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Abstract. The paper proves the Riemann Hypothesis. In Lemma 1 the
logarithmic derivative % In {(s) of the Riemann zeta function is expanded
as f(s) = 277 hj(s) where h;(s) = hi(js). All h;(s) are continued an-
alytically to Re{s} > 0 by an inductive procedure. The proof of this in-
troductory lemma explains the connection between the zeros of zeta and
poles of f(s). The proof of Lemma 2 shows that every nonzero coeflicient
in the Taylor series of the sum of the poles of f(s) = Z]oil h;(s) at (1,0)
must decrease at least as O(x) as a function of z = I~! in order for every
nonzero coefficient of the Taylor series of f(s) to decrease at least as fast
as a negative exponential as a function of x when I — co. The proof of
Lemma 2 shows that this happens if and only if every zero sx of zeta in
0 < Re{s} < 0 fulfills Re{s;} = 1. If every Re{siy} = 3, then the con-
tributions of poles corresponding to the trivial zeros of zeta in Re{s} < 0
and to the pole of zeta at s = 1 cancel the pole pairs coming from the
zeros of zeta in 0 < Re{s} < 1 for every power ¢ > 1 of z. Cancellation of

the coefficient of the power ¢ = 1 of x requires special attention.
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1 Definitions

The Riemann zeta function is defined by



where s is a complex number. The zeta function can be continued analytically to
the whole complex plane except for s = 1 where the function has a simple pole.
The zeta function has trivial zeros at even negative integers. It does not have
zeros in Re{s} > 1. The nontrivial zeros lie in the strip 0 < z < 1, see e.g. [1].

The Riemann Hypothesis claims that nontrivial zeros have Re{s} = . Let

P ={p1,ps,...|p; is a prime, pj;1 > p; > 1,5 > 1}

be the set of all primes (larger than one). Let s = z + iy, ,y € R and = > 1.

The Riemann zeta function can be expressed as

oo

() =[Ta-»7, (2)

=1

This infinite product converges absolutely if Re{s} > 1.

2 Lemmas and the theorem

Lemma 1. The functions

o0

hi(s) == In(p;)p;”° , j>0 (3)

Jj=1
are related by h;j(s) = hi1(js). The functions h;(s) have analytic continuations to
Re{s} > 0 with the exception of isolated first-order poles. The poles of h;(s) that
are not on the x-axis appear in pole pairs: close to sy, where Im{s,} > 0, h;(s)

is of the type
r

hi(s) = + f1(s) (4)

S — S

and close to sy, where s}, is a complex conjugate of s, hj(s) is of the type

hi(s) = —— + fo(s)

) S,



The functions fi(s) and f2(s) are analytic close to sy and s, respectively. If the

pole is at the x-axis, there is only one pole of the type (4) with Im{sy} = 0.

Proof. The claim
hj(s) = hi(js) (5)
follows directly from (3).

The function hq(s) converges absolutely if Re{s} > 1 because
o
2.7’
j=1

converges absolutely for Re{s} > 1 and |Inp;| < |p§| for any fixed a > 0 if j is

sufficiently large. Therefore

|In(p;)p;°| < 2|pj°+|

for any fixed a@ > 0 if j is sufficiently large. Therefore, by (5), h;(s) converges

absolutely if Re{s} > .
From (2) follows

)™ = ¢ = Y hy(s)

Jj=1

The derivative {'(s) is analytic in all points except for s = 1. The function hq(s)

is continued analytically to Re{s} > % by
hi(s) = ¢(s)7'¢"(s) = g(s) (6)

where

g(s) = D _ hy(s).

oo
Jj=2



The function ((s)~! is analytic except for at points where ((s) has a zero or a
pole. The function g(s) is analytic for Re{s} > % because each h;(s), j > 1,
is analytic in Re{s} > % Thus, the right side of (6) is defined and analytic for
3 < Re{s} except for at points where ((s) has a zero or a pole. At those isolated

points hy(s) has a pole.

At a pole sg of ((s) the zeta function has the expansion

C
¢(s) = ) + higher order terms.
— Sk

If Re{s} > 1 the function hy(s) is of the form

r

hi(s) = ¢'(s)¢(s) ™" — g(s) = + f1(s)

S — S

where f1(s) is analytic close to sy and » = —k < 0 is an integer. The function

¢(s) has only one pole, at s, =1 = (1,0), and it is a simple pole, thus r = —1.

At a zero sy of ((s) the zeta function has the expansion

¢(s) = C(s — sx)* + higher order terms.

If Re{s} > } the function

r

hi(s) = ¢'(s)¢(s) ™" — g(s) = + f1(s)

S — S

where f1(s) is analytic close to s and r = k > 0 is an integer. It is known that
¢(s) has many zeros with Re{s;} =1/2.

Thus, hy(s) has only first-order poles for Re{s} > } and therefore h;(s) has
only first-order poles for Re{s} > % At every pole of hy(s) in Re{s} > ; the
value of r is an integer.

As hy(s) is continued to Re{s} > % by (6), the equation (5) continues h;(s)

to Re{s} > % Then (6) continues hy(s) to Re{s} > ;. The function hy(s) has



isolated poles at Re{s} > 1. Each pole is a first-order pole, but the value of r at
a pole does not need to be an integer.
We can repeat the procedure inductively: If hy(s) is continued to Re{s} > 5

1
2ij°

by (6), the equation (5) continues h;(s) to Re{s} > Then (6) continues h(s)
to Re{s} > 5&+. By induction, all h;(s) are analytically continued to Re{s} > 0.
In this inductive process hi(s) gets isolated first-order poles. In these poles sy

the values r = r, can be positive or negative, and they do not need to be integers.

If hi(s) has a pole

m(s) = ;= + Ais)

1

(here fi(s) is analytic close to si), then hj;(s) = hi(js) has a pole at j~'s; and

the r value is j~1r since

. g ir .
hj(s) = hi(js) = s—jlsp + fi(js)-

The function hy(s) is symmetric with respect to the real axis. By (4) h;(s),
j > 1, is also symmetric with respect to the real axis. Therefore poles of each
h;(s), j > 0, appear as pairs s; and s}. In the special case where s, is real there

is only one pole, not a pair. o

Lemma 2. All poles sy, of 372 hj(s) in Re}s} > 0 satisfy Re{s;} = 5 or

Sk:1.

Proof. Let us consider a function f(s) that has a first-order pole at sg and write
z1 = s—8g- The function f(s) does not have a Taylor series at sq, but the function

21 f(21 + s0) has a Taylor series at 23 = 0 and f(s) can be expressed as
c
- § : ) 7
f(s) 7 P Ck21 (M)

Let us evaluate f(s) at another point at so + 1, [ > 0, by first writing z; =1 — 23

where |z1| << 1, inserting 23 = | — 22 to the series expression of f(s), and then



considering the result when |22| << 1. The function

fi(z1) = f(z1 + s0) — =

21

has the Taylor series at 23 = — 25 where |z1| << 1 as
(o]

fl(l - 22) = Z Cm(l - Zz)m

m=0

o m
m—i
=X gt e

m=0 i=0
o0 oo
k k
SR cuvirh = 3 heek
k=0 i=0 k=0
Thus
oo
k
Z z'k' )" Chi-
i=0
As
1dr

we can express

v4

l
If there is no pole of f(s) at sg + [, the function

l - 22 z bk22

k
) 1)’“j—ff1(8)|21=o-

is analytic and defined by its Taylor series as powers of zo where the series con-

verges. The pole of f(s) at ¢c_1 can be evaluated as a Taylor series of 2y at so +1

as

C_1 _C_1 1 _C_1 > z9 k
l—ZQ_Tl—Zzlfl_TZ<T)

k=0



We can subtract a set of first-order poles of f(s) in points s; € A and define

r
filz) = fls) =Y (11)
€ S — Sj
jEA
where 7; = c_1 ; and express
s—sp=1(5s—80)—(sj—80)=21—8j+s0=1—2—(s; — s0)-
At the point sg + [ the set of poles is
' 12
e (12

> = =ed
= — 4 =1
§—5; jeAl—zg—(s—so) jeAl_

JEA

where p; = s; — 5o and = (I — 22)™*. Let us select so = 0 for easier notations.

Thus, p; = Re{s;} is the x-coordinate of the pole s;. Let us consider

F5)=3 4 fi(s) (13)

— S — Sk

Jmax

fi(s) == In(p;)p; .

=1
Let I >> 1. The Taylor series of the set of poles points s at sg in powers of 27 is
oo k1
-5 (S
i=0 \k=1
and the Taylor series at sg + [ in powers of zo =1 — z; is
oo

k1
Z (Zrk(so +1— sk)il) 23

=0 =



For each k the coefficient of the ith power of z; at sq is ¢; = 71 (s — s0) "¢~ ! while

the coefficient of 2 at sg +1 is
pi = Tk(SO +1 - Sk)7i71 = T'kliiil + Tk(i + 1)(Sk - 80)171’72 +---

The absolute value of the coefficient p; of the Taylor series in powers of 22 at so+1

decreases as
k1
DL
k=1
as a function of | >> 1. The part fi1(s) of f(s) satisfies

Jmax Jmax

lfi(s+0)] = |- Z ln(p]-)pj*sfl - |_ Z 1n(pj)pj—se41npj
j:l j:l

Jmax

S |e—l1n2| _ Zln(pj)p;s — €_l1n2|f1(8)|. (13)
j=1

The absolute value of the coefficient p; of the Taylor series in powers of 25 at so+1
decreases as

|pi| S e—l1n2|ci|.

This is negative exponential decrease and much faster than the hyperbolic decrease

for the set of poles.

When | — oo, the contribution from the poles must totally vanish: every
nonzero coefficient of the Taylor series of f(s) at (I,0) when I — oo must decrease
as a negative exponential of z = [~!. The exponent of z grows faster than any
power of z, thus the negative exponent of z decreases faster than any negative
power of z. For each power of z the coefficient in the power series of the sum
of the poles as a function of z must vanish. The coefficient of the power of z
from the sum of the poles must go to zero at least as O(x) leaving the negatively

exponentially decreasing coefficient from f;(s) in (11) to dominate.



The sum of the poles clearly decreases as O(z), z = [~1, and goes to zero
when z — 0 when the x-coordinate of every pole of f(s) is smaller or equal to
one, but this kind of convergence to zero is not a sufficient condition for the
contribution of the poles to vanish and to leave the contribution of the negative
exponential behaviour of fi(s) to dominate at the limit I — oo. The condition
that the coefficient of a power i of x the sum of poles decreases at least as O(s)
means that that the poles of f(s) partially cancel. Poles cannot completely cancel:
a pole at s, with r = 7, can be completely cancelled only by a pole at s, with
r = —rg. The sum of poles has all poles of its terms, but at [ >> 1 there can be
partial cancellation so that the Taylor series coefficients decrease fast as a function
of [. This kind of cancellation means that the powers of x separately go to zero.
It is a much stronger condition than that the sum of the poles goes to zero when

z — 0.

Let us k1 — oo in (13). Then f(s) = hi(s). If Re{s} =1 >> 1, we are far
away of the pole at s = 1 and the sum in h;(s), where k; is replaced by infinity,
converges absolutely. The absolute values of the Taylor series at sq + I for the
function h;(s) must decrease in negative exponential manner as a function of .
The function h;(s) has the behaviour of the sum of negatively exponential terms
when [ is very large. It follows that every h;(s) = hi(js) also has the behaviour
of the sum of negatively exponential terms when [ is very large. Consequently the
sum of the poles of every h;(s) = hi(js) also has the behaviour of the sum of
negatively exponential terms when [ is very large. Therefore the sum of the poles

of
£(6) = -1 c(s) = 3 Ay (o)

=1
must vanish in the limit I — co. We did not continue h;(s) to the area Re{s} <0

in Lemma 1, but the function f(s) is analytically continued to Re{s} < 0 by

d

f(s) = 5. InC(s)
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to all points where ((s) # 0 and we can find all poles of f(s).

The function f(s) has the following poles in Re{s} > 0:

(i) There is one pole with r = —1 at s = 1.

(ii) There is a set A of pole pairs of hi(s) at s; and s}, where s, has a nonzero
imaginary part, and the r-value ry, is positive. All we know of sj, is that the real
part of s, is larger than zero and smaller than one, and that that there are poles
sk with the real part 3.

(ili) There may be a set A; of poles sy 1 of hi(s) with r4; a positive integer
and the pole s is real, 0 < s < 1. No such pole is known.

The zeros of ((s) in the area Re{s} < 0 are the so called trivial zeros at even

negative integers. They come from the formula

where B,, = 0 if m > 1 is odd. Zeta does not have a zero at s = 0. From the

functional equation

C(s) = 2°7* Lsin(2 tws) (1 — s)¢(1 — 5) (14)

we can deduce that the trivial zeros are zeros of sin(2~!7s) and therefore first-
order zeros. Thus, at a point s = —2k, k > 0, the function f(s) has a first-order
pole with the r-value 1.

Using the expression (12) instead of (4) for a pole or a pole pair (i.e., s = so+1,

so =0,z =1"1) gives
Tk ITE

S — Sk - 1—prx
as a pole on the x-axis. We do not include the analytic function part in (4) but

take only the pole at s;. A pole pair in the positive and negative y-axis can be

written as
Tk _ ITk
s—s, 1 —(1+iag)pex
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r ITE

s—st  1—(1—iap)pez’

Here z = (I — 22) ™! > 0 is a small real number if [ is large, pr = Re{s;} and ay is
chosen positive. The number [ is the distance from sy = 0 to the observation point
on the x-axis, (I,0), where the Taylor series with 2z is evaluated and |z2| << 1.
As 7 is the variable of the Taylor series at (I,0), the expressions are valid for any

small z, and we select 2o = 0 for easier notations. Thus, z = 1~L.

The pole (i) at s = 1 gives the power series of x where p, =1 and r = —1

o0
xr -z m
= = —Z xr .
I R i

A pole at s, = =2k, k> 0, is

Tk 1

s—sp s+2k

We can evaluate the Taylor series of 27 at sg and the Taylor series of 25 at sg +1

for any such pole and for a finite sum of such poles:

1 _ 1
80+Z1+2k_$0+2k

(D)0 +20) 4

1 1
So+l—20+2k  so+1+2k

Z(so +1+2k)) L2
=0

but if sum the index k goes to infinity, the series diverges at every finite point so+1.
We will evaluate the sum of these poles at sg = 0, conclude that the contribution
is negative, look what happens if the sum of all these poles is evaluated at so + [
when [ — oo, and finally present a way to move a finite but growing sum of these

poles to so +I.

First we find out the sign of the infinity of the sum of the poles s = —2k at

so = 0 and z; = 0. Notice that for a point s; = —k the pole at that point, with
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the r-value r, when evaluated to a Taylor series at so = 0 and z; =0 is

r r
s—s; k

This is the inverse of a pole with the same r but with s; = k when evaluated to a
Taylor series at so = 0 and z; = 0. As an example, s; = 1is the pole at s = 1 with
r = —1. When evaluated at so = z; = 0 it is the inverse of a pole with r = —1
but s = —1. Thus, the pole at s, = —2k with » = 1 > 0 is the same at sg = 0 as
a a pole at s, = 2k with r = —1 < 0. We see that the sum of all poles s;, = —2k

gives a negative infinity when evaluated at so = 0.

The type of infinity of the sum of the poles s = —2k at so = 0 can be calculated.

Using the facts that ((s) has a simple pole at s =1

where g(s) is analytic at s = 1 and that lim,_,1(s — 1){(s) =1, so a = 1, we can

write

1 —1)f(1 1 1
+ (s = Df) = lim = lim —

s—1 s—1 s—1s—1 s—0 8§

This result gives

21 1 X1 1 11
D 55 =32 = gt =lim oo,

k=1 k=1
Thus, the sum of the poles at s, = —2k appears as a simple pole when evaluated
at sop = 0. The pole has a negative r-value with »r = —1 at sp = 0. However, it

is not a simple pole. A simple pole with » = —1/2 lim,_,,,(—1/2)1/(s — s¢) is

moved to so + ! by writing

lim (=1/2)1/(s =1 —sg) = (-1/2)/l = —x/2

8§—80

where 2 = [~1. Then the pole is finite for every I > 0, but the sum of the poles s; =

—2k is infinite at every finite [. This is because the infinity lims_, s, (=1/2)/(s—s0)
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is not caused by the pole being physically at sg, the infinity comes from the sum

of the poles. Therefore the infinity stays for every [ > 0.

Let us calculate the contribution from all poles s, = —2k, k > 1 at sg + [:

I
HMZ
g;
l\DI»—A

L
2N

ZI*

A sum converges to an integral as

Jim —ka/N / Iy

Assuming that ¢ = N/l is constant, the limit S; is

1 (Y dy 1
== [ —% gy =-1In(1+20).
% 2/0 yt Lot =gl +2)

The contribution from these poles at so + ! must be finite so that the the con-
tribution of the sum of all poles vanish. Especially, the contribution must tend
to zero as O(z) when z — 0 since the contributions from other poles have this
behaviour. This implies that |2¢| must be smaller than 1. Then we can expand

In(1 + 2¢) into a series:
o

Sy = Z(-1)J’2J’*1%CJ’.

43 4
=c—c — ;¢ +2c" —---
3

The condition |2¢| < 1 implies that ! must go to infinity faster than N. Let us
select a, 1 > a > 0, and set N = [®. Then ¢ = [%~! is small for large I and the

contribution of the poles s, = =2k at so +1=1,1 — 0, is
4
—z% + 2% — §x3°‘ + 2% 4 ...

We notice that this contribution is an alternating series of noninteger powers of z.

It is not of the correct form for it to cancel the coefficients of a power series of x
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created by other poles. Additionally, the power a depends on the relation chosen

(without any justification) between N and [. We see that this way is not correct.

There is another problem in adding all poles s = —2k. The discussion of
Taylor functions in the beginning of the proof of Lemma 2 only considered sums
of simple poles that can be moved to sg +1 and are finite when moved. It did not
investigate moving a pole of the type created by all poles s;; = —2k. This sum
is infinite for every finite [. If we subtract all these poles from f(s), then fi(s)is

infinite at every point, which would invalidate the method.

This is why only a finite sum of these poles can be subtraced at any given [ and
when [ grows, we can subtract more poles until all are subtracted when [ — oo.
The choice of which sums of poles are subtracted for each I cannot influence the
result. We will make a convenient choice for these sums. We take a sum of poles
sk = —2k up to k = N(I) and choose a suitable growing function as N (). A finite
sum up to N(I) can be moved to sg + ! and when N(I) increases with [, all poles
—2k are included in the finite sum when k < N(I). The tail of the infinite sum

that is not in the finite sum up to N(I) goes to zero when [ — cc.

Thus, we take a finite sum
N()

3 o

Pt 2k

As it is a finite sum, it can be moved without creating an infinity. If N(I) is
sufficiently large and fixed, and [ = 0, the sum moves as —z/2 — ¢(l). The number
€(1) depends only on N(I) and we can select a function N () such that € < e, i.e.,
€(1) decreases with [ faster than ay power of = [~!. The number N(I) increases
when [ grows, and then the absolute value of the sum grows with [. It gives a
function —xC(l) — €(l). The effect of the sum of all poles must vanish at I — oo.
In the limit £ — 0 the function xC(l) must be of the order O(x) because all
other poles give contributions of O(z), and as C(I) > 1/2 is a growing function,
the function —zC(l) — e must converge to —xC, where C > 1/2 is a finite real

number. The number € goes to zero, as it decreases faster than any power of z. We
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have managed to move the poles —2k to sg + . The number C' will be determined

later in this proof.

The poles (iii) of A; sum to a series £ °_, cmz™ where every ¢, is nonneg-
ative and c¢;41 # ¢; in the limit when z — 0 because all of these poles are in the
area 0 < s < 1 and they are isolated and therefore do not have a concentration
point at s = 1. It follows that they cannot be cancelled when £ — 0 by the the
sum of poles in Re{s} < 0 giving the contribution —zC) and the pole at s = 1
giving the contribution —z /(1 — z). Therefore the poles (iii) could only be can-
celled by a set of poles of the type (ii), but the poles of (ii) also yield a power
series of  where the coefficient of every z* is nonnegative. Thus, the poles of A;
cannot be cancelled in | — oo by any set of other poles and therefore the set A

must be empty.

For a sum of pole pairs in (ii) the coefficient of the power one of z can be
cancelled by sum of the corresponding coefficient —1 of the pole at s = 1 and
the coefficient —C' coming from the poles in Re{s;} < 0. Only the pole at s =1
can cancel the higher than power one coefficients of  coming from a sum of pole
pairs (ii). Thus, the coefficient of each power ¢ > 1 of z in the sum of pole pairs
(ii) must be cancelled by the corresponding coefficient of z in the pole (i) at least

to the degree of O(z).

The two poles (ii) of a pole pair have a real sum:

Ty T 2(1 — ppx)

- + - =ar .
1—pe(1+dar)z  1—pp(l —iog)x L 2ppx + (1 + a;‘;)(pka:)Q

We expand the sum S of the poles of a pole pair omitting the multiplier xry for

simplicity in this calculation up to (16):

B 2(1 — pgx) _ 2-2pz 1
12z +od(prx)? 14 od(pre)? 1 - 2ppay; !
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where y, = 1 + o (prz)?.

2 — 2 .
= =N pra )
R

Writing Bg,; = (2;0;9)"7,;"_1 we get

oo o0 oo oo
S=2 Briz' —2pk Y Briz™ = 2Bk’ — 20k Y Brir2’
i=0 i=0 i=0 i=1

oo
=280+ Y _(2Bki — 2pBri-1)7’.

i=1
Fori >0
2 i—1 B
2Bi — 2pkBr,i-1 = 2%(21%% ' —pr)
k

= (iffl)z (2= ") = Br,i(2 — )
k

This gives an equation for every ¢ > 0

283 — 2Pk Br,i—1 = 2Br,i — Yk Br,i-

Inserting v, = 1 + (agprz) yields for i > 0

201Bk,i—1 = ViBryi = Bryi + 2> (i) B, i-

For every k when [ >> 1 and therefore 0 < z =[~! << 1 and ¢ > 0 holds

201Bk,i—1 = YiBryi = Br,i + O(z?).

The coefficient of the the power z, i > 0, is

2Bki — 20kBr,i-1 = Bri + O(z?).

(16)
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The coefficient of the power of zi*! in for the pole in s = 1 (i.e., in the power
series of /(1 — z)) is —1 for every i > 0. The coefficient of z+! in the sum of
poles (ii) is

Z Tk (2Bk,i — 206 Bk,i-1)

keA
where we have included the multiplier zry, that was so far omitted. Summing the
powers of ¢ from i = 2 to i = 4; + 1 and inserting (16) gives the equation where
the coefficients of the pole pairs (ii) cancel the coefficients of the pole (i) to the
degree of O(z?):

i1+1 i1+1
—ii=) (1))=Y > mfri+ 0. (17)
=2 i=2 k€A

For each k, when z — 0 and ¢ > 0, holds

Br,i = 2pkBr,i—1- (18)

If every pp = % the recursion equation (18) gives Bk i+1 = Bk, for every k. For
every k the power series of z for i > 1 is of the form zf8;(z + 2% + 23 + - -).
This is the same form as the power series z(z + 22 + 23 + - --) for the pole s = 1
for i > 1. The power series for the poles k for i > 1 add to one power series of
the type zb(z + 2 + 2 + - - ). We see that if every py = %, the sum of poles (ii)
cancel the pole in s = 1 when z — 0 and converge to the series of the pole in

s = 1 with the same O(z?) speed in every power z* for i > 1.

Assume that one py, is not 3. The functional equation (14) shows that if there
exists a zero 89 = xg + 1yo of ((s) with 0 < zy < % then there exists a zero of ((s)
at a symmetric point in % < z < 1. This implies that we can find sg such that

2py > 1. The form of (18) for a nonzero z, i > 0, is

Br,i = 2pkBr,i—1 + O(z?). (19)
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For py the recursion (19) gives By ; = Bi,1(2pr )t + O(2?). From (17) we get (2).
The right side in (20)

—i; = Z Z 1Bk + O(a?) (20)

grows at least as fast as By 1(2py )™ as a function of i; while the left side is linear

in ¢;. This is a contradiction. Thus, every p; must be 1.

The claim of Lemma 2 is already proven in (20), but we look at the the sums

Bi = Z Tk/Bk,i (21)

k€A

to check if they can have the values they get from cancelling the pole at s = 1

and if the coefficients in the power series of x vanish sufficiently fast when | — co.

By (20) each p, = 1. Inserting p, = 27" to (21) gives

Bi=Y re(l+2 *(ag)’) . (22)

keA

The recursion equation for Sy ; is Bri = (2pk/Vk)Bk,i—1- As 2pr = 1 and since
v, > 1, this implies that Bk ;—1 > Bk, for all ¢ > 0. Recursion (18) for py = %
shows that for every ¢ > O the value f ; is the same when 2 — 0. Since vy, — 1
when z — 0, f; is the same for every ¢ > 0. Equation (20) implies that §; = 1
for every 4 > 0. In the limit z — 0 holds 84,0 = Bk,1. Therefore also 8; = 1 when

xz — 0.

Because x — 0 the values of aj must grow to infinity with k. The set A
is necessarily infinite. We renumber the poles of (ii) so that (ay) is a growing

sequence and the sum k£ € A is the sum k = 1 to infinity.

Since py = 3 by (20) we can evaluate

2B%,i — 20kBryi-1 = Br,i(2 — k)
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and get

(0.50,)? ) .

g [ = A%k
Bri = Bria ( 1+ (0.5a41)?

Let I >> 1 be fixed. If a, >> [ =21, then

(0.50)?2
1+ (0.5akz)?

is close to one and f;; is close to zero. This means that large values of oy con-
tribute very little to the Taylor series at so +/. The sum in (22) can be finite and
there is no reason why it could not be one. The value of every §;, i > 0, must be

one because of (20).

The contributions of all poles must vanish in the limit [ — oc. The contribution
from the poles at s, = —2k is —xC, from the pole at s =1 it is —z/(1 — z), from
the poles of A; it is 0, and the contribution of the pole pairs of A is approaching
the series £(2+z+z2+2%+---) when z — 0 as O(2?) separately for the coefficient
of each power i of z¢. The sum of these contributions when I — oo is

—Cw—%+0+w(2+m+w2+w3+---)=(—3/2+2ﬂ0)x=(I—C)m. (24)

The sum (24) must be zero, thus C = 1.

The convergence of the coefficients of the powers of z to zero in (24) when
x grows is O(x?) for the coefficient of each power i > 1 of ¢ separately, which

fulfills the convergence criterion.

The convergence criterium does not apply to the power one of x because when
l grows new poles —2k are added. Epsilon (see the text after (15)) converges
as O(e™!), therefore the sum to N(I) closely approximates the sum to infinity.
The sum at infinity must give C' = 1 because of (24), but the convergence of the
coeflicient of the power one od z to zero is not fully clarified by these convergences.

It is not necessary to check the convergence of the coefficient of the power one of
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x: the proof of the claim of Lemma 2, i.e., that each p; = % for s € A, is already
in (20).

The proof of Lemma 2 is complete. o

Theorem 1. The Riemann Hypothesis is true.

Proof. By Lemma 2 every p; = Re{sy} = § for poles of the type (ii) in the set
of pole pairs A and the set A; is empty. o

Notice that the value Re{s;} = p; = % comes because the recursion (19) must
yield the same form of the power series of x as the pole at s = 1 when z — 0
in order for the the set of pole pairs to cancel the pole at s = 1 in the limit
I = o0. Equation (19) arises from the expansion of a pole pair. Thus, ultimately

Re{sp} = % because pole pairs cancel a pole at s = 1 and therefore the real part

of the poles in the pole pairs must be the half of one. o

All known facts of the Riemann zeta function that are used in this proof can
be found in [1]. The history and background of the Riemann Hypothesis are well
described in the book [2]. As the problem is still open, recently published results
do not add so much to the topic and as they are not needed in this proof, they

are not referred to.
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