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Abstract. The paper proves the Riemann Hypothesis. In Lemma 1 the
logarithmic derivative - In((s) of the Riemann zeta function is expanded
as E;; hj(s) where hj(s) = hi(js). All h;(s) are continued analytically
to Re{s} > 0 by an inductive procedure. In Lemma 2 it is shown that if
h1(s) has a first-order pole at some point s, then there must be an infinite
number of poles in hi(s) and in each hj(s). Lemma 2 presents a pole
cancellation procedure where poles of h;(s) cancel poles of other ., (s).
This procedure leaves uncancelled only a subset of poles. In Lemma 3 it is
shown that the total contribution of these uncancelled poles of Z;; hj(s)
must vanish at a point (I,0) where [ > 0 goes to infinity. This yields an
equation which shows that poles s, of with Re{s} > 0 of hi(s) that are
not on the x-axis must have pr = Re{sx} = 1. It is shown that there are
no zeros of zeta on the x-axis with Re{s} > 0. The effect of the zeros of
zeta for Re{s} < 0 is calculated and it contributes to the cancellation of

poles when [ — oo.
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1 Definitions
The Riemann zeta function is defined by

((s)=> n* (1)

where s is a complex number. The zeta function can be continued analytically to

the whole complex plane except for s = 1 where the function has a simple pole.



The zeta function has trivial zeros at even negative integers. It does not have
zeros in Re{s} > 1. The nontrivial zeros lie in the strip 0 < z < 1, see e.g. [1].

The Riemann Hypothesis claims that all these zeros have Re{s} = . Let

P = {p1,p2,...|p; is a prime,pj11 > p; > 1,5 > 1}

be the set of all primes (larger than one). Let s = z + iy, z,y € R and = > 1.

The Riemann zeta function can be expressed as

This infinite product converges absolutely if Re{s} > 1.

2 Lemmas and the theorem

Lemma 1. The functions
> .
hj(s) = — Zln(pj)pj_Js , j>0 (3)
j=1

are related by h;j(s) = hi1(js). The functions h;(s) have analytic continuations to
Re{s} > 0 with the exception of isolated first-order poles. The poles of h;(s) that
are not on the x-axis appear in pole pairs: close to sy, where Im{s,} > 0, h;(s)

is of the type
r

hi(s) = + f1(s) (4)

S — S

and close to sy, where s}, is a complex conjugate of s, hj(s) is of the type

hi(s) = —— + fo(s)

_ e*
) Sk

The functions fi(s) and f2(s) are analytic close to sj and s, respectively. If the

pole is at the x-axis, there is only one pole of the type (4) with Im{sy} = 0.



Proof. The claim
hj(s) = ha(js) (5)

follows directly from (3).

The function h4(s) converges absolutely if Re{s} > 1 because

o

Y

J=1

converges absolutely for Re{s} > 1 and |Inp;| < [p$| for any fixed a > 0 if j is

sufficiently large. Therefore

|In(p;)p;°| < 2[pj°+|
for any fixed a > 0 if j is sufficiently large. Therefore, by (5), h;(s) converges

absolutely if Re{s} > %

From (2) follows
d o0
('(8)¢(s)™" = - In((s) = D hils).
Jj=1
The derivative ¢'(s) is analytic in all points except for s = 1. The function h;(s)

is continued analytically to Re{s} > £ by

hi(s) = ¢(s)7"¢'(s) — g(s) (6)

where

g(s) =D hi(s).

Jj=2
The function ((s)~! is analytic except for at points where ((s) has a zero or a
pole. The function g(s) is analytic for Re{s} > 5 because each h;(s), j > 1,

1
2
is analytic in Re{s} > % Thus, the right side of (6) is defined and analytic for



1 < Re{s} except for at points where ((s) has a zero or a pole. At those isolated

points hq(s) has a pole.

At a pole sy of ((s) the zeta function has the expansion

¢(s) = ﬁ + higher order terms.
— Sk

If Re{s} > 1 the function hi(s) is of the form

hi(s) = C'(5)C(s) ™" = g(s) = —— + fi(s)

S — Sk

where fi(s) is analytic close to sy and r = —k < 0 is an integer. The function

¢(s) has only one pole, at s =1 = (1,0), and it is a simple pole, thus r = —1.

At a zero sy of ((s) the zeta function has the expansion

¢(s) = C(s — sx)* + higher order terms.

If Re{s} > % the function

r

hi(s) = ¢'(s)C(s) " — g(s) = + fi(s)

S — Sk

where fi(s) is analytic close to s, and r = k > 0 is an integer. It is known that

¢(s) has many zeros with Re{s;} =1/2.

Thus, hy(s) has only first-order poles for Re{s} > 3 and therefore h;(s) has
only first-order poles for Re{s} > % At every pole of hi(s) in Re{s} > 1 the

value of r is an integer.

As hy(s) is continued to Re{s} > 1 by (6), the equation (5) continues h;(s)
to Re{s} > % Then (6) continues hy(s) to Re{s} > 1. The function h(s) has
isolated poles at Re{s} > %. Each pole is a first-order pole, but the value of r at

a pole does not need to be an integer.



We can repeat the procedure inductively: If hy (s) is continued to Re{s} > 5

by (6), the equation (5) continues h;(s) to Re{s} > 2—13 Then (6) continues h(s)

to Re{s} > 5&r. By induction, all hj(s) are analytically continued to Re{s} > 0.
In this inductive process hi(s) gets isolated first-order poles. In these poles s
the values r = r can be positive or negative, and they do not need to be integers.

If hi(s) has a pole
r

m(®) = ——+fi(s)

(here fi(s) is analytic close to si), then h;(s) = hi(js) has a pole at j~'s; and

1

the r value is j~'r since

. itr .
hj(s) = hi(js) = 5= 7 Tsr + f1(5s).

The function hi(s) is symmetric with respect to the real axis. By (4) h;(s),
j > 1, is also symmetric with respect to the real axis. Therefore poles of each
hj(s), j > 0, appear as pairs s and sj. In the special case where sy, is real there

is only one pole, not a pair. o

Lemma 2. The following two claims hold: (i) The only poles of the sum

that remain after cancellations of poles of h;(s) by poles of other h,,(s) are poles

of hj(s) at points sy, of the type

Tk

+ fr(s)

S — Sk

where f,(s) is analytic close to s;. The number r # 0 is an integer. Only for one
sk the number ry, is negative and has the value —1. It is the pole of {(s) at sy, = 1.
For the other poles s, k > 0, the value ry, is a positive integer. (ii) The function

hi(s) has an infinite number of poles in Re{s} > 0.



Proof. Claim (i) follows directly. All poles of every h;(s), j > 0, that have a
noninteger value of » must be cancelled or partially cancelled by poles of other
hm(s), m > 0, because at a pole of ((s) and a zero of {(s) the value r is always
an integer. Additionally, there cannot be any other poles of {(s) than the one
at s = 1. Thus, in the sum of h;(s) all negative values of 7 sum to zero or to a
positive integer value except for hi(s) in the pole s = 1. There r = —1.

For the claim (ii) we give one possible cancellation process and then notice
that every cancellation process has the same features leading to (ii).

Let the set of natural numbers {1,2,3,4,...} be divided into disjoints sets
C; = {t;,2t;,...,2%;,...}, where 2 does not divide t; and t;y1 > t;. Thus,
t1 =1,t2 =3, t3 = 5, and so on.

Let us take the sum of two pairs of poles of hy(s)

Tk Tk

+ *
s5—8; 8—sy

2717']6 2717']; (7)
s—21s,  s—2"1sp’
Because of (5) there must be corresponding poles at hy, (s)
A, _dn
1 1
§— -8k 8— .8k
_ %2_17‘]c . %2_17‘]9 (8)
s— Lo-1g, g— Lo-1g+"
m m k
In Cj there are corresponding poles for each m = 2"t;.
Let us sum these poles over C;. We see that most terms cancel
1 1
. Tk Tk
% i
- 1 + - 1 % (9)
S — Esk s — Esk
%2717'19 %Zflrk
s— 271,  s5— %2*152'



1o— _
t_2 z’f‘]‘, t_2 z’I"];;
+—7 T
— 291 L 9—1*
s tj2 S, S tj2 sy
tl zfzflrk tl_.Zfzflrk
J J
s— Lo—i-lg, s— %2*’*13*
2
%Z_Z_IT %2_’_17’]9
+ J 2
s— Lo-i-lg, g — L—i-lg*
;—.271727‘]9 %271727’]‘,
J J
T e _ 19_i—2 _ 1o_i—2.%
s tj2 S, S tj2 sy,
1 1
sk Uk (10)

T g— 1L — Lgx®
5= 58k S5k

There is left only one pole pair (10) in each C;. Especially in C; the function

h1(s) has left the poles
TR TR (11)

s—sp  s—sh



Let t; be a prime larger than 2. We can cancel the pole pair (10) of C; by

addding two pairs of poles to hq(s)

1
=Tk Tk
Y ot (11)
s—Ls s— Ls*
t; k t; “k
2—1er 2_1;—jrk

If tl—jrk is fractional, the pole pair (10) of C; must be cancelled, but we will
show that it is cancelled even if %rk is an integer: Because of (5), if we add the

poles (11) to hq(s), then there must be corresponding poles at h,(s)

1 1
i Tk i Tk
mt; mt;
s — JL,s: + s Ls* (12)
mt; °F mt; “k
Tnltj 2_17'k mltj 2_17'k
- 1 91 1 o—1 %
s —mtj2 S S —mt‘2 sy,

For a sufficiently large prime m the number m%sjrk is not an integer. Therefore
this pole of h,,(s) must be cancelled. It can only be cancelled by a pole of hy(s)
and therefore the poles (11) are necessary. Therefore we must add the first pole
pair in (11) even if %rk is an integer. The pole pair in C; is cancelled by adding

the pole pairs of (11).

We do not get new poles to each Cp,. The new poles (12) are added to C,,
only if t; divides t,,. When we sum these new poles (12) to each such Cy,, it is
the same calculation as in (9). Most poles cancel and only one pole pair remains

for each C,,, namely

1 1
7Tk 7Tk
S R (13)
S§— - —8r S— —S8}
tm tm “k



Let j = 1, so t; = 3. We add the poles (11) to hi(s) and there remains the

poles (13). Adding (13) to (10) the new poles of hi(s)

1 1
" i

-1 — Lgx
8= 5k 8= i 5%

cancels the remaining pole pair in Cj

1 1
% Tk % Tk

T Lo
5= Sk S i 5

More generally, we notice that for each C,, such that 3 divides t,, the pole pair

(10) has been cancelled. Especially, the remaining pole at Cy has been cancelled.

But now comes a complication. We continue the process by adding to hi(s) a
pole that cancels the remaining pole at C3 where t3 = 5, the smallest prime larger
than t5. Thus, we add the poles (11) for j = 3. The remaining pole pair in (10)
in the set C3 is cancelled, but in each C,, where 15 = 3 -5 divides t,, we have a
new pole pair. That is, the original pole pair (10) in C,, was cancelled when we
added (11) with ¢; = t» = 3 and in this process added the poles also to C,, where
tm is divisible by 15 = 3 - 5, but now we add t; = ¢t3 = 5 and again have a pole
pair at C), since t,, is divisible by 5 - 3. The remaining pole at C3 was cancelled,

but we made new poles to every C,, where t,, has the factor 15.

Continuing this process by adding to hq(s) poles where t; = ¢4 = 7 as in (11)
we cancel the remaining pole at Cy in (10), but make new poles to C,,, where t,,
has the factors 4 - 3 or 4 - 5. Continuing the process by adding poles (11) to hi(s)
for each prime number ¢; in the increasing order we cancel the remaining pole in
each C; where t; is a prime. At the same time we are creating new poles to each
C,, where t,; has two prime factors larger than two. This is the first step of the

pole cancellation process.

In the second step we add poles to hi(s) that have ¢; a product of two primes

larger than two and select r-values that cancel the remaining poles of C; for every
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t; that is a product of two primes larger than two. Again we add new poles to
C,, where t,,, has more than two prime factors that are larger than two.

In the nth step we add to h1(s) poles which are products of n primes larger
than two, and select 7-values that cancel the poles of C; for each ¢; that is a
product of exactly n primes larger than two.

This process continues and on each step we must add poles to h,,(s) where
m is a so large number that the resulting r value for h,,(s) is fractional. Such a
pole must be cancelled and it can only be cancelled by making a next step (11)
by adding poles to hq(s). Thus, this process cannot stop. It does not stop even if
the r value of a pole in C; that we want to cancel is a positive integer. There is
always a large m = t;m; that will also be created because of adding the poles to
hi(s) in (11). This Cy, has a fractional r value and must be cancelled. Therefore
the remaining pole of C; is always cancelled by a new pole of h;(s).

The new poles that we are adding in each step to hy(s) are on each step closer
and closer to s = 0. The r-values of the poles that we have to add to h; (s) become
very large in absolute value when the number n of steps grows and the new poles
added to hy(s) approach s = 0. The absolute value of 7 grows because the numbers
of the remaining C,, on each step have many factors and we add as many poles as
there are factors to those poles that do not get cancelled in each step. We cannot
reach s = 0, but every C; will have the poles completely cancelled at some step.

As a conclusion, hy(s) must have an infinite number of poles because this pole
cancellation process cannot stop. Only some poles of hq(s) remain uncancelled in
the sum 3572 h;(s).

The cancellation of poles on the x-axis is the same, only there is one pole and
not a pole pair. The procedure is obtained by setting Im{s;} = 0 in the described
process and removing the part with sj. There is a pole of h;(s) on the x-axis at
s = 1 with the r-value 1. This is so because hy(s) has a pole at s = 1 with the
r-value —1. Consequently hs(s) has a pole with r-value —1 at s = % This pole

2

must be cancelled and can only be cancelled by h;(s). Therefore there must be
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the pole of hy(s) at s = %, but it is cancelled and the only pole remaining on the
x-axis from this sequence is the pole of hy(s) at s = 1. However, hi(s) may have
other uncancelled poles with a positive integer r-value on the x-axis. If there are
such poles of hi(s), then they are not cancelled by this process.

We will not prove that the described pole cancellation process is the only
possible process, though this claim may be true. However, every possible pole
cancellation process has the same feature: every pole at hq(s) requires a corre-
sponding pole at each h,,(s). If m is sufficiently large, such a pole has a noninteger
r-value and must be cancelled. Cancelling such a pole by adding (i.e., noticing
that the pole exists) a pole to any h;(s) always implies adding a new pole to
hi1(s) and this again requires new poles to all h,,(s). Again some of these new
poles have noninteger r-values and must be cancelled. This process cannot stop,
thus hi(s) must have an infinite number of poles. Only a subset of the poles of

Y521 hj(s) remain uncancelled. o

Lemma 3. The uncancelled poles of E;’il hj(s) in Re}s} > 0 are one pole
at s = 1 and an infinite set of pole pairs at symmetric places in the positive and
negative imaginary axis at Re{s} = 1.
Proof. Let us consider a function f(s) that has a first-order pole at so and write

21 = s—8p- The function f(s) does not have a Taylor series at sq, but the function

21 f(21 + s0) has a Taylor series at z; = 0 and f(s) can be expressed as
_ 61 c- k
=5+ Yot

Let us evaluate f(s) at another point at sg + 1, [ > 0, by first writing z; =1 — 25
where |z1| << 1, inserting 21 = | — 22 to the series expression of f(s), and then

considering the result when |22| << 1. The function

fi(z1) = f(z1 + s0) = =2

21
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has the Taylor series at z; =1 — z9 where |z;| << 1 as

o

fl(l - 22) = Z Cm(l - ZQ)m

m=0 =0
= (k+10)! ad
— ZZ ( i'k') '(—1)"cpyizy = ZkaQ
k=0 i=0 o k=0
Thus
= (k+’t)' 7 k
by = g ik l ( 1) Chk+i
As
1 d*

Cr = k'd kfl( )|z1=0

we can express

1. d )1 d*
= iy - i _1 k_ .
b <ZO ik dz{) D g f1(E)l=o

If there is no pole of f(s) at so + [, the function

1(l — 22) Z bkz2

is analytic and defined by its Taylor series as powers of zo where the series con-
verges. The pole of f(s) at ¢_; can be evaluated as a Taylor series of zy at sg + 1

as

C_q _C,1 _Cloo z9
l—Zz_ { 1—22[ L kZ:O( )

We can subtract a set of first-order poles of f(s) in points s; € A and define

fizn) = f(s) =)
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where r; = c_1,; and express

s—skp=(s—5s0)—(sj —80) =21 —5;+ 80 =1— 22— (sj — s0).

At the point sg + [ the set of poles is

Y ey
Yooy N, (14)
ST jeAl—zz—(s—so) jeAl—pjw
where p; = s; — s and z = (I — 22) '. Let us select so = 0 for easier notations.

Thus, p; = Re{s;} is the x-coordinate of the pole s;. Let us consider

k1

F8) =3 2 4 fi(s)

s—§
k=1 k

Jmax

fils) = = 3 In(p)p;

Let [ >> 1. The Taylor series of the set of poles points s at s in powers of z; is

oo k1
S (St
=0

k=1

and the Taylor series at sg + [ in powers of zo =1 — z; is

i=0 \k=1

oo k1
Z (Z re(so +1 — sk)il) 23

For each k the coefficient of the ith power of z; at sq is ¢; = 71 (s — 59) ~* ! while

the coefficient of 25 at sg + 1 is

pi=ri(so+1—sp) 77 =l T (i 1) (s — s)l TR 4
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The absolute value of the coefficient p; of the Taylor series in powers of z5 at so+1

decreases as
k1 .
DU
k=1
as a function of [ >> 1. The part fi(s) of f(s) satisfies

Jmax Jmax

lfi(s+ )] = |- Z ln(pj)pj_s_l = |- Z ln(pj)pj—se—llnpj

Jj=1 J=1

Jmax

S |eflln2| _ Zln(pj)p]_s — 67“n2|f1(5)|.
Jj=1

The absolute value of the coefficient p; of the Taylor series in powers of 22 at so+1
decreases as

Ipi| < e 12|y

This is negative exponential decrease and much faster than the hyperbolic decrease

for the set of poles.

Let us k1 — oo. Then f(s) = hi(s). If Re{s} =1 >> 1, we are far away of
the pole at s = 1 and the sum in k4 (s), where k; is replaced by infinity, converges
absolutely. The absolute values of the Taylor series at s+ for the function hy(s)
must decrease in negative exponential manner as a function of /. This implies that
the poles partially cancel. The poles cannot completely cancel: a pole at s; with
r = r can be completely cancelled only by a pole at s with r = —ry. The sum
of poles has all poles of its terms, but at [ >> 1 there can be partial cancellation
so that the Taylor series coeflicients decrease faster as a function of [. Especially,

when [ — oo, the contribution from the poles must vanish.

The condition that the poles sum to zero when ! — oo is not a sufficient
condition for the contribution of the poles to vanish and to leave the contribution
of the negative exponential behavior of fi(s) to dominate at the limit I — oo.

The sum of the poles clearly decreases as O(z), = 171, and goes to zero when
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z — 0 if the x-coordinate of every pole of f(s) is smaller or equal to one, but this
convergence to zero is not enough. The exponent of z grows faster than any power
of z, thus the negative exponent of x decreases faster than any negative power
of z. In order for the contribution of the poles to vanish and for the negative
exponential terms of fi(s) to dominate, the coefficient of each power of z in the
power series of the sum of the poles as a function of z must go to zero at least as
O(z). We require this type of stronger convergence from the sum of the poles of
f(s) as a function of z when z — 0.

Lemma 2 shows that h;(s) has infinitely many poles, yet hq(s) has the behavior
of the sum of negatively exponential terms when [ is very large. This implies that
the contribution of the poles of hi(s) must vanish when [ — oo in the sense that
all coefficients of the power series of = go to zero at least as O(zx). Consequently
the sum of the poles of every h;(s) = hi1(js) must vanish in the same sense in the
limit I = oo. Therefore the sum of the poles of

d = - 1
f(s) = Ts In{(s) = Z hj(s) = — Z(lnpj)pj’1 ————; = hi(s) + smaller terms

j=1 j=1 1—p;

must also vanish in the same sense when | — oc.

By Lemma 2 f(s) can only have the following poles in Re{s} > 0:

(i) There is one pole with r = —1 at s = 1.

(ii) There is a set A of pole pairs of hi(s) at s; and s;, where s has a nonzero
imaginary part, and the r-value ry, is positive. All we know of s, is that the real
part of sj, is larger than zero and smaller than one, and that that there are poles
sk with the real part 1.

(iii) There may be a set Aq of poles sg.1 of hi(s) with ri1 a positive integer
and the pole s is real, 0 < s < 1 and s # % No such pole is known.

In Lemma 1 we did not continue h;(s) to the area Re{s} < 0. The function

F(s) = hy(s)

oo
i=1
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is analytically continued by

d

7(8) = 41 ¢(s)

to Re{s} < 0 to all points where ((s) # 0. The zeros of ((s) has zeros in the area
Re{s} < 0 are the so called trivial zeros at even negative integers. They come

from the formula

where B,, = 0if m > 1 is odd. Zeta does not have a zero at s = 0. From the

functional equation

C(s) = 27 Lsin(2 7 1ms) (1 — 5)¢(1 — 8) (15)

we can deduce that the trivial zeros are zeros of sin(27!7s) and therefore first-
order zeros, thus, at a point s = —2k, k > 0, the function f(s) has a first-order

pole with the r-value 1.

Using the expression (14) instead of (4) for a pole or a pole pair (i.e., s = so+1,

so =0,z =1"1) gives
Tk ITE

S — Sk - 1—prx
for a pole on the x-axis. A pole pair in the positive and negative y-axis can be

written
Tk _ ITE
s—sp 1—(1+iog)prz

r ITk

s—st  1—(1—diog)prz’

Here z = (I — 22) ™! > 0 is a small real number if [ is large, pr = Re{s;} and ay is
chosen positive. The number [ is the distance from sy = 0 to the observation point

on the x-axis, (I,0), where the Taylor series with z is evaluated and |z5| << 1.
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As 25 is the variable of the Taylor series at (I, 0), the expressions are valid for any

small z; and we will select 23 = 0 for easier notations. Thus, z = {~!.

The pole (i) at s = 1 gives the power series of x where p, =1 and r = —1

o
xr —x m
= = —T X .
Y
A pole at s, = =2k, k> 0, is

Tk 1

s—sp s+2k

We can evaluate the Taylor series of z; at s and the Taylor series of z5 at sg +1

for any such pole and for a finite sum of such poles:

1 _ 1
So+21+2k_80+2k

D (=1)i(s0 + 2k)) "2
i=0

1 1
So+l—22+2k_80+l+2k

> (so+1+2k) "2
=0

but if we sum the index k to infinity, the series diverges at every point sqg + [.
Since f(s) is finite at every point where Re{s¢}+! > 1 this means that we cannot
evaluate the Taylor series at so + | by summing over k. We will cope with this
difficulty by first evaluating the sum of these poles at so = 0 and then moving
the result to so + I. Let sp = 0 and 21 = 0. Notice that for a point s; = —k the
pole at that point, with the r-value r, when evaluated to a Taylor series at s =0

and z; is set to zero, is
T T
s—s; k

This is the inverse of a pole with the same r but with s; = & when evaluated to
a Taylor series at s = 0 and 2; is set to zero. As an example, s; = 1 is the pole
at s = 1 with r = —1. When evaluated at sg = 0 it is the inverse of a pole with

r = —1 but s = —1. Thus, the pole at s;; = —2k with » = 1 > 0 is the same at
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so = 0 as a a pole at s, = 2k with v’ = —1 < 0. We see that the sum of all poles
sk = —2k gives a negative contribution to the Taylor series of 2; at so = 0 when

21 is set to zero.

The type of infinity of the sum of the poles s = —2k at so = 0 can be calculated.

Using the facts that ((s) has a simple pole at s =1

((5) = —— + g(s)

Ts—1

where g(s) is analytic at s = 1 and that lims_,1(s — 1){(s) = 1, so a = 1, we can

write

This result gives

o oo
1 1 1 1 11
— =_ — =—-((1) = lim =—.
2 5= 527 = 5% 50230 2 50
k=1 k=1
Thus, the contribution from the sum of the poles at s, = —2k is a simple pole at
so = 0. The pole is a negative infinity lim,_,o(—1/(2s)) at s = 0. The poles with

Re{sr} < 0 sum to a single pole —1/2z; at s¢ = 0 and yield the Taylor series of
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at so +1 = . When we set s = sg +1, so = 0 and z = [~! as in (14), the
contribution from the poles at s = —2k, k > 0, at so +1 is —z/2.

The poles (iii) of A; sum to a series z Y .-_, ¢;@™ where every ¢, is nonneg-
ative and ¢;41 # ¢; in the limit when z — 0 because all of these poles are in the
area 0 < s < 1 and they are isolated and therefore do not have a concentration
point at s = 1. It follows that they cannot be cancelled in x — 0 by the the sum
of poles in Re{s} < 0 giving the contribution —z/2 and the pole at s = 1 giving

the contribution —z/(1 — ). Therefore the poles (iii) could only be cancelled by
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a sequence of poles of the type (ii), but the poles of (ii) also give a power series of
x where the coefficient of every z? is nonnegative. Thus, the poles of A; cannot

be cancelled by any set of other poles and the set A; must be empty.

The coeflicient of the power one of z can be cancelled by the corresponding
coefficients of the pole at s = 1 and the poles in Re{s} < 0, but there are no
other poles than the pole at s = 1 that can cancel the higher than power one
coefficients of x coming from a pole pair (ii). Thus, the coefficient of every power
i > 1 of z in the sum of pole pairs (ii) must be cancelled by the corresponding

coefficient of z in the pole (i) at least to the degree of O(z).

The two poles (ii) of a pole pair have a real sum:

Ty T 2(1 — ppx)

- + - =ar .
1—pr(l1+iar)z  1—pp(l —iog)x L 2ppz + (1 + a;‘;)(pka:)Q

We expand the sum S of the poles of a pole pair omitting the multiplier xry for

simplicity in this calculation:

. 2(1 — pgx) 22y 1
C1-2ppz +od(prx)? 14 od(pre)? 1 - 2ppay; !

where v, = 1 + of (prz)?.

2-2 > .
= Py pa )
RLI—

Writing Br: = (2px)™y;, " we get

oo o0 [ee) oo
S=2) Brie' —2pk > Brix't = 2Bix’ —2pk Y _ Bri1a’
i=0 i=0 i=0 i=1

oo
=280+ Y _(2Bri — 2pkBri-1)z’.

i=1

Fori¢>0
2 i—1 3
2B — 2pkPr,i—1 = 2%(2@;% ' — k)
k
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= (iﬁfl)z (2 = vk) = Br,i(2 — )
k

This gives an equation for every ¢ > 0

2B — 2pBr,i—1 = 2Bk,i — Vi Br,i-

Inserting v, = 1 + (agprx)

201Bk,i—1 = ViBryi = Bryi + 37 (i) Bri-

For every k when [ >> 1 and therefore 0 < z = [~! << 1 holds

2Pk Bk,i—1 = YkBri = Bri + O(z?).

The coefficient of the the power z? is

2Bk,i — 2Pk Br,i—1 = Bri + O(z?).

(16)

The coefficient of the power of z+! in for the pole in s = 1 (i.e., in the power

series of /(1 — z)) is —1 for every i > 0. The coefficient of z+! in the sum of

poles (ii) is

Z Tk (28%,i — 2Pk Pr,i-1)

keA

where we have included the multiplier zr, that was so far omitted. Summing the

powers of ¢ from ¢ = 2 to i = 4; + 1 and inserting (16) gives the equation where

the coefficients of the pole pairs (ii) cancel the coefficients of the pole (i) to the

degree of O(z?):

i1+1 i1+1

— = Z(—l) = Z Z rkBr,i + O(z?).

=2 i=2 k€A

(17)
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For each k, when = — 0, holds

Br,i = 2pkPr,i-1- (18)

If every py, = 1 the recursion equation (18) gives By, i1 = B,; for every k. Then
for every k the power series of z for i > 1 is of the form 8 1(x + 22 + 23 + - - ).
This is the same form as the power series z(z + 22 + 23 + - --) for the pole s = 1
for i > 1. The power series for the poles &k for 7 > 1 add to one power series of
the type zb(z + 2 + 2 + - - ). We see that if every p; = %, the sum of poles (ii)
do cancel the pole in s = 1 when = — 0 and converge to the series of the pole in
s = 1 with the same O(z?) speed in every power z¢ for i > 1. The question is if

every p, must be %

The form of (18) for a nonzero z is
Bri = 2pkBr,i-1 + O(x?). (19)

Assume one py, is not % The functional equation (15) shows that if there exists
a zero so = To + iyo of ((s) with 0 < my < 3 then there exists a zero of ((s)
at a symmetric point in % < z < 1. This implies that we can find s; such that
2pr > 1 in (19). The recursion (19) gives Br i = B 1(2px)? + O(z?). In (17) the

right side
i1+1
—ir =Y riBri + O(z”) (20)
i=2 k€A
grows at least as fast as Bk/,1(2pk:)"1 as a function of 7; while the left side is linear

in 4;. This is a contradiction. Thus, every p; must be %

Though the proof of Lemma 3 is already complete, let us look at the coefficients

Bi = Z Tk Bh,i (21)

keA
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to check if we find a contradiction from the coefficients. Equation (20) implies

that B; = 1 for every ¢ > 0. Is this a contradiction?

Inserting pr, = 271 to (21) gives

Bi = Z re(1+27% (ape)?) 7 (22)

keA

We notice that because x — 0 the values of o must grow to infinity with k. We
renumber the poles of (ii) so that (ay) is a growing sequence and the sum k € A

is the sum k = 1 to infinity. The set A is necessarily infinite.

As pp = % we can evaluate

2Bk, — 20kPrji—1 = Pr,i(2 — Vi)

and get

(0.50,2)? > .

=By . |1 R
Pri = Pri-1 ( 1+ (0.5047)2

Let I >> 1 be fixed. If @, >> 1 =2"', then

(0.5a)?
1+ (0.5ax)?

is close to one and f;; is close to zero. This means that large values of ay con-
tribute very little to the Taylor series at s+ . The sum in (22) can be finite. The
recursion (18) for p, = } shows that for every ¢ > 0 the value fy; is the same
when 2 — 0. The sum can be one for every ¢ when I — 0o. There is no reason why
every f3;, ¢ > 0, could not be one, thus we do not find a contradiction from the

coefficients. The value of every f;, ¢ > 0, must be one because the contribution

from the poles of f(s) must disappear when [ — cc.

We have the remaining coefficient

260 =2 (1427 (axz)”) " (23)
k=1
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All poles cancel in the limit [ — oo if Bp = 3/4: the contribution at sg + [ of the
polesin Re{s} < 0is —x/2, the contribution from the pole at s = 1is —z/(1—z),
the contribution from the poles of A; is 0, and the contribution of the pole pairs
of A is approaching the series x(3/2 + = + 2% + 2° + ---) when £ — 0 as O(z?)
separately for the coefficient of each power i of z*. These contributions sum to

zero when | — oo:

—x/2—%+0+x(3/2+x+3:2+x3+---)=0.

The convergence of the sum of these contributions to zero when z grows is O(z?)
for the coefficient of each power ¢ of ? separately. This is enough for the negative
exponential factors of fi(s) (fi(s) is the sum of h;(s) minus the poles as in the
beginning of the proof of Lemma 3) to dominate when [ — cc.

Consequently, Sy must be 3/4 in the limit when  — 0. This may seem a bit
strange since 3; = 1 for every i > 0 in the limit z — 0, but it must be so. It is
not a contradiction: it is not possible to evaluate what the value (23) is by direct
calculation, By is not necessarily 1 even if the other 3; for 4 > 0 have the value 1

in the limit. o

Lemma 3 proves the Riemann Hypothesis.

Theorem 1. If((sy) =0 and 0 < Re{s;} <1 then Re{sy} = 3.

Proof. The claim follows directly from Lemma 3. o

Notice that we get the value Re{sy} = pr = 3 because the recursion (19)
must yield the same form of the power series of x as the pole at s = 1 when
x — 0 in order for the the set of pole pairs to cancel the pole at s = 1 in the limit
I — 00. We get (19) from the expansion of a pole pair. Thus, ultimately we get
Re{sp} = % because pole pairs cancel a pole at s = 1 and therefore the real part

of the poles in the pole pairs must be the half of one.
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All known facts of the Riemann zeta function that are used in this proof can
be found in [1]. The history and background of the Riemann Hypothesis are well
described in the book [2]. As the problem is still open, recently published results
do not add so much to the topic and as they are not needed in this proof, they

are not referred to.
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