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Abstract. Zeros and the pole of the Riemann zeta function ((s) corre-
spond to simple poles of the logarithmic derivative f(s) = £ In((s). In
Re{s} > 1 the function f(s) has an absolutely convergent sum expression
£(s) = X2, hy(s) where hy(s) = ha(js) and hi(s) = — 22 In(pu)pi
a sum over all primes p,, > 1. When the Taylor series of f(s) is evaluated
at a point (1,0), 1 >> 1, the absolute values of the coefficients of the Taylor
series decrease in a negatively exponential manner when [ increases. The
function f(s) has simple poles in the area Re{s} < 1. The pole gives the
function r/(s — si), which can be evaluated into a Taylor series at (I,0).
The coefficients of the Taylor series of the pole decrease as ™! as a func-
tion of I. This implies that in the sum of all poles of f(s) poles must cancel
other poles so that the negatively exponential behavior of the coefficients
of the Taylor series dominates. The function of z = I™' arising from the
pole —1/(s —1) at s =1 is —z/(1 — ). The poles of f(s) at even nega-
tive integers give the function —xC. These two negative functions cannot
cancel poles sy that are on the x-axis and 0 < s < 1. Thus, such poles do
not exist. Pole pairs sk, s give the function z +z /(1 —z) that cancels the
sum —zC —z /(1 —z) when C = 1 if only if every pole s, has Re{s} = 1.
The convergence of the coefficient of every power ¢ > 0 of z larger to zero

at least as O(z) is shown possible for this solution.
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1 Definitions

The Riemann zeta function is defined by

((5)=) n* (1)

where s is a complex number. The zeta function can be continued analytically to
the whole complex plane except for s = 1 where the function has a simple pole.
The zeta function has trivial zeros at even negative integers. It does not have

zeros in Re{s} > 1. The nontrivial zeros lie in the strip 0 < z < 1. Let

P ={p1,po,...|pj is a prime, pj11 > p; > 1,j > 1}

be the set of all primes (larger than one). Let s = z + iy, 2,y € R and z > .

The Riemann zeta function can be expressed as
oo
()= [J-p;57, (2)

This infinite product converges absolutely if Re{s} > 1. See e.g. [1] for the basic
facts of {(s).

2 An introductory lemma and the theorem
Lemma 1. The functions
hi(s) == In(p;)p;”° , j>0 (3)
Jj=1

are related by h;(s) = hi1(js). The functions h;(s) have analytic continuations to
Re{s} > 0 with the exception of isolated first-order poles. The poles of h;(s) that

are not on the x-axis appear in pole pairs: close to sy, where Im{sy} > 0, h;(s)



is of the type
r

hj(s) = + f1(s) (4)

S — Sk

and close to sy, where s, is a complex conjugate of s, hj(s) is of the type

hy(s) = —— + fo(s)

_ e*
S Sk

The functions fi(s) and f2(s) are analytic close to sj and s, respectively. If the

pole is at the x-axis, there is only one pole of the type (4) with Im{sx} = 0.

Proof. The claim

hj(s) = h1(js) (5)
follows directly from (3).

The function hq(s) converges absolutely if Re{s} > 1 because
oo
27"

=1

converges absolutely for Re{s} > 1 and |Inp;| < |p§| for any fixed a > 0 if j is

sufficiently large. Therefore
|In(p;)p; °| < 2|p; *+|
for any fixed o > 0 if j is sufficiently large. Therefore, by (5), h;(s) converges
absolutely if Re{s} > %
From (2) follows
! -1 d =
¢(s)C(s)™" = 7 In((s) = > hi(s)-

Jj=1



The derivative ¢'(s) is analytic in all points except for s = 1. The function hy(s)

is continued analytically to Re{s} > £ by

hi(s) = ((s)71¢'(s) — g(s) (6)

where

o(s) = 3 hy (o).

j=2
The function ((s)~! is analytic except for at points where ((s) has a zero or a
pole. The function g(s) is analytic for Re{s} > 1 because each h;(s), j > 1,
is analytic in Re{s} > % Thus, the right side of (6) is defined and analytic for

% < Re{s} except for at points where ((s) has a zero or a pole. At those isolated

points hy(s) has a pole.

At a pole sy of {(s) the zeta function has the expansion

¢(s) = Lk + higher order terms.

(s — 1)
If Re{s} > % the function hy(s) is of the form

r

hi(s) = ¢'(s)¢(s) ™" — g(s) = + f1(s)

S — Sk

where f1(s) is analytic close to sx and r = —k < 0 is an integer. The function

¢(s) has only one pole, at s, =1 = (1,0), and it is a simple pole, thus r = —1.

At a zero sy of ((s) the zeta function has the expansion

¢(s) = C(s — s;)* + higher order terms.

If Re{s} > 1 the function




where fi(s) is analytic close to s, and r = k > 0 is an integer. It is known that
¢(s) has many zeros with Re{s;} =1/2.

Thus, hy(s) has only first-order poles for Re{s} > 1 and therefore h;(s) has
only first-order poles for Re{s} > % At every pole of hi(s) in Re{s} > % the
value of r is an integer.

As hy(s) is continued to Re{s} > 1 by (6), the equation (5) continues h;(s)
to Re{s} > % Then (6) continues hy(s) to Re{s} > 1. The function hy(s) has
isolated poles at Re{s} > %. Each pole is a first-order pole, but the value of r at
a pole does not need to be an integer.

We can repeat the procedure inductively: If hy (s) is continued to Re{s} > 5
by (6), the equation (5) continues h;(s) to Re{s} > 2—13 Then (6) continues hq(s)
to Re{s} > 5&r. By induction, all hj(s) are analytically continued to Re{s} > 0.

In this inductive process hi(s) gets isolated first-order poles. In these poles s
the values r = r can be positive or negative, and they do not need to be integers.
If hy(s) has a pole

r

ha(s) = + fi(s)

S — Sk

1

(here fi1(s) is analytic close to si), then hj(s) = hi(js) has a pole at j~"s; and

the r value is 5~ !r since

1
§7r .
T, + f1(5s)-

hy(s) = has) = -

The function hq(s) is symmetric with respect to the real axis. By (4) h;(s),
7 > 1, is also symmetric with respect to the real axis. Therefore poles of each
hj(s), j > 0, appear as pairs s, and sj. In the special case where sy, is real there

is only one pole, not a pair. o

Theorem 1. All poles on?il hj(s) in 0 < Re{s} < 1 have the real part .

Proof. Let us consider a function f(s) that has a first-order pole at sg and write

21 = s—8p- The function f(s) does not have a Taylor series at sq, but the function



z1f(2z1 + so) has a Taylor series at 23 = 0 and f(s) can be expressed as
c o>
= — . 7
o + kE_O Ck2y (7

Let us evaluate f(s) at another point at so + 1, [ > 0, by first writing z; =1 — 23
where |z1| << 1, inserting 21 = | — 22 to the series expression of f(s), and then

considering the result when |22| << 1. The function

fi(21) = f(z1 + 80) — =2 (8)

21

has the Taylor series at 23 = — 25 where |21| << 1 as

(e}

Al =2) = eml—2)"

m=0 =0
= ZZ ck+,z2 Zbkz;
k=0 i=0
Thus
= (k+i)!
b =Z( i!k!) U'(=1)"cpyi
=0
As
1 d*
o = g g1 Oleamo

we can express

> k
<Z_:ll dzz) 7 1)k%f1(8)|Z1=o. )

If there is no pole of f(s) at so + [, the function

l - 22 Z bkz2



is analytic and defined by its Taylor series as powers of zo where the series con-

verges.
The pole of f(s) at ¢_1 can be evaluated as a Taylor series of z2 at so + [ as

c_1 c_1 1 Co1 = [22\F
l—zngl—zgllzT;J(T) ’

We can subtract a set of first-order poles of f(s) in points s; € A and define

(10)

where r; = c_; ; and express

s—sp=1(5—80)—(sj—80)=21—8j+s0=1—2—(s; — s0)-

At the point sg + [ the set of poles is

Ty Ty T;j
= _— = 11
Zs— j ;l—zz—(s—so) mzl—aja: (11)

s
jeA J jeA

where a; = s; — sg and z = ([ — 23)~ L.
j = 8j

Let us consider

k1
ORD D 10 (12)
k=1
fls) == 3 ().
j=1

Let I >> 1. The Taylor series of the set of poles points s at sg in powers of 27 is

o0 k1
-5 (St - )
=0

k=1



and the Taylor series at sg + ! in powers of zo =1 — z; is

(e k1
5 (S st-a)
i=0 \k=1

For each k the coefficient of the ith power of z; at sg is ¢; = r (s — 89) ~* 1

while the coefficient of z5 at sg + 1 is
bi=rr(so+1—sk) =Rl (i 1) (sk — s0)l T4

The absolute value of the coefficient b; of the Taylor series in powers of z2 at sg+1

decreases as
k1
1D el
k=1
as a function of [ >> 1.

The part fi(s) of f(s) satisfies

Jmax Jmax

|fi(s+0)|=|— Z ln(pj)pj_s_l — |— Z ln(pj)pj—sefllnpj

j=1 j=1

Jmax

< Je 2 1= " n(p))p;*| = e 12 fi(s)- (13)
j=1

The absolute value of the coefficient b; of the Taylor series in powers of 23 at sg+1
decreases as

|b,| S eflln2|ci|‘

This is negative exponential decrease and much faster than the hyperbolic decrease

for the set of poles.

When [ — 00, the hyperbolic contribution from the poles must vanish: every
nonzero coefficient of the Taylor series of f(s) at (I,0) when I — oo must decrease
as a negative exponential e~!"(2)_ This negative exponential of [ decreases faster

than any negative power of /. For each power i of x, the coefficient in the power



series of x coming from the sum of the poles must go to zero at least as O(x)
leaving the negatively exponentially decreasing coefficient from f;(s) in (12) to

dominate.

The sum of the poles decreases as O(z), z = [, and goes to zero when z — 0
assuming that the x-coordinate of every pole of f(s) is smaller or equal to one,
but the required convergence that each coefficient of the power series of x must
go separately to zero at least as O(x) is a stronger condition. The requirement
that the coefficient of a power i of x the sum of poles decreases at least as O(x)
means that that the poles of f(s) partially cancel each others when [ grows. Poles
cannot completely cancel: a pole at s, with r = 7, can be completely cancelled
only by a pole at s with » = —r. The sum of poles has the poles of its terms, but
at [ >> 1 there can be partial cancellation so that the Taylor series coefficients

decrease sufficiently fast as a function of [.

Let jmax — oo in (13). Then f(s) = hi(s). If Re{s} =1 >> 1, the sum (13)
taken to infinity converges absolutely. The inequality (13) holds when jpax — o0
and the absolute values of the coefficients of the Taylor series at sg + [ for the
function hj(s) must decrease in negative exponential manner as a function of !
when [ — oco. It follows that every h;(s) = hi(js) also has the same negatively
exponential dependence of the coefficients of the Taylor series at (I,0) on ! when
[ >> 1. Consequently the sum of the poles of the functions h;(s) = h;(js) has
same negatively exponential dependence for coefficients at (I,0) on [ when [ >> 1.

Therefore the sum of the poles of the function

must satisfy the requirement that the coefficient of each power of z decreases at

least as O(z) when [ grows to infinity.
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We did not continue h;(s) to the area Re{s} < 0 in Lemma 1, but the function

f(s) is analytically continued to Re{s} <0 by

d

f(s) = 5. InC(s)

to all points where ((s) # 0 and we can find all poles of f(s).
The function f(s) has the following poles in Re{s} > 0:
(i) There is a pole with r = —1 at s = 1.

(ii) There is a set A of pole pairs h;(s) at s; and s; where s; has a nonzero
imaginary part, and the r-value rj is positive. All we know of s is that 0 <

Re{si} < 1, and that that there exist poles s; with the real part ;.
(iii) There may be a set Ay of poles sg.1 of hi(s) with ri1 a positive integer
and the pole sy is real, 0 < s < 1. No such pole is known.

Inserting s = 8o + 1, so = 0, z = [ ! to the expression of a pole (4) on the

x-axis gives (ignoring the analytic function part in (4))

Tk Tk

s—s, l—agz’

Here ay, is a real number. A pole pair in the positive and negative y-axis can be

written as
Tk ITE

s—sp 1 —(1+iag)arx

ro T
s—sp  1—(1—iag)are

Here x = (I — z2)~! > 0 is a real number and small if [ is large, ar = Re{s;} and
ay, is chosen positive. We will always take sg as 0. The number [ is the distance
from so = 0 to the observation point on the x-axis, (I,0), where the Taylor series
with 2z is evaluated and |z2| << 1. As z, is the variable of the Taylor series at
(1,0), the expressions are valid for any small zo and we select 22 = 0 for easier

notations. Thus, z = [~1. The pole (i) at s = 1 gives the power series of z where
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ar=1landr=—1

ar_ —w o~ m
1—(agz) 11—z mn;m.

The zeros of ((s) in the area Re{s} < 0 are the so called trivial zeros at even

negative integers. They come from the formula

where B,, = 0 if m > 1 is odd. Zeta does not have a zero at s = 0. From the

functional equation

C(s) = 2°7°Lsin(2 1 ws) (1 — 5)¢(1 — ) (14)

we can deduce that the trivial zeros are zeros of sin(27'7ws) and therefore first-
order zeros. Thus, at a point s = —2k, k > 0 integer, the function f(s) has a

first-order pole with the r-value 1.

A pole at s, = =2k, k> 0, is

Tk 1

s—sr s+2k°

We can evaluate the Taylor series of z; at s and the Taylor series of zo at sq +1

for any such pole and for a finite sum of such poles:

1 1 & , .
— —1)¢ 9 —1_i
so + 21 + 2k so + 2k ;( ) (SO + k)) 1

1 1 S —1 3
80+l—22+2k_80+l+2k§(80+l+2k)) 2o

but if sum the index k goes to infinity, the series diverges at every finite point
so + 1. We will evaluate the sum of these poles at s9 = 0, conclude that the
contribution is negative, and present a way to move a finite but growing sum of

these poles to (I,0).
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First we find out the sign of the infinity of the sum of the poles sy = —2k at
so = 0 and z; = 0. Notice that for a point s; = —k the pole at that point, with
the r-value r, when evaluated to a Taylor series at so = 0 and z; =0 is

r r
s—s; k

This is the inverse of a pole with the same r but with s; = k when evaluated to a
Taylor series at so = 0 and 2; = 0. As an example, s; = 1 is the pole at s = 1 with
r = —1. When evaluated at so = z; = 0 it is the inverse of a pole with r = —1
but s = —1. Thus, the pole at s = —2k with » =1 > 0 is the same at so = 0 as
a a pole at s = 2k with »r = —1 < 0. We see that any sum of the poles sy = —2k

gives a negative infinity when evaluated at so = 0.

The type of infinity of the sum of all poles s = —2k at so = 0 can be calculated.

Using the facts that ((s) has a simple pole at s =1

C(s) = == +9(s)

where g(s) is analytic at s = 1 and that lims_,1 (s — 1){(s) = 1, so a = 1, we can

write

This result gives

k=1 k=1
Thus, the sum of the poles at sy = —2k appears as a simple pole when evaluated
at so = 0. The pole has a negative r-value with r = —1 at sg = 0. However, it is

not a simple pole. A simple pole with r = —1/2 is

lim (—=1/2)1/(s — so).

8§—80
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It is moved to sg + I by writing

lim (—1/2)1/(s =1 — s0) = (=1/2)/l = —z/2

8§—80

where = [~'. This pole is finite for every [ > 0, but the sum of the poles s, = —2k
is infinite at every finite I. This is so because the infinity lims_,4,(—1/2)/(s — s0)
is not caused by the pole being physically at sg, the infinity comes from the sum
of the numbers 1/(l + 2k).

If we subtract all poles sy = —2k from f(s), then fi(s) is infinite at every
point. Because of this reason all poles s; = —2k cannot be moved to (/,0) at the
same time. We can only move at a given [ > 0 such a subset of poles (like a finite
set) that the sum gives a finite number when moved to (I,0). All poles have to be
moved at some point as the sum of all poles of f(s) should be zero at I — co. Thus,
we must move more poles when [ grows until all poles are moved when [ — oo. The
choice of which subsums of poles are moved for each I cannot influence the result.
We will make a convenient choice for these sums: let us choose a suitable growing
function N(I) and move the subsum of poles s, = —2k satisfying & < N(I). A
finite sum up to N(I) can be moved to sg + I, and when N () increases with [, all
poles —2k are included in the finite sum when k < N(I). The tail of the infinite
sum that is outside the finite sum up to N(I) goes to zero when [ — co.

Thus, we take a finite sum
[ND)]

> o
2k
k=1
As it is a finite sum, it can be moved to (/,0) without creating an infinity. If
N(1) is sufficiently large and fixed, and I = 0, the moved sum is —z/2 — €(l). The
number €(I) depends only on N(I) and we can select a function N(I) such that
€ < min{ey, e~} where €y > 0 is small. Then €(I) decreases with [ faster than any
power of = [~!. The number N(I) increases when I grows, and therefore the

absolute value of the sum grows with . It gives a function —zC(l) — €(l). This

function cannot have any higher powers of z, only the first power, because every
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power of z can be continued to s¢ and there would be the power of = also at s,
but at sq the function is —2/2 when N(0) — oo. In the limit 2 — 0 the function
2C'(l) must be of the order O(x) because all other poles give contributions of O(x)
and the sum of all poles must vanish when | — co. Since C'(l) > 1/2 is a growing
function and limited from above, the function —zC'(l) — € must converge to —zC,
where C' > 1/2 is a finite real number. The number e goes to zero, as it decreases
faster than any power of z. The number C will be determined later in this proof.

The poles (iii) of A; sum to a series of the type >~ cmz™ where every
¢m is nonnegative. Since all of these poles are in the area 0 < s < 1 and they
are isolated and therefore do not have a concentration point at s = 1, the power
series of £ coming from these poles cannot be of the type b(z + 22 + 22 - - ), which
is the type of the power series of the pole at s = 1. It follows that the poles of A;
cannot be cancelled the pole at s = 1 giving the contribution —z /(1 — z). Adding
the contribution —zC from the the sum of poles —2k does not help to cancel any
poles of A;. The poles of (ii) yield a power series of z where the coefficient of
every x' is nonnegative. They cannot cancel poles of A;. Thus, the poles of 4;
cannot be cancelled by any set of other poles in the limit [ — oo. Therefore the

set A1 must be empty.

The pole pairs in A can be cancelled by the poles in s = 1 and in —2k, as will
be seen later. The coefficient of the power one of = can be cancelled by sum of the
corresponding coefficient —1 of the pole at s = 1 and the coefficient —C coming
from the poles in Re{s;} < 0. Higher than power one coefficients of z coming
from a sum of pole pairs in A can be cancelled only by the pole at s = 1 since

—xC does not have higher powers of .

The two poles (ii) of a pole pair have a real sum:

T TrE 2(1 — apx)

1 —ap(l +iog)x Tz ap(l —iag)r L. 2apz + (1 + o3 )(arz)?
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We expand the sum S of the poles of a pole pair omitting the multiplier zr for
simplicity in this calculation up to (16):
2(1 — axx) 2 — 2axx 1

= =
1 =20z + og(apz)? 14 aj(arz)? 1 - 205z, "

where v, = 1 + o (arz)?.

2 — 2437 C1né
= — Z(Qakx% )e.
Tk i—o

Writing B, = (2ax)%y, © ' we get
S=2) i’ —2ar Y Bria Tt = 2Bzt —2ax Y Pri1a’
i=0 =0 i=0 i=1

o0
=280+ Y _(2Bki — 2aBr,i-1)a’.

=1
Fori >0
2a i—1 B
28; — 2aBri-1 = 2%(2%% L —ay)
Tk
(Qak)i
= S (2 =) = Br,i(2 — )
%

This gives an equation for every ¢ > 0

2B; — 2aBr,i—1 = 2Bk, — Vi Br,i-

Inserting v = 1 + (agagz) yields for ¢ > 0

201 Bri—1 = VkBr,i = Br,i + 2 (akar)?Bri-

For every k when [ >> 1 and thus for 0 < z =1~! << 1 and i > 0 holds

2aBri—1 = WkBk,i = Br,i + O(z?).
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The coefficient of the the power z?, i > 0, is
2Bk,i — 2akBr,i—1 = Bri + O(z?). (16)

The coefficient of the power of zi+! in the power series —z/(1 — ) of the pole
in s = 1is —1 for every i > 0. The coefficient of zi*! in the power series of the
sum of poles (ii) is

Z Tk(2Bk,: — 20xBr,i—1)

k€A
where we have included the multiplier zry that was so far omitted. Summing the
powers of 4 from ¢ = 2 to 4 = 4; + 1 and inserting (16) gives the equation where
the coefficients of the pole pairs (ii) must cancel the coefficients of the pole (i) to

the degree of O(z?):

i1+1 i1+1
i1==Y (1))=Y riBri+0(*). (17)
i—2 i=2 keA

For each k, when z — 0 and ¢ > 0, holds

Br,i = 2axPr,i-1- (18)

If every a; = } the recursion equation (18) gives By ;41 = B,; for every k. For
every k the power series of z for i > 1 is of the form zfB;(z + 2% + 23 + - - ).
This is the same form as the power series —z(z + 2% + 2% + - - -) for the pole s = 1
for i > 1. The power series for the poles k for i > 1 add to one power series of
the type zb(z + 22 + 2 + - --). We see that if every a; = %, the sum of poles (ii)
cancels all powers ¢ > 1 in the pole in s = 1 when z — 0 and the coefficient of
each power ¢ > 1 of x converges to the negative of the coefficient of the power i

of z in the power series for the pole in s = 1 as O(z?).

Assume that one ay, is not 3. The functional equation (14) shows that if there

exists a zero so = xg + iyo of {(s) with 0 < 9 < § then there exists a zero of ((s)



17

at a symmetric point in % < z < 1. This implies that we can find sg such that

2ay > 1. The form of (18) for a nonzero z, i > 0, is
Bri = 2axfr,i—1 + O(z?). (19)

For ay: the recursion (19) gives B ; = Birr,1(2ax )t +O(x?) From (17) we get (20):

11+1
in= 3 S rkBri+0(®) > B (2ax) + O(a?). (20)
i=2 k€A
The right side in (20) grows as Bi.1(2ax )" as a function of i; while the left side

is linear in 4;. This is a contradiction. Thus, every a; must be %

By (20) each aj, = 3. Inserting aj, = 27" to (21) gives

Bi=y r(l+2 % (ap)®) " (22)

keA

The recursion equation for Bi ; is Br,i = (2ar/Vk)Bk,i—1- As 2a; = 1 and since
vk > 1, this implies that B ;1 > B, for all i > 0. Recursion (18) for ay = 1
shows that for every ¢ > 0 the value 8 ; is the same when z — 0. Since vy, — 1
when z — 0, §; is the same for every ¢ > 0. Equation (20) implies that 8; = 1
for every 4 > 0. In the limit 2 — 0 holds 8,0 = Bi,1- Therefore also 3; = 1 when
z — 0.

The claim of Theorem 1, i.e., that each a; = % for s € A and A; is empty,
is already proven. The reason for this result is that since the poles of f(s) at
Re{s} <0 give —zC, all powers i > 1 of z in the series —z/(1 — z) for the pole at
s = 1 have to be cancelled by the poles of A and A;. This series to be cancelled

3 —z* —.... No sum of poles in A; can give

by the poles of A and A4, is —z? — x
this series because each pole in A; is smaller than one and larger than zero. A
pole pair sy, s; in A gives this series if and only if Re{s;} = % If even one s has
the real part not at %, (20) gives a contradiction. Thus, all poles of A have the

real part as one half.
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Let us still check if the solution is possible. We check if all

Bi = Z Tkﬂk,z’ (21)

keA

can have the value 1 as the solution gives, and if all coefficients of the power series

of x can go to zero at least as O(z) when | — oo.

Because z — 0, the values of ay, in (22) must grow to infinity with k. The set
A is necessarily infinite. We renumber the poles of (ii) so that (ay) is a growing
sequence and the sum k € A is the sum k£ = 1 to infinity. Since ar = % by (20)

we can evaluate

2B, — 2akPr,i—1 = Br,i(2 — )

and get

Br,i = Br,i—1 (1 _ _(O5apa)’ ) )

1+ (0.5akx)?
Let [ >> 1 be fixed. If ay >> [ = 271, then

(0.5a)?2
1+ (0.5apx)?

is close to one and B ; is close to zero. This means that large values of a;, con-

tribute very little to the Taylor series at so +!. The sum in (22) can be finite and
there is no reason why it could not be one as the solution gives.

The contribution from the poles at s = —2k is —xC, from the pole at s =1
it is —z/(1 — z), from the poles of A; it is 0, and the contribution of the pole
pairs of A is approaching the series z(2 + z + 2% + 2% +- - ) when = — 0 as O(2?)
separately for the coefficient of each power i of 2. The sum of these contributions

when | — o0 is
—Cw—%+0+x(2+m+w2+m3+---):(—3/2+2,80);c:(I—C)a:. (24)

The sum (24) must be zero. This is possible when C' = 1.
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The convergence of the coefficients of the powers of z to zero in (24) when
x grows is O(x?) for the coefficient of each power i > 1 of z¢ separately, which
fulfills the convergence criterion.

For the power one of z we only get the result that the convergence as at
least O(z) is possible. The term 3y converges to 31 as O(z?) since every B ; =
Bk,i—1 + O(x?). Each 3; converges to 1 as O(z?). The contribution from the poles
at —2k is —zC(1) — €(I) where 0 < €(I) < e ! goes to zero very fast. The sum
—zC(l) — €(l) — x 4+ 2By can go to zero at least as fast as O(z) as the solution

requires. The solution is possible. o

All known facts of the Riemann zeta function that are used in this proof can
be found in [1]. The history and background of the Riemann Hypothesis are well
described in the book [2]. As the problem is still open, recently published results
do not add so much to the topic. As they are not needed in this proof, they are

not referred to.
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