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1 Introduction

The aim of this paper is to generalize the result of Problem 3 of the 2019
PROMYS exam.

Problem definition

Define the sequence {tk}k∈N0
as

t0 = p, tk+1 = ptk ∀ k ∈ N0

where p is odd, N0 = {0, 1, 2, . . .} and N = {1, 2, . . .}. We shall show that
given any n,m ∈ N, with m ≥ n,

tm ≡ tn (mod (p2 + 1)n)

In the original question that was in PROMYS 2019, only the special case of
p = 3 and n = 10 was considered.

Since the claim is trivially true for p = 1, we will be neglecting that case.
Henceforth it is assumed that p ≥ 3.

The arguments used in this article may seem out of the blue to most, so I’d
like to point out that all of them have their origins in the generalization of
several numerical patterns I noticed on computing the values of the functions
involved for the special case of p = 3 and values of n as large as my computer
could handle.
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Abstract

The aim of this paper is to generalize problem 3 of the 2019 PROMYS exam, which asks to show

that the last 10 digits (in base 10) of t_n are same for all n >= 10, where t_0 = 3 and t_(k+1) =

3^(t_k). The generalization shows that t_m is congruent to t_n modulo [(p^2)+1]^n for all m >= n

>= 1, where t_0 = p and t_(k+1) = p^(t_k).

(Note: Corrections are made by viXra Admin to conform with the requirements on the Submission Form)



2 Some useful identities and definitions

Identity 2.1
ad ≡ bd (mod c) =⇒ a ≡ b (mod c), where d, c 6= 0 and d and c are
co-prime, for a, b, c, d ∈ Z.

Identity 2.2
1 + x+ x2 + . . .+ x4k−1 = (x+ 1)(x2 + 1)(1 + x4 + x8 + . . .+ x4(k−1))

Proof

1 + x+ x2 + . . .+ x4k−1 =
x4k − 1

x− 1

=
x4k − 1

x4 − 1
(x+ 1)(x2 + 1)

= (x+ 1)(x2 + 1)(1 + x4 + x8 + . . .+ x4(k−1))

Definition 2.3
Define moda(b) (for integers a and b, with a 6= 0) to be the smallest non-
negative integer s.t.

moda(b) ≡ b (mod a)

Definition 2.4
Define φ(n) ∈ N to be the smallest positive integer s.t.

pφ(n) ≡ 1 (mod (p2 + 1)n)

Proof that such a φ(n) must exist
We know that the sequence {mod(p2+1)n(p), mod(p2+1)n(p

2), mod(p2+1)n(p
3), . . .}

is periodic. If we assume that its period is some a ∈ N s.t. ∀ positive integers
k greater than or equal to some positive integer A ≥ 1, we have

pk+a ≡ pk (mod (p2 + 1)n)

Using Identity 2.1, we can ‘cancel’ pk from both sides (since p and p2 +1 are
co-prime), which yields that a = φ(n). �
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3 Some lemmas about the setup

Lemma 3.1
φ(n) is a multiple of 4 ∀n ∈ N.

Proof by contradiction
Assume φ(n) = 4a + b, where a, b ∈ N0 and 1 ≤ b ≤ 3. We will now show
that this leads to the contradiction that b 6= 1, 2, 3.

Since pφ(n) ≡ 1 (mod (p2 + 1)n) (by definition), we have

p4a+b − 1

p2 + 1
∈ N

=⇒
p− 1

p2 + 1
(1 + p+ p2 + . . .+ p4a+b−1) ∈ N (1)

Let k1 = 1 + p + p2 + . . . + p4a−1. Hence, Identity 2.2 guarantees that
p−1
p2+1

× k1 ∈ N. Also define k2 as

k2 =
4a+b−1∑

r=4a

pr

In order for (1) to hold, we must have p−1
p2+1

× k2 ∈ N.

Case I : b = 1
In this case, k2 = p4a. Since p and p2 +1 are co-prime, this means that p− 1
must be a multiple of p2+1, which is clearly false. Hence, b = 1 isn’t possible.

Case II : b = 2
In this case, k2 = p4a+ p4a+1 = p4a(p+1). Since p4a and p2+1 are co-prime,
this must mean that (p− 1)(p+ 1) = p2 − 1 is a multiple of p2 + 1, which is
clearly false. Hence, b = 2 isn’t possible.

Case III : b = 3
In this case, k2 = p4a+p4a+1+p4a+2 = p4a(p2+p+1). Since p4a and p2+1 are
co-prime, this must mean that (p− 1)(p2+ p+1) = (p− 1)(p2+1)+ (p− 1)p
is a multiple of p2+1. Hence, (p− 1)p = p2− p is a multiple of p2+1, which
is clearly false. Hence, b = 3 isn’t possible. �
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Lemma 3.2
∀n ∈ N ∃ k ∈ N s.t φ(n+ 1) = k φ(n).

Proof
Assume that φ(n+ 1) = a φ(n) + b, where a, b ∈ N0 and b < φ(n).

Since pφ(n+1) ≡ 1 (mod (p2 + 1)n+1), that must also mean that pφ(n+1) ≡
1 (mod (p2 + 1)n). Hence, we have

paφ(n)+b ≡ 1 (mod (p2 + 1)n)

paφ(n) ≡ 1 (mod (p2 + 1)n), so we have

pb ≡ 1 (mod (p2 + 1)n)

which is only possible if b = 0, since any other value of b would contradict
the definition of φ(n). �

Lemma 3.3
∀n ∈ N ∃ k ∈ N s.t φ(n+ 1) = k φ(n) and k | p2 + 1 (k divides p2 + 1).

Proof
Let φ(n) = 4q for some q ∈ N (using Lemma 3.1 ), and hence, let φ(n+1) =
4kq (using Lemma 3.2 ). Hence, we have

p4q − 1

(p2 + 1)n
= j ∈ N (2)

p4qk − 1

(p2 + 1)n+1
∈ N

⇐⇒
p4q − 1

(p2 + 1)n
×

1 + p4q + p8q + . . .+ p4q(k−1)

p2 + 1
∈ N (3)

Since p4q ≡ 1 (mod (p2 + 1)n), that also means that p4q ≡ 1 (mod p2 + 1).
Hence (3) gives us

j ×
1 + p4q + p8q + . . .+ p4q(k−1)

p2 + 1
∈ N
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⇐⇒ j(1 + p4q + p8q + . . .+ p4q(k−1)) ≡ 0 (mod p2 + 1)

⇐⇒ jk ≡ 0 (mod p2 + 1) (4)

Since k is the smallest positive integer s.t. (4) holds (since the existence of
some positive integer lesser than k with this property will violate the defini-
tion of φ(n+ 1)), k must be a factor of p2 + 1. �

Lemma 3.4
φ(n) is a factor of (p2 + 1)n−1 ∀ n ≥ 3.

Proof by induction on n

(I) Proof for n = 3
We have

p4 = (p2 + 1)(p2 − 1) + 1 ≡ 1 (mod p2 + 1)

Hence, φ(1) = 4 (using Lemma 3.1 and the definition of φ(1)).

Assume φ(2) = 4k for some k ∈ N (using Lemma 3.1 ). Also, we have k | p2+1
(using Lemma 3.3 ). Using (4) (from the proof for Lemma 3.3 ), we have

p4 − 1

p2 + 1
× k ≡ 0 (mod p2 + 1)

=⇒ (p2 − 1)× k ≡ 0 (mod p2 + 1) (5)

Since p is odd, p2− 1 and p2+1 are multiples of 2. More importantly, p2− 1
is a multiple of 4 (since all odd numbers leave a residue of 1 or 3 modulo 4),
whereas p2 + 1 is an odd multiple of 2.

Hence, it suffices for k to be a factor of p2+1
2

for (5) to hold. Hence, φ(2) is
a factor of 2(p2 + 1).

Assume that φ(3) = 4kk′, for some k′ ∈ N (using Lemma 3.3 ). Hence, (4)
(from the proof Lemma 3.3 ) yields

p4k − 1

(p2 + 1)2
× k′ ≡ 0 (mod p2 + 1) (6)
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Note that k′ is also the smallest positive integer which satisfies (6) (by defi-
nition of φ(3)).

p is odd, so that must mean that p4 (and hence, p4k) leaves residue 1 modulo

16. Moreover, since p2+1 is an odd multiple of 2, this must mean that p4k−1
(p2+1)2

is a multiple of 4. Hence, it suffices for k′ to be a factor of p2+1
2

for (6) to
hold. Hence, 4kk′ = φ(3) is a factor of (p2 + 1)2, as desired.

(II) Proof for n+ 1 assuming true for n ≥ 3
Assume that φ(n) is a factor of (p2 + 1)n−1 for some n ≥ 3. Hence, Lemma

3.3 implies that φ(n+ 1) must be a factor of (p2 + 1)n, as desired. �

Lemma 3.5
tm ≡ tn (mod φ(n+ 1)) ∀ m ≥ n ≥ 0.

Proof by induction on n

(I) Proof for n = 0
Consider the following pair of mutually exclusive cases which cover all pos-
sibilities. Also, recall that φ(1) = 4.

Case a : p ≡ 1 (mod 4)
In this case, tm ≡ 1 (mod 4) ∀ m ≥ 0, hence proving the desired result.

Case b : p ≡ −1 (mod 4)
In this case, tm ≡ −1 (mod 4) ∀ m ≥ 0 (since tk is odd ∀ k ∈ N0), hence
proving the desired result.

(II) Proof for n = 1 by induction on m

It’s trivially true for m = 1. We shall now prove it for m + 1 assuming it’s
true for some m ≥ 1. The induction hypothesis guarantees that

tm ≡ t1 (mod φ(2))

=⇒ ptm ≡ pt1 (mod (p2 + 1)2)

=⇒ tm+1 ≡ t2 (mod (p2 + 1)2) (7)
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φ(2) is a factor of 2(p2 + 1), so that must mean that it’s also a factor of
(p2 + 1)2 (since p2 + 1 is even). Hence, the desired result is trivially implied
from (7).

(III) Proof for n ≥ 2 assuming true for n− 1
The induction hypothesis guarantees that

tm ≡ tn−1 (mod φ(n)) ∀ m ≥ n− 1

=⇒ ptm ≡ ptn−1 (mod (p2 + 1)n)

=⇒ ptm ≡ ptn−1 (mod φ(n+ 1)) (by Lemma 3.4 )

=⇒ tm ≡ tn (mod φ(n+ 1)) ∀ m ≥ n �

4 Proving the final result

Lemma 3.5 grants us

tm ≡ tn (mod φ(n+ 1)) ∀ m ≥ n ≥ 0

=⇒ ptm ≡ ptn (mod (p2 + 1)n+1) ∀ m ≥ n ≥ 0

tm+1 ≡ tn+1 (mod (p2 + 1)n+1) ∀ m ≥ n ≥ 0

tm ≡ tn (mod (p2 + 1)n) ∀ m ≥ n ≥ 1 �
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