About Structure of a connected Quaternion-JULIA-Set and Symmetries of a related JULIA-Network

(1-10-2020).

Udo E. Steinemann. Findeisen-Str. 5/7 D-71665 Vaihingen/Enz Germany udo.steinemann@t-online.de

A. <u>Abstract.</u>

If a variable is replace by its square and subsequently enlarged by a constant during a number of iterationsteps in quaternion-space, a network of (3) sets will be built gradually. As long as for the iterationconstant certain conditions are fulfilled, the network will consist of: an unbounded set (escape-set) with trajectories escaping to infinity during course of the iteration, a bounded set (prisoner-set) with trajectories tending to a sink-point and a further bounded one (JULIA-set) with a fixed-point as repeller having a repulsive effect on all points of both the other sets. The iteration will continue until the attracting sink-point of prisoner-set and the repelling fixed-point on JULIA-set have been found. This situation is reached if predecessor- and successor-state of the iteration became equal. The fixed-point-condition provisionally formulated in general terms of quaternions, can be separated into (3) sub-conditions. When heeding the HAMILTONian-rules for interactions of the imaginary sub-spaces of the quaternion-space, each sub-condition will be appropriate for one imaginary sub-spaces and independently debatable. Knowledge of fixed-points from this fundamental network will one enable to study the structure of a connected JULIA-set.

The Iteration will start from (1) on real-axis, this is not a restriction on generality because an appropriate scaling on real-axis can always be archived this way. It will become obvious, that the fixed-points in prisoner- and JULIA-set will depend on the iteration-constant only. Thus (16) different constants chosen appropriately will enable to arrange (16) fixed-points of JULIA-sets in the square-points of a hyper-cube and thereby together with the JULIA-sets to built a related JULIA-network. The symmetry-properties of this related JULIA-network can be studied on base of a hyper-cube's symmetry-group extended by some additional considerations.

1. Introduction.

In the following attention is applied to the results of an iteration, which takes place in quaternion-space (a space with hyper-cubes with its space-elements) a layout of this is given next:

Each hyper-cube:

- Is surrounded by (8) cubes each one with (6) surfaces. Thus all together, cubes will have (48) surfaces.
- Because the cubes will share surfaces, only (24) surfaces will have to be counted effectively.

The quaternion-space is spanned by a real unit-vector (e) vertical to a tripod of imaginary unit-vectors $\{i^{j}d\}$. Among these reference-vectors the HAMILTONian rules must hold:

1^1.
$$e^2 = (-i^2) = (-j^2) = (-d^2) = 1$$

 $[ij = (-ji) = d] \land [jd = (-dj) = i] \land [di = (-id) = j]$

Any point in the space is given by:

•
$$\mathbb{Q} = e \mathbb{Q}_0 + i \mathbb{Q}_1 + j \mathbb{Q}_2 + d \mathbb{Q}_3 \implies \langle \mathbb{Q} = \text{quaternion-variable} \rangle \land \langle [\mathbb{Q}_0^{-1} \mathbb{Q}_1^{-1} \mathbb{Q}_2^{-1} \mathbb{Q}_3] = \text{real components} \rangle$$

A sequence:

1^2.
$$[\mathbb{Q} \to \mathbb{Q}^2 + (\mathbb{N} = \mathbb{N}_0 + i \mathbb{N}_1 + j \mathbb{N}_2 + d \mathbb{N}_3)]^2 + \mathbb{N} \to \dots \Rightarrow \langle \mathbb{N} = \text{constant} \rangle \land \langle [\mathbb{N}_0 ^{-} \mathbb{N}_1 ^{-} \mathbb{N}_2 ^{-} \mathbb{N}_3] = \text{real components} \rangle$$

iteratively executed is to considered next, where when noteing the HAMILTONian rules (1¹) the following relations between Q and Q^2 must hold:

	3		
Derivation 1^1.			
$\mathbf{Q} = e\mathbf{Q}_0 + i\mathbf{Q}_1 + j\mathbf{Q}_2 + d\mathbf{Q}_3$	•		
leads to	Ŧ		
$\mathbb{Q}^2 = (e\mathbf{Q}_0 + i\mathbf{Q}_1 + j\mathbf{Q}_2 + d\mathbf{Q}_3)^2$	•		
$Q^{2} = e^{2}Q_{0}^{2} + i^{2}Q_{1}^{2} + j^{2}Q_{2}^{2} + d^{2}Q_{3}^{2} +$			
$i2Q_0Q_1+j2Q_0Q_2+d2Q_0Q_3+$			
$i(\mathbf{j}\mathbf{Q}_1\mathbf{Q}_2+\mathbf{d}\mathbf{Q}_1\mathbf{Q}_3)+$	•	•	
$j(iQ_2Q_1+dQ_2Q_3)+$			
$\boldsymbol{d}(\boldsymbol{i} \boldsymbol{\mathrm{Q}}_3 \boldsymbol{\mathrm{Q}}_1 \!+\! \boldsymbol{j} \boldsymbol{\mathrm{Q}}_3 \boldsymbol{\mathrm{Q}}_2)$			
leads to with	Ŧ	Ŧ	
$e^2 = (-\mathbf{i}^2) = (-\mathbf{j}^2) = (-\mathbf{d}^2) = 1$			
$\mathbf{i} \cdot \mathbf{j} = (-\mathbf{j} \cdot \mathbf{i}) = \mathbf{d}$		•	
$\mathbf{j} \cdot \mathbf{d} = (-\mathbf{d} \cdot \mathbf{j}) = \mathbf{i}$			
$\mathbf{d} \cdot \mathbf{i} = (-\mathbf{i} \cdot \mathbf{d}) = \mathbf{j}$			
$Q^2 = Q_0^2 - Q_1^2 - Q_2^2 - Q_3^2 +$			
$i2Q_{1}Q_{0}+j2Q_{2}Q_{0}+d2Q_{3}Q_{0}+$	•		
$dQ_1Q_2 - jQ_1Q_3 - dQ_2Q_1 + iQ_2Q_3 + jQ_3Q - iQ_3Q_2$			
leads to l	Ŧ		
$Q^2 = Q_0^2 + i 2 Q_1 Q_0 - Q_1^2 +$			
$Q_0^2 + j 2Q_2Q_0 - Q_2^2 +$	•		
			a

Udo E. Steinemann, About Structure of a connected Quaternion-Julia-Set and Symmetries of a related JULIA-Network, 1/10/2020.

$Q_0^2 + d^2Q_3Q_0 - Q_3^2 - 2Q_0^2$		
leads to	Ŧ	
$Q^{2} = (Q_{0} + iQ_{1})^{2} + (Q_{0} + jQ_{2})^{2} + (Q_{0} + dQ_{3})^{2} - 2Q_{0}^{2}$	•	•
leads to 🔶 with	+	Ŧ
$[\mathbf{Q}_i = \mathbf{Q}_0 + i\mathbf{Q}_1] \land [\mathbf{Q}_j = \mathbf{Q}_0 + j\mathbf{Q}_2] \land [\mathbf{Q}_d = \mathbf{Q}_0 + d\mathbf{Q}_3]$		•
$\mathbb{Q} = (\mathbf{Q}_0 + i\mathbf{Q}_1) + (\mathbf{Q}_0 + j\mathbf{Q}_2) + (\mathbf{Q}_0 + d\mathbf{Q}_3) - 2\mathbf{Q}_0$	•	

Without restriction on generality due to a free choice of an appropriate scaling on the e-axis, $(Q_0 = 1)$ can be assumed for (1^2) and thus one may further write:

1^3. $[(\mathbb{P} = Q_i + Q_j + Q_d - 2) \rightarrow (\mathbb{P}^2 = Q_i^2 + Q_j^2 + Q_d^2 - 2) + \mathbb{N}]^2 + \mathbb{N} \rightarrow \dots \Rightarrow \mathbb{N}_0 = \mathbb{N}_{i0} + \mathbb{N}_{j0} + \mathbb{N}_{d0}$

This iteration will run until its predecessor—and successor—state become equal. When certain restrictions on (\mathbb{N}) are observed, a network of (3) connected sets will be generated:

- An unbounded escape-set with trajectories escaping to infinity in execution-time of the iteration,
- A bounded prisoner-set with trajectories tending to a sink-point while the iteration is going on and
- A bounded JULIA-set with a fractal structure formed by points acting as repellers against all points of both the other sets.

At the moment iteration stops, (2) fixed-point have been generated:

- A repeller—point $(\mathbb{H}_{[1]})$ on JULIA—set and
- A attractive sink-point (\mathbb{H}_{2}) in prisoner-set.

From sequence (1^3) the following condition for the fixed-points must hold:

•
$$Q_i^2 + Q_j^2 + Q_d^2 - Q_i - Q_j - Q_d + N_0 + iN_1 + jN_2 + dN_3 = 0.$$

This will result in the (2) fixed-point-solutions $(\mathbb{H}_{[1,k,2]})$ with their components:

• $[\mathbb{H}_i \leftarrow Q_i] \land [\mathbb{H}_j \leftarrow Q_j] \land [\mathbb{H}_d \leftarrow Q_d]$.

Thus equation (1^3) can now be re-written as:

• $\mathbf{H}_{i}^{2} + \mathbf{H}_{j}^{2} + \mathbf{H}_{d}^{2} - \mathbf{H}_{i} - \mathbf{H}_{j} - \mathbf{H}_{d} + \mathbf{N}_{0} + i\mathbf{N}_{1} + j\mathbf{N}_{2} + d\mathbf{N}_{3} = 0$,

which under $(N_0 = N_{i0} + N_{j0} + N_{d0})$ can be separated into:

- 1^4. $\mathbf{H}_i^2 \mathbf{H}_i + \mathbf{N}_{i0} + \mathbf{i} \mathbf{N}_1 = 0$
- 1^5. $\mathbf{H}_i^2 \mathbf{H}_i + \mathbf{N}_{i0} + \mathbf{i} \mathbf{N}_2 = 0$
- 1^6. $\mathbf{H}_d^2 \mathbf{H}_d + \mathbf{N}_{d0} + d\mathbf{N}_3 = 0.$

2. About the Structure of a connected Quaternion-JULIA-Set.

Searching for the fixed-points of an appropriate network (escape-, prisoner- and JULIA-set) seems to be a good way to enter the discussion on the structure of a connected JULIA-set. For further discussions an invariance of forward- and backward-iterations relative to the repelling fixed-point is of major interest.

Instead trying to find the fixed-points directly their projections in complex planes $([e^{i}] \land [e^{i}] \land [e^{d}])$ (obtained via solutions of equations $(1^{4}.-1^{6}.)$) are used preliminary in order to specify them indirectly.

2.1. Fixed-Points from Interation (1³,) of Sequence (1¹).

From e.g. [1 & 2] is known, that a network with complex escape- prisoner- and JULIA-set can be obtained, when a sequence like:

2.1^1. $([h = e\mathbf{h}_0 + i\mathbf{h}_1] \rightarrow h^2 + [\ell = e\mathbf{l}_0 + i\mathbf{l}_1])^2 + \ell \rightarrow ((h^2 + \ell)^2 + \ell)^2 + \ell \rightarrow \dots \quad \Leftarrow \quad ([h = \text{variable}] \land [\ell = \text{constant}]).$

is executed recursively and the iteration finally stops due to equality of its predecessor— and successor state. This complex network will have properties comparable with the network specified from (1^3) with the exception, it only exists in complex plane. For this complex network it ihas become obvious, there is a structural dichotomy. Depending on the sequence—constant (ℓ) both prisoner— and JULIA—set may behave differently:

- For a specific *l*-set, the complex prisoner- and JULIA-set are connected (each on consists of one piece only) and the prisoner-set possesses a fixed-point as sink, while the JULIA-set has a fixed-point as a repeller for the point-sets of the prisoner-set and escape-set as well.
- In case of an alternate ℓ -set prisoner- and JULIA-set will become CANTOR-sets, which means, they appear completely disconnected.

B. B. MANDELBROT [3] had the idea of picturing this dichotomy in a set of parameters (ℓ) varying in the complex plane. This leads directly to the MANDELBROT-set:

He coloured each point in the plane of ℓ –values black or white depending on whether the associated JULIA–sets respectively turned out to be one piece or dust.

What now a question about the characters of the complex solutions from equations $(1^{4}.-1^{6}.)$ is concerned, it must be identified, that they are subjected to the same dichotomy as those in case of $(2.1^{1}.)$. Solutions of $(1^{4}.-1^{6}.)$ only will become fixed—points, if the complex components $(N_{i0}+iN_1) \wedge (N_{j0}+jN_2) \wedge (N_{d0}+dN_3)$ within $(1^{3}.)$ are extracted from the black part of the MANDELBROT—set.

2.1.1. Conditions to find Components of Fixed-Points.

Under these conditions $(1^4.)$ leads to the preliminary solutions:

• $\mathbb{H}_{i[1\&2]} = \frac{1}{2} \pm \frac{1}{2} \langle 1 - 4N_{i0} - i 4N_1 \rangle \rangle^{\frac{1}{2}}$

This can be further evaluated by settings:

• $1-4N_{i0}-i4N_1 = (u-ix)^2 = u^2-i2ux+x^2$

and leads via a fourth-degree-equation for (u) to the following solutions of (u) and (x):

• $\mathbf{u} = \pm \langle \sqrt[4]{2} - 2N_{i0} + \langle (\sqrt[4]{2} - 2N_{i0})^2 - 4N_1^2 \rangle \rangle^{\frac{1}{2}}$

•
$$\mathbf{x} = \pm 2N_1 / \langle\!\!\langle \frac{1}{2} - 2N_{i0} + \langle\!\!\langle (\frac{1}{2} - 2N_{i0})^2 - 4N_1^2 \rangle\!\!\rangle^{\frac{1}{2}} \rangle\!\!\rangle^{\frac{1}{2}}$$

and finally to:

2.1.1¹.
$$\mathbb{H}_{i[1\&2]} = \frac{1}{2} \pm \left(\frac{1}{8} - \frac{1}{2} N_{i0} + \left(\frac{1}{8} - \frac{1}{2} N_{i0} \right)^2 - \frac{1}{4} N_1^2 \right)^{\frac{1}{2}} \right)^{\frac{1}{2}} \pm \frac{1}{8} N_1 / \left(\frac{1}{2} - 2N_{i0} + \left(\frac{1}{2} - 2N_{i0} \right)^2 - 4N_1^2 \right)^{\frac{1}{2}} \right)^{\frac{1}{2}} + \frac{1}{8} N_1 / \left(\frac{1}{2} - 2N_{i0} + \frac{1}{8} N_1 \right)^2 - \frac{1}{8} N_1 + \frac{1}{8} N$$

The attracting or repelling property of the fixed—points is in essence the derivation of the sequence for (\mathbb{P}) at the locations of $\mathbb{H}_{i[1\&2]}$. This derivation can be calculated in the same way as for the real case. A fixed—point is attractive, if the absolute value of the derivation at fixed—point location is (<1), it is repelling if (>1). Therefore one obtains:

- $|2\mathbb{H}_{i[1]}| > 1 \rightarrow \mathbb{H}_{i[1]}$ is repelling and thus a point on corresponding JULIA-set.
- $|2\mathbb{H}_{i[2]}| < 1 \rightarrow \mathbb{H}_{i[2]}$ is attracting point and thus a sink in the corresponding prisoner-set.

More details about the derivations can be found in the deviation-scheme (2.1.1¹):

Derivation 2.1.1^1.									
$\mathbf{H}_{i}^{2} - \mathbf{H}_{i} + \mathbf{N}_{i0} + i\mathbf{N}_{1} = 0$	•								
leads to	Ŧ								
$\mathbf{H}_{i[1\&2]} = \frac{1}{2} \pm \frac{1}{2} \left(\frac{1 - 4N_{i0} - i4N_{1}}{N_{i0}} \right)^{\frac{1}{2}}$	•	•							
leads to 🔶 with	Ŧ	Ŧ							
$1-4N_{i0}-i4N_1 = (u-ix)^2 = u^2-i2ux+x^2$		•	•	0					
$\mathbf{H}_{i[1\&2]} = \frac{1}{2} \pm \frac{1}{2} \mathbf{u} \mp \mathbf{i} \frac{1}{2} \mathbf{x}$	•	1. 					•		
where	Ŧ			ł					
leads to			ł						
$ 2\mathbb{H}_{i[1]} = [(1+u)^2 + x^2]^{\frac{1}{2}}$	•							•	
	^						^		
$ 2\mathbb{H}_{i[2]} = [(1-u)^2 + x^2]^{\frac{1}{2}}$	•								•
$1 - 4N_{i0} = u^2 + x^2$				•					
				Λ					
$(4N_1 = 2ux) \rightarrow (2N_1/u = x)$				•		•			
$1 - 4N_{i0} = u^2 + 4N_1^2/u^2$			•						
			V			^			
$u^* - (1 - 4N_{i0})u^* + 4N_1^2 = 0$			•		0				
					+			+	+
$\mathbf{u}^{2} = \frac{1}{2} - 2N_{i0} + \left(\left(\frac{1}{2} - 2N_{i0} \right)^{2} - 4N_{1}^{2} \right)^{\frac{1}{2}}$					0				
					+				
$\mathbf{u} = \pm (\frac{4}{2} - 2N_{i0} + ((\frac{4}{2} - 2N_{i0})^2 - 4N_1^2))^2)^2$					•	•	•		
		ļ				+	^		
$\mathbf{x} = \pm 2\mathbf{N}_{1} / (\frac{4}{2} - 2\mathbf{N}_{i0} + (\frac{4}{2} - 2\mathbf{N}_{i0})^{2} - 4\mathbf{N}_{1}^{2})^{2} / (\frac{4}{2} - 2\mathbf{N}_{i0})^{2} - 4\mathbf{N}_{1}^{2} / (\frac{4}{2} - 2\mathbf{N}_{i0})^{2} - 4\mathbf{N}_{i0})^{2} - 4\mathbf{N}_{i0} / (\frac{4}{2} - 2\mathbf{N}_{i0})^{2} - 4\mathbf{N}_{i0$						•	•		
							+		
$\ln_{i[1\&2]} = \frac{4}{2}$									
\pm //14 14 NI + //(14 14 NI)2 14 NI 2\\\%\\%									
(78 - 721) (78 - 721									
$\sqrt[4]{N_1}/\sqrt[4]{2}-2N_{10}+\sqrt[4]{(\frac{1}{2}-2N_{10})^2}-4N_1^2}$								122	
$[\mathbf{u} > 0] \rightarrow [0 < 2\mathbf{H}_{111} = (1+ \mathbf{u})[1+4\mathbf{N}_1^2/\mathbf{u}^2(1+ \mathbf{u})^2]^{\frac{1}{2}} > 1]$								•	
$[\mathbf{u} > 0] \rightarrow [0 < 2\mathbf{H}_{i 2 } = (1 - \mathbf{u})[1 + 4N_1^2/\mathbf{u}^2(1 - \mathbf{u})^2]^{\frac{1}{2}} < 1]$									•
								~	Λ
$[\![u < 0]\!] \to [\![0 > \langle\!\!(- 2\mathbb{H}_{i[1]} = -(u -1)[1+4N_1^2/u^2(1+ u)^2]^{\frac{1}{2}} \rangle\!\!) < -1]\!]$								•	
$\llbracket u < 0 \rrbracket \to \llbracket 0 > \langle\!\!\!\langle - 2\mathbb{H}_{i[2]} = -(u +1)[1+4N_1^2/u^2(1- u)^2]^{\frac{N}{2}} \rangle\!\!\!\rangle > -1 \rrbracket$									•
leads to								Ŧ	ŧ
$0 < 2\mathbb{H}_{i[1]} > 1$								•	
$0 < 2\mathbb{H}_{i[2]} < 1$									•
leads to								Ŧ	Ŧ
$\mathbb{H}_{i[1]}$: Component associated with repeller-point on quaternion-JULIA-set				_				•	
$\mathbb{H}_{i[2]}$: Component associated with sink-point in quaternion-prisoner-set									•

Similarly (1^5) will lead to the preliminary solutions:

• $\mathbb{H}_{j[1\&2]} = \frac{1}{2} \pm \frac{1}{2} \langle 1 - 4N_{j0} - j 4N_2 \rangle^{4}$.

This can be further evaluated by settings:

• $1-4N_{j0}-j4N_2 = (v-jy)^2 = v^2-j2vy+y^2$

and leads via a fourth-degree-equation for (v) to the following solutions for (v) and (y):

- $\mathbf{v} = \pm \langle\!\!\langle \frac{1}{2} 2N_{j0} + \langle\!\!\langle (\frac{1}{2} 2N_{j0})^2 4N_2^2 \rangle\!\!\rangle^{\frac{1}{2}} \rangle^{\frac{1}{2}}$
- $y = \pm 2N_2 / \langle \frac{1}{2} 2N_{j0} + \langle (\frac{1}{2} 2N_{j0})^2 4N_2^2 \rangle^{\frac{1}{2}} \rangle^{\frac{1}{2}}$

and finally to:

$$2.1.1^{2}. \quad \mathbf{H}_{j[1\&2]} = \frac{1}{2} \pm \left(\frac{1}{2} - \frac{1}{2} N_{j0} + \left(\frac{1}{2} - \frac{1}{2} N_{j0} \right)^{2} - \frac{1}{4} N_{2}^{2} \right)^{\frac{1}{2}} \right)^{\frac{1}{2}} \mp \frac{1}{2} N_{2} / \left(\frac{1}{2} - 2N_{j0} + \left(\frac{1}{2} - 2N_{j0} \right)^{2} - 4N_{2}^{2} \right)^{\frac{1}{2}} \right)^{\frac{1}{2}}$$

The attracting or repelling property of the fixed—points is in essence the derivation of the sequence for (\mathbb{P}) at the locations of $\mathbb{H}_{j[1\&2]}$. This derivation can be calculated in the same way as for the real case. A fixed point is attractive, if the absolute value of the derivation at fixed—point location is (<1), it is repelling, if it is (>1). This leads in the actual cases to:

- $|2\mathbb{H}_{j[1]}| > 1 \rightarrow \mathbb{H}_{j[1]}$ is repelling and thus a point on corresponding JULIA-set.
- $|2\mathbb{H}_{j[2]}| < 1 \rightarrow \mathbb{H}_{j[2]}$ is attracting point and thus a sink in the corresponding prisoner-set.

More details about the derivations can be found in the following deviation-scheme $(2.1.1^{2})$:

Derivation 2.1.1 ² .									
$\mathbf{H}_{j}^{2} - \mathbf{H}_{j} + \mathbf{N}_{j0} + \mathbf{j} \mathbf{N}_{2} = 0$	•								
leads to	Ŧ								
$\mathbb{H}_{j[1\&2]} = \frac{1}{2} \pm \frac{1}{2} \left(\frac{1-4N_{j0}}{j} + \frac{1}{2} N_2 \right)^{\frac{1}{2}}$	•	•							
leads to 🔶 with	Ŧ	Ŧ							
$1-4N_{j0}-j4N_2 = (v-jy)^2 = v^2-j2vy+y^2$		•	•	•					
$\mathbf{H}_{\boldsymbol{j}[1\&2]} = \frac{1}{2} \pm \frac{1}{2} \mathbf{v} \mp \boldsymbol{j} \frac{1}{2} \mathbf{y}$	•		1. A.				•		
where	Ŧ			Ŧ.					
leads to			Ŧ						
$ 2\mathbb{H}_{j[1]} = [(1+v)^2 + y^2]^{\frac{1}{2}}$	•							•	
	Λ						Λ		
$ 2\mathbb{H}_{j[2]} = [(1-v)^2 + y^2]^{\frac{1}{2}}$	•								•
$1 - 4N_{j0} = v^2 + y^2$				•					
				^				100	
$(4N_2 = 2vy) \rightarrow (2N_2/v = y)$				•		•			
$1 - 4N_{j0} = v^2 + 4N_2^2 / v^2$			•			*			
-4 (1 ANT)-2 (ANT 2 0			V			^			
$\frac{V^{-} - (1 - 4N_{j0})V^{-} + 4N_{2}^{-} = 0}{1 + 4N_{j0} + 4N_{2}^{-} = 0}$									
$\frac{ (8 a 0 s t 0) }{ (2 a 0 s t 0) }$					+			+	+
$\frac{V^{-} = \frac{1}{2} - 2 N_{j0} + \left(\left(\frac{1}{2} - 2 N_{j0} \right)^{-} - 4 N_{2}^{-} \right)^{n}}{1 + 2 N_{j0} + 2 N_{j0}$									
$\frac{1}{1600500}$					+				
$\frac{1}{ aads ta } = \frac{1}{2} \frac{1}{ aab ta } = \frac{1}{2} \frac{1}{ aab ta } = \frac{1}{2} $						1			
$\frac{1}{v = +2N_2/(\frac{1}{2}-2N_{10})^2 - 4N_2^2} \frac{1}{2}$							•		
							Ŧ		
$H_{i[1,k,2]} = \frac{1}{2}$			1]			
±									
$\langle\!\!\langle \frac{1}{2} - \frac{1}{2} N_{j0} + \langle\!\!\langle (\frac{1}{2} - \frac{1}{2} N_{j0})^2 - \frac{1}{4} N_2^2 \rangle\!\!\rangle^{\frac{1}{2}} \rangle^{\frac{1}{2}}$							•		
Ŧ									
$ \frac{j N_2 / \langle \frac{1}{2} - 2N_{j0} + \langle \frac{1}{2} - 2N_{j0} \rangle^2 - 4N_2^2 \rangle^{\frac{1}{2}} }{2} $									
$[v > 0] \to [0 < 2\mathbb{H}_{j(1)} = (1+ v)[1+4N_2^2/v^2(1+ v)^2]^{\frac{1}{2}} > 1]$			ļ					•	
$[v > 0] \to [0 < 2\mathbb{H}_{j[2]} = (1 - v)[1 + 4N_2^2/v^2(1 - v)^2]^{\frac{1}{2}} < 1]$		ļ	ļ						•
$I_{-1} = (0) I_{0} = I_{0} = (1 + 1)(1 + 4)(2 + 2(1 + 1))(2)(3) = 1$								^	^
$ \ \mathbf{v} < 0 \ \to \ 0 > \langle (- 2\mathbf{H}_{j(1)} = -(\mathbf{v} - 1)[1 + 4\mathbf{N}_2^2/\mathbf{v}^2(1 + \mathbf{v})^2]^2 \rangle < -1] $									
$[v < 0] \rightarrow [v > (-2\pi)_{j[2]}((v + 1)_{1+4}v_2 / v (1 - (v))] / > -1]$									i
<u>「にでかいい」</u> 0 ~ 2 時! > 1								T	•
$0 < 2 \Pi_{a} < 1$ $0 < 2 \Pi_{a} < 1$									•
pads tn								L	1
H ₂₀₁₁ : Component associated with repeller-point on guaternion-JULIA-set								•	T
$\mathbb{H}_{j[2]}$: Component associated with sink-point in quaternion-prisoner-set									•

And last not least fixed-point-condition (1^6.) will lead to the preliminary solutions:

• $\mathbb{H}_{d[1\&2]} = \frac{1}{2} \pm \frac{1}{2} \langle 1 - 4N_{d0} - d4N_3 \rangle^{\frac{1}{2}}.$

This can be further evaluated by settings:

• $1-4N_{d0}-d4N_3 = (w-dz)^2 = w^2-d2wz+z^2$

and leads via a fourth-degree-equation for (w) to the following solutions for (w) and (z):

- $\mathbf{w} = \pm \langle\!\langle \frac{1}{2} 2N_{d0} + \langle\!\langle (\frac{1}{2} 2N_{d0})^2 4N_3^2 \rangle\!\rangle^{\frac{1}{2}} \rangle^{\frac{1}{2}}$
- $z = \pm 2N_3 / \langle\!\!\langle \frac{1}{2} 2N_{d0} + \langle\!\!\langle (\frac{1}{2} 2N_{d0})^2 4N_3^2 \rangle\!\!\rangle^{\frac{1}{2}} \rangle\!\!\rangle^{\frac{1}{2}}$

and finally to:

 $2.1.1^{3}. \quad \mathbb{H}_{d[1\&2]} = \frac{1}{2} \pm \left(\frac{1}{8} - \frac{1}{2} N_{d0} + \left(\frac{1}{8} - \frac{1}{2} N_{d0} \right)^{2} - \frac{1}{4} N_{3}^{2} \right)^{\frac{1}{2}} \right)^{\frac{1}{2}} \mp dN_{3} / \left(\frac{1}{2} - 2N_{d0} + \left(\frac{1}{2} - 2N_{d0} \right)^{2} - 4N_{3}^{2} \right)^{\frac{1}{2}} \right)^{\frac{1}{2}}.$

The attracting or repelling property of the fixed—points is in essence the derivation of the sequence for (\mathbb{P}) at the locations of $\mathbb{H}_{d[1\&2]}$. This derivation can be calculated in the same way as for the real case. A fixed—point is attractive, if the absolute value of the derivation at fixed—point location is (<1), it is repelling, if it is (>1). This leads in the actual cases to:

- $|2\mathbb{H}_{d[1]}| > 1 \rightarrow \mathbb{H}_{d[1]}$ is repelling and thus a point on corresponding JULIA-set.
- $|2\mathbb{H}_{d[2]}| < 1 \rightarrow \mathbb{H}_{d[2]}$ is attracting point and thus a sink in the corresponding prisoner-set.

More details about the derivation can be found in the following deviation-scheme (2.1.1³.):

Derivation 2.1.1^3.									
$\mathbf{H}_{d}^{2} - \mathbf{H}_{d} + \mathbf{N}_{d0} + d\mathbf{N}_{3} = 0$	•								
leads to	Ŧ								
$\mathbb{H}_{d[1\&2]} = \frac{1}{2} \pm \frac{1}{2} \left(\frac{1 - 4N_{d0} - d4N_3}{4N_3} \right)^{\frac{1}{2}}$	•	•							
leads to 🔶 with	Ŧ	Ŧ							
$1-4N_{d0}-d4N_3 = (w-dz)^2 = w^2-d2wz+z^2$		•	•	•					
$\mathbb{H}_{d[1\&2]} = \frac{1}{2} \pm \frac{1}{2} \mathbf{w} \mp d\frac{1}{2} \mathbf{z}$	0						•		
where	Ŧ								
leads to			ł			*			
$ 2\mathbb{H}_{d[1]} = [(1+\mathbf{w})^2 + \mathbf{z}^2]^{\frac{1}{2}}$	•							•	
	\wedge						^		
$ 2\mathbb{H}_{d 2 } = [(1-\mathbf{w})^2 + \mathbf{z}^2]^{\frac{1}{2}}$	•								•
$1-4N_{d0} = w^2 + z^2$				•					
				Λ					
$(4N_3 = 2wz) \rightarrow (2N_3/w = z)$				•		•			
$1 - 4N_{d0} = w^2 + 4N_3^2 / w^2$									and a
<u> </u>			-V			Λ		Sec. 1	
$\mathbf{w}^4 - (1 - 4\mathbf{N}_{d0})\mathbf{w}^2 + 4\mathbf{N}_3^2 = 0$			•		•				
leads to					Ŧ			Ŧ	Ŧ
$\mathbf{w}^2 = \frac{1}{2} - 2\mathbf{N}_{d0} + \langle\!\langle (\frac{1}{2} - 2\mathbf{N}_{d0})^2 - 4\mathbf{N}_3^2 \rangle\!\rangle^{\frac{1}{2}}$					•				
leads to					↓				
$\mathbf{w} \pm \langle\!\!\langle \frac{1}{2} - 2N_{d0} + \langle\!\!\langle (\frac{1}{2} - 2N_{d0})^2 - 4N_3^2 \rangle\!\!\rangle^{\frac{1}{2}} \rangle\!\!\rangle^{\frac{1}{2}}$					•		•		
leads to						ł	^		
$z = \pm 2N_3 / \langle\!\!\langle \frac{1}{2} - 2N_{d0} + \langle\!\!\langle (\frac{1}{2} - 2N_{d0})^2 - 4N_3^2 \rangle\!\!\rangle^{\frac{1}{2}} \rangle^{\frac{1}{2}}$						•	•		
leads to		1					Ŧ		
$\mathbb{H}_{d 1\&2 } = \frac{1}{2}$									
$\langle \langle 1/8 - \frac{1}{2} N_{d0} + \langle (1/8 - \frac{1}{2} N_{d0})^2 - \frac{1}{4} N_3^2 \rangle \rangle^{4_2} \rangle^{4_2}$							•		
$\frac{dN_3/(\frac{1}{2}-2N_{d0}+(\frac{1}{2}-2N_{d0})^2-4N_3^2)^{2/3}}{\Gamma_{1}}$		ļ	ļ						
$[W > 0] \rightarrow [0 < 2H_{d[1]} = (1+ W)[1+4N_3^2/W^2(1+ W)^2]^2 > 1]$								•	
$[w > 0] \rightarrow [0 < 2\mathbb{H}_{d[2]} = (1 - w)(1 + 4N_3^{-}/w^{-}(1 - w)^{-})^{-} < 1]$									
$[\pi_{\rm W} < 0] > [0 > // 9] = (\pi_{\rm W} - 1)[1 + 4N^{2}/\pi^{2}(1 + \pi_{\rm W})^{2}] = 1]$								<u>^</u>	<u> </u>
$ \begin{bmatrix} w < 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 > \sqrt{-1} 2 H_{d[1]} = -(w -1)[1+4N_3 / w (1+ w)] \\ \ w < 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 > \sqrt{-1} 2 H_{d[1]} = -(w +1)[1+4N_3 / w^2(1- w)^2]^{\frac{1}{2}} \\ \ w < 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 > \sqrt{-1} 2 H_{d[1]} \\ \ w < 0 \end{bmatrix} = -(w +1)[1+4N_3 / w^2(1- w)^2]^{\frac{1}{2}} \\ \ w < 0 \end{bmatrix} $		<u> </u>							
$ \frac{\ \mathbf{w} < 0\ }{\ \mathbf{w} < 0\ } \xrightarrow{0} \ 0 < \ 1\ = \frac{1}{ 0 ^2} \ 1\ = \frac{1}{ 0 ^2} \ 1\ + \frac{1}{ 0 ^2} \ $									
<u>」 「ででいるい」</u> の < 2研 … > 1								Y	•
$0 < 2\Pi_{d[1]} > 1$									
$\frac{ dand 2 < 1}{ laads ta }$									
H : Component associated with repeller-point on quaternion- III IA-set									-
$\mathbb{H}_{d[1]}$: Component associated with sink-noint in quaternion-prisoner-set		ł							

2.1.2. Fixed-Points as Quaternion-Points.

 (\mathbf{H}) as a quaternion can generally be given in a form like:

• $\mathbb{H} = [(a_0^2 + a_1^2 + a_2^2 + a_3^2)^{\frac{1}{2}} \cdot \exp\{\Theta(ia_1 + ja_2 + da_3)/(a_1^2 + a_2^2 + a_3^2)^{\frac{1}{2}})\}$ = $T \cdot \exp\{\underline{n}\Theta\}$ = $T \cdot \exp\{i\Psi_1 + j\Psi_2 + d\Psi_3\}$ = $(t_1 \cdot \exp\{i\Psi_1\}) \cdot (t_2 \cdot \exp\{j\Psi_2\}) \cdot (t_3 \cdot \exp\{d\Psi_3\})$ = $t_1(\cos\{\Psi_1\} + i\sin\{\Psi_1\}) \cdot t_2(\cos\{\Psi_2\} + j\sin\{\Psi_2\}) \cdot t_3(\cos\{\Psi_3\} + d\sin\{\Psi_3\}).$

Because $(\mathbb{H}_{i[1\&2]} \land \mathbb{H}_{j[1\&2]} \land \mathbb{H}_{d[1\&2]})$ may be expressed due to $(2.1.1^{-1}. - 2.1.1^{-3}.)$, this will further lead to:

- $t_1(\cos\{\Psi_1\}+i\sin\{\Psi_1\}) \Rightarrow$ $\mathbb{H}_{i|1k2|} = \{\frac{1}{2} \pm (\frac{1}{2} - \frac{1}{2}N_{i0} + (\frac{1}{2} - \frac{1}{2}N_{i0})^2 - \frac{1}{2}N_{10}^2)^{\frac{1}{2}} = \frac{1}{2} + \frac{1}{$
- $t_2(\cos\{\Psi_2\}+j\sin\{\Psi_2\}) \Rightarrow$ $\mathbb{H}_{j[1\&2]} = \{\frac{1}{2} \pm \sqrt[4]{8} - \frac{1}{2}N_{j0} + \sqrt[4]{(\frac{1}{8} - \frac{1}{2}N_{j0})^2 - \frac{1}{4}N_2^2}}{\frac{1}{2}N_2^3} + j\{N_2/\sqrt[4]{2} - 2N_{j0} + \sqrt[4]{(\frac{1}{2} - 2N_{j0})^2 - 4N_2^2}}{\frac{1}{2}N_2^3} + \frac{1}{2}N_2^3 + \frac{1$
- $t_3(\cos\{\Psi_3\}+d\sin\{\Psi_3\}) \Rightarrow$ $\mathbb{H}_{d[1\&2]} = \{\frac{1}{2} \pm \sqrt{(\frac{1}{8}-\frac{1}{2}N_{d0}+\sqrt{(\frac{1}{8}-\frac{1}{2}N_{d0})^2-\frac{1}{4}N_3^2)}} \pm d\{N_3/\sqrt{\frac{1}{2}-2N_{d0}+\sqrt{(\frac{1}{2}-2N_{d0})^2-4N_3^2)}} + \delta(N_3/\sqrt{\frac{1}{2}-2N_{d0}+\sqrt{(\frac{1}{2}-2N_{d0})^2-4N_3^2)}} + \delta(N_3/\sqrt{\frac{1}{2}-2N_{d0}+\sqrt{(\frac{1}{2}-2N_{d0})^2-4N_3^2)}} + \delta(N_3/\sqrt{\frac{1}{2}-2N_{d0}+\sqrt{(\frac{1}{2}-2N_{d0})^2-4N_3^2)}} + \delta(N_3/\sqrt{\frac{1}{2}-2N_{d0}+\sqrt{(\frac{1}{2}-2N_{d0})^2-4N_3^2)}} + \delta(N_3/\sqrt{\frac{1}{2}-2N_{d0}+\sqrt{(\frac{1}{2}-2N_{d0})^2-4N_3^2}} + \delta(N_3/\sqrt{\frac{1}{2}-2N_{d0}+\sqrt{(\frac{1}{2$

Thus the fixed-points for JULIA- and prisoner-set will appear as follows:

$$\begin{aligned} 2.1.2^{1}. \quad \mathbf{H}_{[1]} &= \mathbf{H}_{i[1]} \cdot \mathbf{H}_{d[1]} \cdot \mathbf{H}_{d[1]} - 2 \\ &= \{ \frac{1}{2} + \left\langle \frac{1}{8} - \frac{1}{2} \mathbf{N}_{i0} + \left\langle \left(\frac{1}{8} - \frac{1}{2} \mathbf{N}_{i0}\right)^{2} - \frac{1}{4} \mathbf{N}_{1}^{2} \right\rangle^{\frac{1}{2}} \right\rangle^{\frac{1}{2}} \right\rangle^{\frac{1}{2}} - i\{\mathbf{N}_{1} / \left\langle \frac{1}{2} - 2\mathbf{N}_{i0} + \left\langle \left(\frac{1}{2} - 2\mathbf{N}_{i0}\right)^{2} - 4\mathbf{N}_{1}^{2} \right\rangle^{\frac{1}{2}} \right\rangle^{\frac{1}{2}} \right\rangle^{\frac{1}{2}} \\ &= \{ \frac{1}{2} + \left\langle \frac{1}{8} - \frac{1}{2} \mathbf{N}_{i0} + \left\langle \left(\frac{1}{8} - \frac{1}{2} \mathbf{N}_{i0}\right)^{2} - \frac{1}{4} \mathbf{N}_{2}^{2} \right\rangle^{\frac{1}{2}} \right\rangle^{\frac{1}{2}} \right)^{\frac{1}{2}} + i\{\mathbf{N}_{1} / \left\langle \frac{1}{2} - 2\mathbf{N}_{i0} + \left\langle \left(\frac{1}{2} - 2\mathbf{N}_{i0}\right)^{2} - 4\mathbf{N}_{2}^{2} \right\rangle^{\frac{1}{2}} \right\rangle^{\frac{1}{2}} \right)^{\frac{1}{2}} \\ &= \{ \frac{1}{2} + \left\langle \frac{1}{8} - \frac{1}{2} \mathbf{N}_{d0} + \left\langle \left(\frac{1}{8} - \frac{1}{2} \mathbf{N}_{d0}\right)^{2} - \frac{1}{4} \mathbf{N}_{3}^{2} \right\rangle^{\frac{1}{2}} \right\rangle^{\frac{1}{2}} \right)^{\frac{1}{2}} + i\{\mathbf{N}_{1} / \left\langle \frac{1}{2} - 2\mathbf{N}_{d0} + \left\langle \left(\frac{1}{2} - 2\mathbf{N}_{d0}\right)^{2} - 4\mathbf{N}_{3}^{2} \right\rangle^{\frac{1}{2}} \right\rangle^{\frac{1}{2}} \right)^{\frac{1}{2}} \\ &= \{ \frac{1}{2} - \left\langle \frac{1}{8} - \frac{1}{2} \mathbf{N}_{i0} + \left\langle \left(\frac{1}{8} - \frac{1}{2} \mathbf{N}_{i0}\right)^{2} - \frac{1}{4} \mathbf{N}_{2}^{2} \right\rangle^{\frac{1}{2}} \right\rangle^{\frac{1}{2}} \right)^{\frac{1}{2}} + i\{\mathbf{N}_{1} / \left\langle \frac{1}{2} - 2\mathbf{N}_{i0} + \left\langle \left(\frac{1}{2} - 2\mathbf{N}_{i0}\right)^{2} - 4\mathbf{N}_{3}^{2} \right\rangle^{\frac{1}{2}} \right\rangle^{\frac{1}{2}} \right)^{\frac{1}{2}} \\ &= \{ \frac{1}{2} - \left\langle \frac{1}{8} - \frac{1}{2} \mathbf{N}_{i0} + \left\langle \left(\frac{1}{8} - \frac{1}{2} \mathbf{N}_{i0}\right)^{2} - \frac{1}{4} \mathbf{N}_{2}^{2} \right\rangle^{\frac{1}{2}} \right\rangle^{\frac{1}{2}} \right)^{\frac{1}{2}} \right\} + i\{\mathbf{N}_{1} / \left\langle \frac{1}{2} - 2\mathbf{N}_{i0} + \left\langle \left(\frac{1}{2} - 2\mathbf{N}_{i0}\right)^{2} - 4\mathbf{N}_{2}^{2} \right\rangle^{\frac{1}{2}} \right)^{\frac{1}{2}} \right)^{\frac{1}{2}} \\ &= \{ \frac{1}{2} - \left\langle \frac{1}{8} - \frac{1}{2} \mathbf{N}_{i0} + \left\langle \left(\frac{1}{8} - \frac{1}{2} \mathbf{N}_{i0}\right)^{2} - \frac{1}{4} \mathbf{N}_{2}^{2} \right\rangle^{\frac{1}{2}} \right)^{\frac{1}{2}} \right\} + i\{\mathbf{N}_{1} / \left\langle \frac{1}{2} - 2\mathbf{N}_{i0} + \left\langle \left(\frac{1}{2} - 2\mathbf{N}_{i0}\right)^{2} - 4\mathbf{N}_{2}^{2} \right\rangle^{\frac{1}{2}} \right)^{\frac{1}{2}} \right)^{\frac{1}{2}} \\ \\ &= \{ \frac{1}{2} - \left\langle \frac{1}{8} - \frac{1}{2} \mathbf{N}_{i0} + \left\langle \frac{1}{8} - \frac{1}{2} \mathbf{N}_{i0}\right)^{2} - \frac{1}{4} \mathbf{N}_{2}^{2} \right\rangle^{\frac{1}{2}} \right)^{\frac{1}{2}} \right)^{\frac{1}{2}} \\ \\ &= \left\{ \frac{1}{2} - \left\langle \frac{1}{8} - \frac{1}{2} \mathbf{N}_{i0} + \left\langle \frac{1}{8} - \frac{1}{2} \mathbf{N}_{i0}\right)^{2} - \frac{1}{4} \mathbf{N}_{2}^{2} \right\rangle^{\frac{1}{2}} \right\} \\ \\ \\ \\ &= \left\{ \frac{1}{2} -$$

2.3. The fractal Structure of the JULIA-Set.

A JULIA-set is a complete invariant fractal with respect to forward- and backward-iteration. A j-th pre-image (in a backward-iteration) and a k-th image (in a forward-iteration) starting from the repeller (\mathbb{H}_{11} given by equation 2.1.2¹) are to be obtained in the following way:

2.3¹. Images:
$$\mathbb{R}^{(+1)} = \mathbb{H}_{[1]}^2 + \mathbb{N}$$
, $\mathbb{R}^{(+2)} = [\mathbb{R}^{(+1)}]^2 + \mathbb{N}$,..., $\mathbb{R}^{(+K)} = [\mathbb{R}^{(+K-1)}]^2 + \mathbb{N}$,....
2.3². Pre-images: $\mathbb{R}_{1^2}^{(-1)} = \pm (\mathbb{H}_{[1]} - \mathbb{N})^{\frac{1}{2}}$, $\mathbb{R}_{1^2}^{(-2)} = \pm (\mathbb{R}_{1^2}^{(-1)} - \mathbb{N})^{\frac{1}{2}}$,.....

Because $(\mathbb{H}_{[1]})$ is a point of the JULIA-set, $\mathbb{R}^{(+K)}$ and $\mathbb{R}^{(-J)}$ cannot in the basin of attraction of infinity otherwise the initial point $(\mathbb{H}_{[1]})$ would have to be part of the escape-set too. On the other hand, both kinds of images cannot be in the interior (the prisoner-set), because then $(\mathbb{H}_{[1]})$ would then have to be from prisoner-set too, what again is not the case. Thus $\mathbb{R}^{(+K)}$ and $\mathbb{R}^{(-J)}$ must be from the boundary (the JULIAset). The reason for all this can also be found in the continuity of the quadratic transformation. Arbitrarily close to the images and pre-images there are escaping- and prisoner-points and the continuity of iteration implies, neighbourhood relation must hold for the whole set of transformation points. This finally leads to the statement, the JULIA-set is invariant with respect to forward- and backward-transformation as well.

The total, unlimited set of images and pre-images from the repeller-fixed-point on Julia-set determines the fractal structure of the JULIA-set.

3. Symmetries of a related JULIA-Network.

It is obvious from equations (2.1.2¹) and (2.1.2²), the fixed-points ($\mathbb{H}_{[1\&2]}$) of the network (escape-prisoner- and JULIA-set) obtained from iteration (1³) depend on selection of (N) only. Thus (16)

different choices of (N's) chosen appropriately from the black part of the MANDELBROT-set will define (16) different fixed-points $(\mathbf{H}_{[1]})$ for JULIA-sets as square-points of a hyper-cube. This hyper-cube together with the JULIA-sets belonging to each of the square-points will represent a related JULIAnetwork. The symmetry-properties of this JULIA-network is to be obtained on base of a hyper-cube's symmetry-group extended by some additional considerations.

The symmetry-group of a cube can be derived from the symmetry-group of a square. With this knowledge in mind all hints are provided to further obtain the symmetry-group of a hyper-cube. The symmetry-group of a hyper-cube with additional considerations will then finally lead to the symmetry-properties of the related JULIA-network.

3.1. The Symmetries of a Square.

The symmetry-group of a square can best be described by the group-table below, consisting of (64) permutations of the square-points (contained in the entries of the table) obtained when (8) operations act on the square. The (8) operations consist of:

- The identity-operation (id) to reinstall the starting configuration,
- (3) right-turning rotations ($[r_1 = \pi/2] \land [r_2 = \pi] \land [r_3 = 3\pi/2]$) around the centre of the square,
- (4) flip-operations $(f_1^{f_2}f_3^{f_3}f_4)$ with respect to indicated directions.

The permutations within entries $(1 \rightarrow 64)$ of the group-table have the meaning:

- Positions of square-points after an operation of column(0) having acted on the square
- Positions of square-points after operation of row(0) being performed on top of operation in column(0).

The yellow-marked sub-group is the cyclic group of the square.

26

3.2. Symmetries of a Cube.

From symmetry-group of a square, (3) symmetry-sub-groups of a cube can be derived by replacing:

- Rotations around centre of square by right-turning rotations (R₁^R₂^R₃) around each of the axes (AB^CD^EF):
 - $\blacktriangleright \left([\text{AB} \perp \left\langle {_0}^{4} {_5}^{5} {_6}^{7} \right\rangle \right] \land [\text{CD} \perp \left\langle {_0}^{1} {_3}^{2} {_7}^{6} {_5} \right\rangle] \land [\text{EF} \perp \left\langle {_0}^{3} {_1}^{2} {_5}^{6} {_4}^{7} \right\rangle \right)$
- Flip-operations $(f_1^f_2^f_3^f_4)$ with respect to directions (black^red^blue^green) respectively replaced by mirror-operations $(m_1^m_2^m_3^m_4)$ with respect to appropriate mirror-planes:
 - ▶ $(NKLM)-m_1-, (0264)-m_2-, (GHIJ)-m_3- and (1573)-m_4-plane for rotation in AB-direction (Mathematical States))$
 - ▶ $(OPQR)-m_1-$, $(0167)-m_2-$, $(NKLM)-m_3-$ and $(2543)-m_4$ -plane for rotation in CD-direction
 - ▶ $(OPQR)-m_1-, (0563)-m_2-, (GHIJ)-m_3- and (1274)-m_4-plane for rotation in EF-direction.$

Under these conditions one will obtain (3) symmetry-sub-groups of a cube with respect to the directions (AB^CD ^EF), each one is isomorphic with the symmetry-group of a square.

The first sub-group based on direction (AB) follows immediately with (64) elements, which belonging to multiplications of operations (column(0)) and operations (row(0)):

Udo E. Steinemann, About Structure of a connected Quaternion-Julia-Set and Symmetries of a related JULIA-Network, 1/10/2020.

A second sub-group based on direction (CD) follows next with (64) elements belonging to multiplications of operations (column(0)) and operations (row(0)):

Finally one obtains a sub-group based on direction (EF) which follows next with (64) elements belonging to all multiplications of operations (column(0)) and operations(row(0)):

	*	id	R_1	$\mathbf{R_2}$	R_3	m ₁	m ₂	m_3	m_4
	id	$\begin{smallmatrix}&2&6&7&3\\&0&1&5&4\end{smallmatrix}$	$\begin{smallmatrix}&3&2&6&7\\&4&0&1&5\end{smallmatrix}$	$\begin{smallmatrix}&7&3&2&6\\&5&4&0&1\end{smallmatrix}$	$\begin{smallmatrix}&6&7&3&2\\&1&5&4&0\end{smallmatrix}$	$\begin{smallmatrix}&3&7&6&2\\&4&5&1&0\end{smallmatrix}$	$\begin{smallmatrix}&2&3&7&6\\&4&5&1\end{smallmatrix}$	$\begin{smallmatrix}&6&2&3&7\\&1&0&4&5\end{smallmatrix}$	$\begin{smallmatrix}&7&6&2&3\\&5&1&0&4\end{smallmatrix}$
		= id	$= \mathbf{R_1}$	$= \mathbf{R_2}$	$= R_3$	$= \mathbf{m_1}$	$= m_2$	$= \mathbf{m_3}$	$= m_4$
	R ₁	$\begin{smallmatrix}&3&2&6&7\\&4&0&1&5\end{smallmatrix}$	$\begin{smallmatrix}&7&3&2&6\\&5&4&0&1\end{smallmatrix}$	$\begin{smallmatrix}&6&7&3&2\\1&5&4&0\end{smallmatrix}$	$\begin{smallmatrix}&2&6&7&3\\&0&1&5&4\end{smallmatrix}$	$\begin{smallmatrix}&7&6&2&3\\&5&1&0&4\end{smallmatrix}$	$\begin{smallmatrix}&3&7&6&2\\&4&5&1&0\end{smallmatrix}$	$\begin{smallmatrix}&2&3&7&6\\&4&5&1\end{smallmatrix}$	$\begin{smallmatrix}&6&2&3&7\\&1&0&4&5\end{smallmatrix}$
		$= \mathbf{R_1}$	$= \mathbf{R_2}$	$= \mathbf{R_3}$	= id	$= m_4$	$= m_1$	$= m_2$	$= m_3$
EF	R ₂	$\begin{smallmatrix}&7&3&2&6\\&5&4&0&1\end{smallmatrix}$	$\begin{smallmatrix}&6&7&3&2\\1&5&4&0\end{smallmatrix}$	$\begin{smallmatrix}&2&6&7&3\\0&1&5&4\end{smallmatrix}$	$\begin{smallmatrix}&3&2&6&7\\&4&0&1&5\end{smallmatrix}$	$\begin{smallmatrix}&6&2&3&7\\1&0&4&5\end{smallmatrix}$	$\begin{smallmatrix}&7&6&2&3\\&5&1&0&4\end{smallmatrix}$	$\begin{smallmatrix}&3&7&6&2\\&4&5&1&0\end{smallmatrix}$	$\begin{smallmatrix}&2&3&7&6\\&4&5&1\end{smallmatrix}$
		$= \mathbf{R_2}$	$= \mathbf{R_3}$	= id	$= \mathbf{R_1}$	$= \mathbf{m_3}$	$= m_4$	$= \mathbf{m_1}$	$= m_2$
	R ₃	$\begin{smallmatrix}&6&7&3&2\\1&5&4&0\end{smallmatrix}$	$\begin{smallmatrix}&2&6&7&3\\0&1&5&4\end{smallmatrix}$	$\begin{smallmatrix}&3&2&6&7\\&4&0&1&5\end{smallmatrix}$	$\begin{smallmatrix}&7&3&2&6\\&5&4&0&1\end{smallmatrix}$	$\begin{smallmatrix}&2&3&7&6\\&4&5&1\end{smallmatrix}$	$\begin{smallmatrix}&6&2&3&7\\1&0&4&5\end{smallmatrix}$	$\begin{smallmatrix}&7&6&2&3\\&5&1&0&4\end{smallmatrix}$	$\begin{smallmatrix}&3&7&6&2\\&4&5&1&0\end{smallmatrix}$
		$= \mathbf{R_3}$	= id	$= \mathbf{R_1}$	$= \mathbf{R_2}$	$= m_2$	$= \mathbf{m_3}$	$= m_4$	$= m_1$
OPQR	$\mathbf{m_1}$	$\begin{smallmatrix}&3&7&6&2\\&4&5&1&0\end{smallmatrix}$	$\begin{smallmatrix}&2&3&7&6\\&4&5&1\end{smallmatrix}$	$\begin{smallmatrix}&6&2&3&7\\1&0&4&5\end{smallmatrix}$	$\begin{smallmatrix}&7&6&2&3\\&5&1&0&4\end{smallmatrix}$	$\begin{smallmatrix}&2&6&7&3\\0&1&5&4\end{smallmatrix}$	$\begin{smallmatrix}&3&2&6&7\\&4&0&1&5\end{smallmatrix}$	$\begin{smallmatrix}&7&3&2&6\\&5&4&0&1\end{smallmatrix}$	$\begin{smallmatrix}&6&7&3&2\\1&5&4&0\end{smallmatrix}$
		$= m_1$	$= m_2$	$= m_3$	$= m_4$	= id	$= \mathbf{R_1}$	$= \mathbf{R_2}$	$= R_3$
0563	$\mathbf{m_2}$	$\begin{smallmatrix}&2&3&7&6\\&4&5&1\end{smallmatrix}$	$\begin{smallmatrix}&6&2&3&7\\1&0&4&5\end{smallmatrix}$	$\begin{smallmatrix}&7&6&2&3\\&5&1&0&4\end{smallmatrix}$	$\begin{smallmatrix}&3&7&6&2\\&4&5&1&0\end{smallmatrix}$	$\begin{smallmatrix}&6&7&3&2\\1&5&4&0\end{smallmatrix}$	$\begin{smallmatrix}&2&6&7&3\\0&1&5&4\end{smallmatrix}$	$\begin{smallmatrix}&3&2&6&7\\&4&0&1&5\end{smallmatrix}$	$\begin{smallmatrix}&7&3&2&6\\&5&4&0&1\end{smallmatrix}$
		$= m_2$	$= m_3$	$= m_4$	$= m_1$	$= \mathbf{R_3}$	= id	$= \mathbf{R_1}$	$= \mathbf{R_2}$
GHIJ	m 3	$\begin{smallmatrix}&6&2&3&7\\1&0&4&5\end{smallmatrix}$	$\begin{smallmatrix}7&6&2&3\\5&1&0&4\end{smallmatrix}$	$\begin{smallmatrix}&3&7&6&2\\&4&5&1&0\end{smallmatrix}$	$\begin{smallmatrix}&2&3&7&6\\&4&5&1\end{smallmatrix}$	$\begin{smallmatrix}&7&3&2&6\\&5&4&0&1\end{smallmatrix}$	$\begin{smallmatrix}&6&7&3&2\\1&5&4&0\end{smallmatrix}$	$\begin{smallmatrix}&2&6&7&3\\0&1&5&4\end{smallmatrix}$	$\begin{smallmatrix}&3&2&6&7\\&4&0&1&5\end{smallmatrix}$
		$= m_3$	$= m_4$	$= \mathbf{m_1}$	$= \mathbf{m_2}$	$= \mathbf{R_2}$	$= \mathbf{R_3}$	= id	$= \mathbf{R_1}$

Udo E. Steinemann, About Structure of a connected Quaternion-Julia-Set and Symmetries of a related JULIA-Network, 1/10/2020.

In addition (4) flip-operations $(F_5 F_6 F_7 F_8)$ with respect to the space-diagonals of the cube will have be taken into consideration. The properties of these operations are summarized in the next table:

*	id	$\mathbf{f_5}$	f ₆	f ₇	f ₈
id	$\begin{smallmatrix}&4&5&6&7\\&0&1&2&3\end{smallmatrix}$	$\begin{smallmatrix}&2&3&6&1\\&0&7&4&5\end{smallmatrix}$	$\begin{smallmatrix}&2&3&0&7\\&6&1&4&5\end{smallmatrix}$	$\begin{smallmatrix}&4&3&0&1\\&6&7&2&5\end{smallmatrix}$	$\begin{smallmatrix}&2&5&0&1\\&6&7&4&3\end{smallmatrix}$
	= id	$= \mathbf{f_5}$	$= f_6$	$= \mathbf{f_7}$	$= f_8$
f_5	$\begin{smallmatrix}&2&3&6&1\\&0&7&4&5\end{smallmatrix}$	$\begin{smallmatrix}&4&5&6&7\\&0&1&2&3\end{smallmatrix}$	$\begin{smallmatrix}&4&5&0&1\\&6&7&2&3\end{smallmatrix}$	$\begin{smallmatrix}&2&5&0&7\\&6&1&4&3\end{smallmatrix}$	$\begin{smallmatrix}&4&3&0&7\\&6&1&2&5\end{smallmatrix}$
	$= f_5$	= id	Α	= id	B
f ₆	$\begin{smallmatrix}&2&3&0&7\\&6&1&4&5\end{smallmatrix}$	$\begin{smallmatrix}&4&5&0&1\\&6&7&2&3\end{smallmatrix}$	$\begin{smallmatrix}&4&5&6&7\\&0&1&2&3\end{smallmatrix}$	$\begin{smallmatrix}2&5&6&1\\0&7&4&3\end{smallmatrix}$	$\begin{smallmatrix}&4&3&6&1\\&0&7&2&5\end{smallmatrix}$
	$= f_6$	Α	= id	C	D
f ₇	$\begin{smallmatrix}&4&3&0&1\\&6&7&2&5\end{smallmatrix}$	$\begin{smallmatrix}&2&5&0&7\\&6&1&4&3\end{smallmatrix}$	$\begin{smallmatrix}&2&5&6&1\\&0&7&4&3\end{smallmatrix}$	$\begin{smallmatrix}&4&5&6&7\\&0&1&2&3\end{smallmatrix}$	$\begin{smallmatrix}&2&3&6&7\\&0&1&4&5\end{smallmatrix}$
	$= f_7$	= id	C	= id	E
f ₈	$\begin{smallmatrix}&2&5&0&1\\&6&7&4&3\end{smallmatrix}$	$\begin{smallmatrix}&4&3&0&7\\&6&1&2&5\end{smallmatrix}$	$\begin{smallmatrix}&4&3&6&1\\&0&7&2&5\end{smallmatrix}$	$\begin{smallmatrix}&2&3&6&7\\&0&1&4&5\end{smallmatrix}$	$\begin{smallmatrix}&4&5&6&7\\&0&1&2&3\end{smallmatrix}$
	$= f_8$	В	D	E	= id
4		6			

Thus finally (25) symmetry-operations in total will make up the symmetry-group of a cube.

3.3. <u>Symmetries of a Hyper-Cube.</u>

If one replaces in a cube:

- Each pair of parallel planes involved in one of the rotations $(R_1 \vee R_2 \vee R_3)$ by a quadruple of cubes (from hyper-cube's structure) with surfaces parallel to a perpendicular common axis of rotation out of $(\alpha\beta \vee \gamma\delta \vee \epsilon\zeta)$,
- Each mirror-plane of a cube by a 3-dimensional object with a pair of parallel planes suitable for a further more mirror-operation,

(3) symmetry-sub-groups of a hyper-cube are obtained, each isomorphic with the symmetry-group of a square and a symmetry-sub-groups of a cube. Each symmetry-sub-group of the hyper-cube consists of:

- Right-turning rotations ($R_1 \wedge R_2 \wedge R_3$), around a ($\alpha\beta \lor \gamma\delta \lor \epsilon\zeta$)-axis,
- Mirror-operation $(M_1 \land M_2 \land M_3 \land M_4)$ with respect to the appropriate mirror-objects.

The first sub-group based on direction $(\alpha\beta)$ follows immediately with (64) permutations according to all multiplications of operations(column(0)) and of operations(row(0)):

A second sub-group based on direction $(\gamma \delta)$ follows next with (64) permutations according to all multiplications of operations(olumn(0)) and of operations(row(0)):

And finally a sub-group based on direction ($\epsilon\zeta$) with (64) permutations will follow according all multiplications of operations(column(0)) and operations(row(0)):

Udo E. Steinemann, About Structure of a connected Quaternion-Julia-Set and Symmetries of a related JULIA-Network, 1/10/2020.

In addition to these (21) symmetry-operations (8) flip-operations will have be considered, due to the (8) quaternion-diagonals of the hypercube:

Together with (200) symmetry-operations for the (8) inner cubes of a hyper-cube, presumably (232) different symmetry-operation in total have to be counted for a hyper-cube and are responsible for its symmetry-group.

3.4. Symmetry-Group of the related JULIA-Network.

The (16) different fixed—points $(\mathbb{H}_{[1^{-}J\in(0,15)]})$ by definition from above will form a hyper—cube in quaternion—space. Thus a probe—point moving from $(\mathbb{H}_{[1^{-}M]})$ to $(\mathbb{H}_{[1^{-}N]})$ by execution of a hyper—cube's symmetry—operations will change its (N) fluently from $(\mathbb{N}_{[M]})$ to $(\mathbb{N}_{[N]})$. Because any image or pre—image of the probe—point must follow equations (2.3^1. \land 2.3^2) in any position of the probe—point, they will always be adapted in relation to the probe—point's location. Therefore the probe—point in essence mediates between the JULIA—sets with fixed—points ($\mathbb{H}_{[1^{\wedge}M]}$) and ($\mathbb{H}_{[1^{\wedge}M]}$).

In summery one may say, that the related JULIA-network under the action of any symmetry-operation of a hyper-cube will remain completed in itself, related JULIA-network and the symmetry-operations of a hyper-cube will built a symmetry-group.

4. <u>Summary.</u>

The iteration of sequence (1^3) in quaternion-space – with restrictions from MANDELBROT-set on the complex components of its iteration-constant – resulted in a network of (3) sets. An unbounded escape-set (with trajectories escaping to infinity) accompanied by a set caught in a limited area (prisoner-set,

whose trajectories tended to a sink-point) and the boundary-set of the prisoner-set built by points acting repulsively on points from escape- and prisoner-set as well.

The iteration stopped if the sink-point of the prisoner-set and a fixed repeller-point on JULIA-set had been obtained, that is, when equality between the iteration's predecessor- and successor-state had been reached. A Quaternion-condition for this stop-event (the fixed-point-condition) could be formulized and - by taking into account the HAMILTONian rules - could be separated into three sub-conditions (according to the quaternion-space's complex subspaces). Every one of these sub-conditions could subsequently be solved independently. On base of these results it became possible to express the quaternion fixed-points of prisoner- and JULIA-set as well.

With knowledge of the fixed-repeller-point of a JULIA-set it became possible to describe the structure of the JULIA-set by the set of images and pre-images, which are obtained from forward- or backward-iteration relative to the fixed-repeller-point.

Fixed—points and JULIA—set of the network, obtained by iterative execution of sequence (1^3.) will only depended on the choice of the actual iteration—constant. Therefore, (16) constants appropriately chosen from black part of the MANDELBROT—set will make it possible to arrange the repeller—fixed—points of the iteratively obtained JULIA—sets in the square—points of a hyper—cube. Fixed—points and their JULIA—sets positioned this way will then represent a related JULIA—network. The set of quaternion—points of the related JULIA—network together with the symmetry—operations of a hyper—cube will form the symmetry—group of the related JULIA—network.

5. <u>References.</u>

[1]	H. O. Pleitgen,	Chaos and Fractals, New Frontiers of Science, Springer 1992.
	H. Jürgens,	
	D. Saupe:	

- [2] A. Douady,
J. H. Hubbard:Étude dynamique des pôlynomes complexes, Publications Mathematique d'Orsay,
84-02. Université de Paris-Sud, 1984.
- [3] B. B. Mandelbrot: Fractal aspects of the iteration of $z \rightarrow \lambda z(1-z)$ for complex λ and z, Annals N.Y. Acadey of Sciences 357, 1980.