbb{N}_{0}$ and $b<\phi(n)$.
Since $p^{\phi(n+1)} \equiv 1\left(\bmod \left(p^{2}+1\right)^{n+1}\right)$, that must also mean that $p^{\phi(n+1)} \equiv$ $1\left(\bmod \left(p^{2}+1\right)^{n}\right)$. Hence, we have

$$
p^{a \phi(n)+b} \equiv 1\left(\bmod \left(p^{2}+1\right)^{n}\right)
$$

$p^{a \phi(n)} \equiv 1\left(\bmod \left(p^{2}+1\right)^{n}\right)$, so we have

$$
p^{b} \equiv 1\left(\bmod \left(p^{2}+1\right)^{n}\right)
$$

which is only possible if $b=0$, since any other value of $b$ would contradict the definition of $\phi(n)$.

Lemma 3. $\forall n \in \mathbb{N} \exists k \in \mathbb{N}$ s.t $\phi(n+1)=k \phi(n)$ and $k \mid p^{2}+1(k$ divides $\left.p^{2}+1\right)$.

Proof. Let $\phi(n)=4 q$ for some $q \in \mathbb{N}$ (using Lemma 1), and hence, let $\phi(n+1)=4 k q$ (using Lemma 2). Hence, we have

$$
\begin{gather*}
\frac{p^{4 q}-1}{\left(p^{2}+1\right)^{n}}=j \in \mathbb{N}  \tag{2}\\
\frac{p^{4 q k}-1}{\left(p^{2}+1\right)^{n+1}} \in \mathbb{N} \\
\Longleftrightarrow \frac{p^{4 q}-1}{\left(p^{2}+1\right)^{n}} \times \frac{1+p^{4 q}+p^{8 q}+\ldots+p^{4 q(k-1)}}{p^{2}+1} \in \mathbb{N} \tag{3}
\end{gather*}
$$

Since $p^{4 q} \equiv 1\left(\bmod \left(p^{2}+1\right)^{n}\right)$, that also means that $p^{4 q} \equiv 1\left(\bmod p^{2}+1\right)$. Hence (3) gives us

$$
\begin{gathered}
j \times \frac{1+p^{4 q}+p^{8 q}+\ldots+p^{4 q(k-1)}}{p^{2}+1} \in \mathbb{N} \\
\Longleftrightarrow j\left(1+p^{4 q}+p^{8 q}+\ldots+p^{4 q(k-1)}\right) \equiv 0\left(\bmod p^{2}+1\right)
\end{gathered}
$$

$$
\begin{equation*}
\Longleftrightarrow j k \equiv 0\left(\bmod p^{2}+1\right) \tag{4}
\end{equation*}
$$

Since $k$ is the smallest positive integer s.t. (4) holds (since the existence of some positive integer lesser than $k$ with this property will violate the definition of $\phi(n+1)$ ), $k$ must be a factor of $p^{2}+1$.

Lemma 4. $\phi(n)$ is a factor of $\left(p^{2}+1\right)^{n-1} \forall n \geq 3$.
We will perform a proof by induction on $n$.
(I) For $n=3$

Proof. We have

$$
p^{4}=\left(p^{2}+1\right)\left(p^{2}-1\right)+1 \equiv 1\left(\bmod p^{2}+1\right)
$$

Hence, $\phi(1)=4$ (using Lemma 1 and the definition of $\phi(1)$ ).
Assume $\phi(2)=4 k$ for some $k \in \mathbb{N}$ (using Lemma 1). Also, we have $k \mid p^{2}+1$ (using Lemma 3). Using (4) (from the proof for Lemma 3), we have

$$
\begin{align*}
& \frac{p^{4}-1}{p^{2}+1} \times k \equiv 0\left(\bmod p^{2}+1\right) \\
\Longrightarrow & \left(p^{2}-1\right) \times k \equiv 0\left(\bmod p^{2}+1\right) \tag{5}
\end{align*}
$$

Since $p$ is odd, $p^{2}-1$ and $p^{2}+1$ are multiples of 2 . More importantly, $p^{2}-1$ is a multiple of 4 (since all odd numbers leave a residue of 1 or 3 modulo 4 ), whereas $p^{2}+1$ is an odd multiple of 2 .

Hence, it suffices for $k$ to be a factor of $\frac{p^{2}+1}{2}$ for (5) to hold. Hence, $\phi(2)$ is a factor of $2\left(p^{2}+1\right)$.

Assume that $\phi(3)=4 k k^{\prime}$, for some $k^{\prime} \in \mathbb{N}$ (using Lemma 3). Hence, (4) (from the proof Lemma 3) yields

$$
\begin{equation*}
\frac{p^{4 k}-1}{\left(p^{2}+1\right)^{2}} \times k^{\prime} \equiv 0\left(\bmod p^{2}+1\right) \tag{6}
\end{equation*}
$$

Note that $k^{\prime}$ is also the smallest positive integer which satisfies (6) (by definition of $\phi(3))$.
$p$ is odd, so that must mean that $p^{4}$ (and hence, $p^{4 k}$ ) leaves residue 1 modulo 16. Moreover, since $p^{2}+1$ is an odd multiple of 2 , this must mean that $\frac{p^{4 k}-1}{\left(p^{2}+1\right)^{2}}$ is a multiple of 4 . Hence, it suffices for $k^{\prime}$ to be a factor of $\frac{p^{2}+1}{2}$ for (6) to hold. Hence, $4 k k^{\prime}=\phi(3)$ is a factor of $\left(p^{2}+1\right)^{2}$, as desired.

## (II) For $n+1$ assuming true for $n \geq 3$

Proof. Assume that $\phi(n)$ is a factor of $\left(p^{2}+1\right)^{n-1}$ for some $n \geq 3$. Hence, Lemma 3 implies that $\phi(n+1)$ must be a factor of $\left(p^{2}+1\right)^{n}$, as desired.
Lemma 5. $t_{m} \equiv t_{n}(\bmod \phi(n+1)) \forall m \geq n \geq 0$.
We will perform a proof by induction in $n$.

## (I) For $n=0$

Proof. Consider the following pair of mutually exclusive cases which cover all possibilities. Also, recall that $\phi(1)=4$.

Case $\boldsymbol{a}: p \equiv 1(\bmod 4)$
In this case, $t_{m} \equiv 1(\bmod 4) \forall m \geq 0$, hence proving the desired result.
Case b: $p \equiv-1(\bmod 4)$
In this case, $t_{m} \equiv-1(\bmod 4) \forall m \geq 0\left(\right.$ since $t_{k}$ is odd $\left.\forall k \in \mathbb{N}_{0}\right)$, hence proving the desired result.

## (II) For $n=1$, by induction on $m$

Proof. It's trivially true for $m=1$. We shall now prove it for $m+1$ assuming it's true for some $m \geq 1$. The induction hypothesis guarantees that

$$
\begin{align*}
& t_{m} \equiv t_{1}(\bmod \phi(2)) \\
\Longrightarrow & p^{t_{m}} \equiv p^{t_{1}}\left(\bmod \left(p^{2}+1\right)^{2}\right) \\
\Longrightarrow & t_{m+1} \equiv t_{2}\left(\bmod \left(p^{2}+1\right)^{2}\right) \tag{7}
\end{align*}
$$

$\phi(2)$ is a factor of $2\left(p^{2}+1\right)$, so that must mean that it's also a factor of $\left(p^{2}+1\right)^{2}$ (since $p^{2}+1$ is even). Hence, the desired result is trivially implied from (7).
(III) For $n \geq 2$ assuming true for $n-1$

Proof. The induction hypothesis guarantees that

$$
\begin{gathered}
t_{m} \equiv t_{n-1}(\bmod \phi(n)) \forall m \geq n-1 \\
\Longrightarrow p^{t_{m}} \equiv p^{t_{n-1}}\left(\bmod \left(p^{2}+1\right)^{n}\right) \\
\Longrightarrow p^{t_{m}} \equiv p^{t_{n-1}}(\bmod \phi(n+1))(\text { by Lemma 3.4) } \\
\Longrightarrow t_{m} \equiv t_{n}(\bmod \phi(n+1)) \forall m \geq n \quad \square
\end{gathered}
$$

## 4 Proving the final result

Proof. Lemma 5 grants us

$$
\begin{gathered}
t_{m} \equiv t_{n}(\bmod \phi(n+1)) \forall m \geq n \geq 0 \\
\Longrightarrow p^{t_{m}} \equiv p^{t_{n}}\left(\bmod \left(p^{2}+1\right)^{n+1}\right) \forall m \geq n \geq 0 \\
t_{m+1} \equiv t_{n+1}\left(\bmod \left(p^{2}+1\right)^{n+1}\right) \forall m \geq n \geq 0 \\
t_{m} \equiv t_{n}\left(\bmod \left(p^{2}+1\right)^{n}\right) \forall m \geq n \geq 1 \quad \square
\end{gathered}
$$

