About
 Structure of a connected Quaternion-JULIA-Set and

 Symmetries of a related JULIA-Network(1-10-2020).

Udo E. Steinemann.
Findeisen-Str. 5/7
D-71665 Vaihingen/Enz
Germany
udo.steinemann@t-online.de

A. Abstract

If a variable is replace by its square and subsequently enlarged by a constant during a number of iterationsteps in quaternion-space, a network of (3) sets will be built gradually. As long as for the iterationconstant certain conditions are fulfilled, the network will consist of: an unbounded set (escape-set) with trajectories escaping to infinity during course of the iteration, a bounded set (prisoner-set) with trajectories tending to a sink-point and a further bounded one (JULIA-set) with a fixed-point as repeller having a repulsive effect on all points of both the other sets. The iteration will continue until the attracting sink-point of prisoner-set and the repelling fixed-point on JULIA-set have been found. This situation is reached if predecessor- and successor-state of the iteration became equal. The fixed-point-condition provisionally formulated in general terms of quaternions, can be separated into (3) sub-conditions. When heeding the HAMILTONian-rules for interactions of the imaginary sub-spaces of the quaternion-space, each sub-condition will be appropriate for one imaginary sub-spaces and independently debatable. Knowledge of fixed-points from this fundamental network will one enable to study the structure of a connected JULIA-set.
The Iteration will start from (1) on real-axis, this is not a restriction on generality because an appropriate scaling on real-axis can always be archived this way. It will become obvious, that the fixedpoints in prisoner- and JULIA-set will depend on the iteration-constant only. Thus (16) different constants chosen appropriately will enable to arrange (16) fixed-points of JULIA-sets in the squarepoints of a hyper-cube and thereby together with the JULIA-sets to built a related JULIA-network. The symmetry-properties of this related JULIA-network can be studied on base of a hyper-cube's symmetrygroup extended by some additional considerations.

1. Introduction.

In the following attention is applied to the results of an iteration, which takes place in quaternion-space (a space with hyper-cubes with its space-elements) a layout of this is given next:

Each hyper-cube:

- Is surrounded by (8) cubes each one with (6) surfaces. Thus all together, cubes will have (48) surfaces.
- Because the cubes will share surfaces, only (24) surfaces will have to be counted effectively.

The quaternion-space is spanned by a real unit-vector (e) vertical to a tripod of imaginary unit-vectors $\left\{\dot{i}^{\wedge} \boldsymbol{j}^{\wedge} \boldsymbol{d}\right\}$. Among these reference-vectors the HAMILTONian rules must hold:

1^1. $e^{2}=\left(-i^{2}\right)=\left(-j^{2}\right)=\left(-d^{2}\right)=1$
$\llbracket i j=(-j i j)=d \rrbracket \wedge \llbracket j d=(-d j)=i \rrbracket \wedge \llbracket d i=(-i d)=j \rrbracket$.
Any point in the space is given by:

- $\mathbb{Q}=e \mathrm{Q}_{0}+i \mathrm{Q}_{1}+j \mathrm{Q}_{2}+d \mathrm{Q}_{3} \Rightarrow\langle\mathbb{Q}=$ quaternion-variable $\rangle \wedge\left\langle\left[\mathrm{Q}_{0} \wedge \mathrm{Q}_{1} \wedge \mathrm{Q}_{2} \wedge \mathrm{Q}_{3}\right]=\right.$ real components \rangle.

A sequence:
1^2. $\left[\mathbb{Q} \rightarrow \mathbb{Q}^{2}+\left(\mathbb{N}=N_{0}+i N_{1}+j N_{2}+d N_{3}\right)\right]^{2}+\mathbb{N} \rightarrow \ldots \quad \Rightarrow \quad\langle\mathbb{N}=$ constant $\rangle \wedge\left\langle\left[N_{0} \wedge N_{1} \wedge N_{2} \wedge N_{3}\right]=\right.$ real components \rangle
iteratively executed is to considered next, where when noteing the HAMILTONian rules (1^1.) the following relations between \mathbb{Q} and \mathbb{Q}^{2} must hold:

Derivation $1 \sim 1$.						
$\mathbb{Q}=e \mathrm{Q}_{0}+i \mathrm{Q}_{1}+j \mathrm{Q}_{2}+d \mathrm{Q}_{3}$	-					
\|leads to		\dagger				
$\mathbb{Q}^{2}=\left(e Q_{0}+i Q_{1}+j Q_{2}+\boldsymbol{d} Q_{3}\right)^{2}$	-					
$\begin{gathered} \mathbb{Q}^{2}=e^{2} \mathrm{Q}_{0}{ }^{2}+i^{2} \mathrm{Q}_{1}{ }^{2}+j^{2} \mathrm{Q}_{2}{ }^{2}+d^{2} \mathrm{Q}_{3}{ }^{2}+ \\ i 2 Q_{0} \mathrm{Q}_{1}+j 2 \mathrm{Q}_{0} \mathrm{Q}_{2}+\boldsymbol{d} 2 \mathrm{Q}_{0} \mathrm{Q}_{3}+ \\ i\left(j \mathrm{Q}_{1} \mathrm{Q}_{2}+\boldsymbol{d Q _ { 1 } Q _ { 3 }) +}\right. \\ j\left(i Q_{2} Q_{1}+d Q_{2} Q_{3}\right)+ \\ d\left(i Q_{3} Q_{1}+j Q_{3} Q_{2}\right) \\ \hline \end{gathered}$	-	-				
\|leads to	-	with		\dagger	\dagger	
$\begin{aligned} & e^{2}=\left(-i^{2}\right)=\left(-j^{2}\right)=\left(-d^{2}\right)=1 \\ & i \cdot j \cdot j=(-j \cdot i)=d \\ & j \cdot d=(-d \cdot j)=i \\ & d \cdot i \cdot i=(-i \cdot d)=j \end{aligned}$		-				
$\begin{aligned} \mathbb{Q}^{2}= & \mathrm{Q}_{0}{ }^{2}-\mathrm{Q}_{1}{ }^{2}-\mathrm{Q}_{2}{ }^{2}-\mathrm{Q}_{3}{ }^{2}+ \\ & i 2 \mathrm{Q}_{1} \mathrm{Q}_{0}+j 2 \mathrm{Q}_{2} \mathrm{Q}_{0}+d 2 \mathrm{Q}_{3} \mathrm{Q}_{0}+ \\ & d \mathrm{Q}_{1} \mathrm{Q}_{2}-j \mathrm{Q}_{1} \mathrm{Q}_{3}-d \mathrm{Q}_{2} \mathrm{Q}_{1}+i \mathrm{Q}_{2} \mathrm{Q}_{3}+j \mathrm{Q}_{3} \mathrm{Q}-i \mathrm{Q}_{3} \mathrm{Q}_{2} \end{aligned}$	-					
\|leads to		\downarrow				
$\begin{aligned} & \mathbb{Q}^{2}= \mathbf{Q}_{0}{ }^{2}+i 2 Q_{1} \mathbf{Q}_{0}-\mathbf{Q}_{1}{ }^{2}+ \\ & Q_{0}{ }^{2}+j 2 Q_{2} Q_{0}-Q_{2}{ }^{2}+ \end{aligned}$	-					

$\mathrm{Q}_{0}{ }^{2}+\boldsymbol{d} 2 \mathrm{Q}_{3} \mathrm{Q}_{0}-\mathrm{Q}_{3}{ }^{2}-2 \mathrm{Q}_{0}{ }^{2}$			
\|leads to		\dagger	
$Q^{2}=\left(Q_{0}+i Q_{1}\right)^{2}+\left(Q_{0}+j Q_{2}\right)^{2}+\left(Q_{0}+d Q_{3}\right)^{2}-2 Q_{0}{ }^{2}$	\bullet	\bullet	
\mid leads to $\|\geqslant\|$ with \|	\dagger	\downarrow	
$\left.\left[\mathrm{Q}_{\mathrm{i}}=\mathrm{Q}_{0}+\mathbf{i} \mathrm{Q}_{1}\right] \wedge \llbracket \mathrm{Q}_{j}=\mathrm{Q}_{0}+\boldsymbol{j} \mathrm{Q}_{2}\right\rceil \wedge\left[\mathrm{Q}_{\mathrm{d}}=\mathrm{Q}_{0}+\boldsymbol{d} \mathrm{Q}_{3} \rrbracket\right.$		-	
$Q=\left(Q_{0}+i Q_{1}\right)+\left(Q_{0}+j Q_{2}\right)+\left(Q_{0}+d Q_{3}\right)-2 \mathrm{Q}_{0}$	-		

Without restriction on generality due to a free choice of an appropriate scaling on the e-axis, $\left(Q_{0}=1\right)$ can be assumed for (1~2.) and thus one may further write:

1~3. $\left[\left(\mathbb{P}=Q_{i}+Q_{j}+Q_{d}-2\right) \rightarrow\left(\mathbb{P}^{2}=Q_{i}{ }^{2}+Q_{j}{ }^{2}+Q_{d}{ }^{2}-2\right)+\mathbb{N}\right]^{2}+\mathbb{N} \rightarrow \ldots \quad N_{0}=N_{i 0}+N_{j 0}+N_{d 0}$
This iteration will run until its predecessor- and successor-state become equal. When certain restrictions on (\mathbb{N}) are observed, a network of (3) connected sets will be generated:

- An unbounded escape-set with trajectories escaping to infinity in execution-time of the iteration,
- A bounded prisoner-set with trajectories tending to a sink-point while the iteration is going on and
- A bounded JULIA-set with a fractal structure formed by points acting as repellers against all points of both the other sets.

At the moment iteration stops, (2) fixed-point have been generated:

- A repeller-point $\left(\mathbb{H}_{[1]}\right)$ on JULIA-set and
- A attractive sink-point $\left(\mathbb{H}_{[2]}\right)$ in prisoner-set.

From sequence (1~3.) the following condition for the fixed-points must hold:

- $Q_{i}{ }^{2}+Q_{j}{ }^{2}+Q_{d}{ }^{2}-Q_{i}-Q_{j}-Q_{d}+N_{0}+i N_{1}+j N_{2}+d N_{3}=0$.

This will result in the (2) fixed-point-solutions ($\mathbb{H}_{[1 \& 2]}$) with their components:

- $\left[\mathbb{H}_{i} \leftarrow Q_{i}\right] \wedge\left[\mathbb{H}_{j} \leftarrow Q_{j}\right] \wedge\left[\mathbb{H}_{d} \leftarrow Q_{d}\right]$.

Thus equation ($1^{\wedge} 3$.) can now be re-written as:

- $H_{i}^{2}+H_{j}^{2}+H_{d}^{2}-H_{i}-H_{j}-H_{d}+\mathrm{N}_{0}+i \mathrm{~N}_{1}+j \mathrm{~N}_{2}+d \mathrm{~N}_{3}=0$,
which under ($\mathrm{N}_{0}=\mathrm{N}_{\mathbf{i 0}}+\mathrm{N}_{\mathrm{j} 0}+\mathrm{N}_{d 0}$) can be separated into:
1^4. $\quad \mathrm{H}_{i}{ }^{2}-\mathrm{H}_{i}+\mathrm{N}_{i 0}+i \mathrm{~N}_{1}=0$
1^5. $\quad H_{j}^{2}-H_{j}+N_{j 0}+j N_{2}=0$
1~6. $\mathbb{H}_{d}^{2}-\mathbb{H}_{d}+\mathrm{N}_{d 0}+d \mathrm{~N}_{3}=0$.

2. About the Structure of a connected Ouaternion-JULIA-Set.

Searching for the fixed-points of an appropriate network (escape-, prisoner-and JULIA-set) seems to be a good way to enter the discussion on the structure of a connected JULIA-set. For further discussions an invariance of forward- and backward-iterations relative to the repelling fixed-point is of major interest.

Instead trying to find the fixed-points directly their projections in complex planes ($\left[e^{\wedge} \mathfrak{i}\right] \wedge\left[e^{\wedge} i\right] \wedge\left[e^{\wedge} d\right]$) (obtained via solutions of equations (1~4.-1^6.)) are used preliminary in order to specify them indirectly.

2.1. Fixed-Points from Interation ($1^{\wedge} 3$,) of Sequence ($1^{\wedge} 1$,).

From e.g. [1 \& 2] is known, that a network with complex escape-prisoner- and JULIA-set can be obtained, when a sequence like:
2.1^1. $\quad\left(\left[h=e h_{0}+i h_{1}\right] \rightarrow h^{2}+\left[\ell=e l_{0}+i l_{1}\right]\right)^{2}+\ell \rightarrow\left(\left(h^{2}+\ell\right)^{2}+\ell\right)^{2}+\ell \rightarrow \ldots \quad \Leftarrow \quad([h=$ variable $] \wedge[\ell=$ constant $])$.
is executed recursively and the iteration finally stops due to equality of its predecessor- and successorstate. This complex network will have properties comparable with the network specified from (1^3.) with the exception, it only exists in complex plane. For this complex network it ihas become obvious, there is a structural dichotomy. Depending on the sequence-constant (ℓ) both prisoner-and JULIA-set may behave differently:

- For a specific ℓ-set, the complex prisoner- and JULIA-set are connected (each on consists of one piece only) and the prisoner-set possesses a fixed-point as sink, while the JULIA-set has a fixedpoint as a repeller for the point-sets of the prisoner-set and escape-set as well.
- In case of an alternate $\boldsymbol{\ell}$-set prisoner- and JULIA-set will become CANTOR-sets, which means, they appear completely disconnected.
B. B. MANDELBROT [3] had the idea of picturing this dichotomy in a set of parameters (ℓ) varying in the complex plane. This leads directly to the MANDELBROT-set:

He coloured each point in the plane of ℓ-values black or white depending on whether the associated JULIA-sets respectively turned out to be one piece or dust.

What now a question about the characters of the complex solutions from equations ($\mathbf{1}^{\wedge} 4 . \mathbf{- 1}^{\wedge} 6$.) is concerned, it must be identified, that they are subjected to the same dichotomy as those in case of (2.1~1.). Solutions of ($1^{\wedge} 4 .-1^{\wedge} 6$.) only will become fixed-points, if the complex components $\left(N_{i 0}+i N_{1}\right) \wedge\left(N_{j 0}+j N_{2}\right)$ $\wedge\left(\mathrm{N}_{d 0}+d \mathrm{~N}_{3}\right)$ within (1^3.) are extracted from the black part of the MANDELBROT-set.

2.1.1. Conditions to find Components of Fixed-Points.

Under these conditions (1~4.) leads to the preliminary solutions:

- $\left.H_{i[1 \varepsilon 2]}=1 / 2 \pm 1 / 2\left\langle 1-4 N_{i 0}-i 4 N_{1}\right]\right\rangle^{1 / 2}$.

This can be further evaluated by settings:

- $1-4 N_{i 0}-i 4 N_{1}=(u-i x)^{2}=u^{2}-i 2 u x+x^{2}$
and leads via a fourth-degree-equation for (u) to the following solutions of (u) and (x):
- $\left.u= \pm\left\langle 1 / 2-2 N_{i 0}+《\left(1 / 2-2 N_{i 0}\right)^{2}-4 N_{1}{ }^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2}$
- $\left.\mathrm{x}= \pm 2 \mathrm{~N}_{1} /\left\langle 1 / 2-2 \mathrm{~N}_{i 0}+\left\langle\left(1 / 2-2 \mathrm{~N}_{i 0}\right)^{2}-4 \mathrm{~N}_{1}{ }^{2}\right\rangle\right\rangle^{1 / 2}\right\rangle^{1 / 2}$
and finally to:

$$
\text { 2.1.1~1. } \quad H_{i[1 \& 2]}=1 / 2 \pm\left\langle\left\langle 1 / 8-1 / 2 N_{i 0}+\|\left(1 / 8-1 / 2 N_{i 0}\right)^{2}-1 / 4 N_{1}{ }^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2} \mp i N_{1} /\left\langle 1 / 2-2 N_{i 0}+\left\langle\left(1 / 2-2 N_{i 0}\right)^{2}-4 N_{1}{ }^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2} .
$$

The attracting or repelling property of the fixed-points is in essence the derivation of the sequence for (\mathbb{P}) at the locations of $\mathbb{H}_{i[1 \& 2]}$. This derivation can be calculated in the same way as for the real case. A fixed-point is attractive, if the absolute value of the derivation at fixed-point location is (<1), it is repelling if (>1). Therefore one obtains:

- $\left|2 \mathbb{H}_{i[11 \mid}\right|>1 \rightarrow \mathbb{H}_{i[1]}$ is repelling and thus a point on corresponding JULIA-set.
- $\left|2 H_{i[2]}\right|<1 \rightarrow H_{i[2]}$ is attracting point and thus a sink in the corresponding prisoner-set.

More details about the derivations can be found in the deviation-scheme (2.1.1^1.):

Similarly (1~5.) will lead to the preliminary solutions:

- $\mathbb{H}_{j|1 \& 2|}=1 / 2 \pm 1 / 2\left\|1-4 N_{j 0}-j 4 N_{2}\right\|^{1 / 2}$.

This can be further evaluated by settings:

- $1-4 N_{j 0}-j 4 N_{2}=(v-j y)^{2}=v^{2}-j 2 v y+y^{2}$
and leads via a fourth-degree-equation for (v) to the following solutions for (v) and (y):
- $\left.\mathrm{v}= \pm\left\langle 1 / 2-2 \mathrm{~N}_{j 0}+\|\left(1 / 2-2 \mathrm{~N}_{j 0}\right)^{2}-4 \mathrm{~N}_{2}{ }^{2}\right\rangle^{2 / 2}\right\rangle^{1 / 2}$
- $\left.\mathrm{y}= \pm 2 \mathrm{~N}_{2} /\left\langle 1 / 2-2 \mathrm{~N}_{j 0}+\|\left(1 / 2-2 \mathrm{~N}_{j 0}\right)^{2}-4 \mathrm{~N}_{2}{ }^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2}$
and finally to:

$$
\text { 2.1.1~2. } \left.\quad H_{j[1 \& 2]}=1 / 2 \pm\left\langle\left(1 / 8-1 / 2 N_{j 0}+\|\left(1 / 8-1 / 2 N_{j 0}\right)^{2}-1 / 4 N_{2}^{2}\right\rangle^{2 / 3}\right\rangle^{1 / 2} \mp j N_{2} /\left\langle 1 / 2-2 N_{j 0}+\|\left(1 / 2-2 N_{j 0}\right)^{2}-4 N_{2}{ }^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2} .
$$

The attracting or repelling property of the fixed－points is in essence the derivation of the sequence for (\mathbb{P}) at the locations of $H_{j[1 \& 2]}$ ．This derivation can be calculated in the same way as for the real case．A fixed point is attractive，if the absolute value of the derivation at fixed－point location is（ <1 ），it is repelling，if it is（ >1 ）．This leads in the actual cases to：
－$\left|2 \mathbb{H}_{j[1]}\right|>1 \rightarrow \mathbb{H}_{j[1]}$ is repelling and thus a point on corresponding JULIA－set．
－$\left|2 \mathbb{H}_{j[2]}\right|<1 \rightarrow \mathbb{H}_{j[2]}$ is attracting point and thus a sink in the corresponding prisoner－set．
More details about the derivations can be found in the following deviation－scheme（2．1．1＾2．）：

Derivation 2．1．1＾2．									
$\mathrm{H}_{j}{ }^{2}-\mathrm{H}_{j}+\mathrm{N}_{j 0}+j \mathrm{~N}_{2}=0$	\bigcirc								
｜leads to｜	\downarrow								
$\left.H_{j[1 \& 2]}=1 / 2 \pm 1 / 2 《 1-4 N_{j 0}-j 4 N_{2}\right\rangle^{1 / 2}$	\bigcirc	\bigcirc							
\mid leads to $\|>\|$ with｜	\downarrow	\downarrow							
$1-4 N_{j 0}-j 4 N_{2}=(v-j y)^{2}=\mathrm{v}^{2}-j 2 \mathrm{vy}+\mathrm{y}^{2}$		－	\bigcirc	\bigcirc					
$\mathbb{H}_{j[1 \& 2]}=1 / 2 \pm 1 / 2 \mathrm{v} \mp \boldsymbol{j}^{1 / 2} \mathbf{y}$	\bigcirc						\bigcirc		
｜where｜	\downarrow			\dagger					
\mid leads to｜			\downarrow						
$\left\|2 \mathrm{H}_{j[1]}\right\|=\left[(1+v)^{2}+\mathrm{y}^{2}\right]^{1 / 2}$	\bigcirc							\bigcirc	
	\wedge						\wedge		
$\left\|2 \mathrm{H}_{j \mid 2]}\right\|=\left[(1-\mathrm{v})^{2}+\mathrm{y}^{2}\right]^{1 / 2}$	－								－
$1-4 N_{j 0}=v^{2}+\mathrm{y}^{2}$				\bigcirc					
				\wedge					
$\left(4 \mathrm{~N}_{2}=2 \mathrm{vy}\right) \rightarrow\left(2 \mathrm{~N}_{2} / \mathrm{v}=\mathrm{y}\right)$				\bigcirc		－			
$1-4 N_{i 0}=v^{2}+4 N_{2}{ }^{2} / \mathrm{v}^{2}$			\bigcirc			＊			
			V			\wedge			
$\mathrm{v}^{4}-\left(1-4 \mathrm{~N}_{j 0}\right) \mathrm{v}^{2}+4 \mathrm{~N}_{2}^{2}=0$			\bigcirc		\bigcirc				
｜leads to｜					\downarrow			\downarrow	\downarrow
$\mathrm{v}^{2}=1 / 2-2 \mathrm{~N}_{j 0}+\left\langle\left(1 / 2-2 \mathrm{~N}_{j 0}\right)^{2}-4 \mathrm{~N}_{2}{ }^{2}\right\rangle^{1 / 2}$					\bigcirc				
｜lead＇s to｜					1				
$\mathrm{v}= \pm\left\langle\left\langle 1 / 2-2 \mathrm{~N}_{j 0}+\left\langle\left\langle\left(1 / 2-2 \mathrm{~N}_{j 0}\right)^{2}-4 \mathrm{~N}_{2}{ }^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2}\right.\right.$					\bigcirc	\bigcirc	\bigcirc		
\mid leads to｜						t	\wedge		
$\mathrm{y}= \pm 2 \mathrm{~N}_{2} /\left\langle\left\langle 1 / 2-2 \mathrm{~N}_{j 0}+\left\langle\left(1 / 2-2 \mathrm{~N}_{j 0}\right)^{2}-4 \mathrm{~N}_{2}{ }^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2}\right.$						\bigcirc	\bigcirc		
$\mid l e a d s$ to｜							\downarrow		
$\begin{gathered} H_{j\|1 \& 2\|}=1 / 2 \\ \pm \\ \left\langle 1 / 8-1 / 2 N_{j 0}+《\left(1 / 8-1 / 2 N_{j 0}\right)^{2}-1 / 4 N_{2}{ }^{2} \eta^{1 / 2}\right\rangle^{1 / 2} \\ \mp \\ j N_{2} /\left\langle\left(1 / 2-2 N_{j 0}+《\left(1 / 2-2 N_{j 0}\right)^{2}-4 N_{2}{ }^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2} \end{gathered}$							－		
$\left.\llbracket \mathrm{v}>0 \rrbracket \rightarrow \llbracket 0<\left\|2 \mathbb{H}_{j[1]}\right\|=(1+\|\mathrm{v}\|)\left[1+4 \mathrm{~N}_{2}{ }^{2} / \mathrm{v}^{2}(1+\|\mathrm{v}\|)^{2}\right]^{1 / 2}>1\right]$								\bigcirc	
$\left.\llbracket \mathrm{v}>0 \rrbracket \rightarrow \llbracket 0<\left\|2 \mathbb{H}_{j\|2\|}\right\|=(1-\|v\|)\left[1+4 \mathrm{~N}_{2}{ }^{2} / \mathrm{v}^{2}(1-\|v\|)^{2}\right]^{1 / 2}<1\right]$									\cdots
								\wedge	\wedge
$\left.\left.[\mathrm{v}<0] \rightarrow\left[0>\langle \|-\left\|2 \mathrm{H}_{j[1]}\right\|=-(\|v\|-1)\left[1+4 \mathrm{~N}_{2}^{2} / \mathrm{v}^{2}(1+\|\mathrm{v}\|)^{2}\right]^{1 / 2}\right\rangle\right\rangle<-1\right]$								\bigcirc	
$\left.\left.[v<0\rfloor \rightarrow \llbracket 0>\langle \|-\left\|2 H_{[\mid 21}\right\|=-(\|v\|+1)\left[1+4 \mathrm{~N}_{2}{ }^{2} / \mathrm{v}^{2}(1-\|v\|)^{2}\right]^{1 / 2}\right\rangle>-1\right]$									\bigcirc
｜leads to \mid								\dagger	1
$0<\left\|2 \mathbb{H}_{j \mid 11}\right\|>1$								\bigcirc	
$0<\left\|2 \mathbb{H}_{j 2}\right\|<1$									－
｜leads to｜								t	1
$\mathrm{H}_{j[1]}$ ：Component associated with repeller－point on quaternion－JULIA－set								\bigcirc	
$\mathrm{H}_{j[2]}$ ：Component associated with sink－point in quaternion－prisoner－set									－

And last not least fixed－point－condition（1＾6．）will lead to the preliminary solutions：
－ $\mathbb{H}_{d[1 \& 2]}=1 / 2 \pm 1 / 2\left\langle 1-4 N_{d 0}-d 4 N_{3} \|^{1 / 2}\right.$.
This can be further evaluated by settings：
－ $1-4 \mathrm{~N}_{d 0}-d 4 \mathrm{~N}_{3}=(\mathrm{w}-d \mathrm{z})^{2}=\mathrm{w}^{2}-d 2 \mathrm{wz}+\mathrm{z}^{2}$
and leads via a fourth－degree－equation for（w）to the following solutions for（w）and（z）：

- $w= \pm\left\langle 1 / 2-2 N_{d 0}+\left\langle\left(1 / 2-2 N_{d 0}\right)^{2}-4 N_{3}{ }^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2}$
- $\mathrm{z}= \pm 2 \mathrm{~N}_{3} /\left\langle 1 / 2-2 \mathrm{~N}_{d 0}+\left\langle\left(1 / 2-2 \mathrm{~N}_{d 0}\right)^{2}-4 \mathrm{~N}_{3}{ }^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2}$
and finally to:
2.1.1^3. $\left.\quad \mathbb{H}_{d[1 \& 2]}=1 / 2 \pm\left(\left\langle 1 / 8-1 / 2 N_{d 0}+《\left(1 / 8-1 / 2 N_{d 0}\right)^{2}-1 / 4 N_{3}{ }^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2} \mp d N_{3} /\left\langle/ 1 / 2-2 N_{d 0}+《\left(1 / 2-2 N_{d 0}\right)^{2}-4 N_{3}{ }^{2}\right\rangle^{1 / 3}\right\rangle^{1 / 2}$.

The attracting or repelling property of the fixed-points is in essence the derivation of the sequence for (\mathbb{P}) at the locations of $\mathbb{H}_{d[1 \& 2]}$. This derivation can be calculated in the same way as for the real case. A fixed-point is attractive, if the absolute value of the derivation at fixed-point location is (<1), it is repelling, if it is (>1). This leads in the actual cases to:

- $\left|2 \mathbb{H}_{d[1]}\right|>1 \rightarrow \mathbb{H}_{d[1]}$ is repelling and thus a point on corresponding JULIA-set.
- $\left|2 \mathbb{H}_{d|2|}\right|<1 \rightarrow \mathbb{H}_{d|2|}$ is attracting point and thus a sink in the corresponding prisoner-set.

More details about the derivation can be found in the following deviation-scheme (2.1.1^3.):

Derivation 2.1.1^3.										
$\mathbb{H}_{d}{ }^{2}-\mathbb{H}_{d}+\mathrm{N}_{d 0}+d \mathrm{~N}_{3}=0$	-									
$\|l e a d s ~ t o\|$	\dagger		\square							
$\mathrm{H}_{d[1 \& 21}=1 / 2 \pm 1 / 2\left\langle 1-4 N_{d 0}-d 4 N_{3}\right\rangle^{1 / 2}$	\bigcirc	-								
$\|l e a d s ~ t o\|>\mid$ with \mid	\downarrow	\downarrow								
$1-4 \mathrm{~N}_{d 0}-d 4 \mathrm{~N}_{3}=(\mathrm{w}-d \mathrm{z})^{2}=\mathrm{w}^{2}-d 2 \mathrm{wz}+\mathrm{z}^{2}$		-	\bigcirc	-						
$H_{d[18<2]}=1 / 2 \pm 1 / 2 \mathrm{~W} \mp \mathrm{~d}^{1 / 2 \mathrm{Z}}$	\bigcirc						\bigcirc			
\|where		\downarrow			7					
\mid leads to\|			\downarrow			*				
$\left\|2 \mathrm{H}_{d[1]}\right\|=\left[(1+\mathrm{w})^{2}+\mathrm{z}^{2}\right]^{1 / 2}$	\bigcirc							\bigcirc		
	\wedge						\wedge			
$\left\|2 \mathrm{H}_{d[2]}\right\|=\left[(1-\mathrm{w})^{2}+\mathrm{z}^{2}\right]^{1 / 2}$	-								\bigcirc	
$1-4 \mathrm{~N}_{d 0}=\mathrm{w}^{2}+\mathrm{z}^{2}$				\bigcirc						
				\wedge						
$\left(4 N_{3}=2 w z\right) \rightarrow\left(2 N_{3} / w=z\right)$				\bigcirc		\bigcirc				
$1-4 \mathrm{~N}_{d 0}=\mathrm{w}^{2}+4 \mathrm{~N}_{3}{ }^{2} / \mathrm{w}^{2}$			\bigcirc							
			V			\wedge				
$\mathrm{w}^{4}-\left(1-4 \mathrm{~N}_{d 0}\right) \mathrm{w}^{2}+4 \mathrm{~N}_{3}{ }^{2}=0$			\bigcirc		\bigcirc					
\|leads to						\dagger			\downarrow	\dagger
$\left.\mathrm{w}^{2}=1 / 2-2 \mathrm{~N}_{d 0}+\\|\left(1 / 2-2 \mathrm{~N}_{d 0}\right)^{2}-4 \mathrm{~N}_{3}{ }^{2}\right\rangle^{1 / 2}$					\bigcirc					
\|leads to \mid					\dagger					
$\mathrm{W} \pm\left\langle 11 / 2-2 \mathrm{~N}_{d 0}+\left\langle\left(1 / 2-2 \mathrm{~N}_{d 0}\right)^{2}-4 \mathrm{~N}_{3}{ }^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2}$					-	\bigcirc	\bigcirc			
\|leads to							\downarrow	\wedge		
$\mathrm{z}= \pm 2 \mathrm{~N}_{3} /\left\langle 1 / 2-2 \mathrm{~N}_{d 0}+\left\langle\left(1 / 2-2 \mathrm{~N}_{d 0}\right)^{2}-4 \mathrm{~N}_{3}{ }^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2}$						\bigcirc	\bigcirc			
\|leads to								\downarrow		
$\begin{gathered} H_{d \mid 18221}=1 / 2 \\ \pm \\ \left\langle 1 / 8-1 / 2 N_{d 0}+\left\langle\left(1 / 8-1 / 2 N_{d 0}\right)^{2}-1 / 4 N_{3}{ }^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2} \\ \mp \\ d N_{3} /\left\langle 1 / 2-2 N_{d 0}+\left\langle\left(1 / 2-2 N_{d 0}\right)^{2}-4 N_{3}{ }^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2} \end{gathered}$							-			
$[w>0] \rightarrow\left[0<\left\|2 H_{d[1]}\right\|=(1+\|w\|)\left[1+4 N_{3}{ }^{2} / w^{2}(1+\|w\|)^{2}\right]^{1 / 2}>1\right]$								\bigcirc		
$\llbracket w>0 \rrbracket \rightarrow \llbracket 0<\left\|2 \mathbb{H}_{d[2}\right\|=(1-\|w\|)\left[1+4 N_{3}{ }^{2} / w^{2}(1-\|w\|)^{2}\right]^{1 / 2}<1 \rrbracket$									\bigcirc	
								\wedge	\wedge	
$\left.\llbracket \mathrm{w}<0] \rightarrow \llbracket 0>\langle-\| 2 \mathrm{HI}_{d[1]}\left\|=-(\|w\|-1)\left[1+4 \mathrm{~N}_{3}{ }^{2} / \mathrm{w}^{2}(1+\|\mathrm{w}\|)^{2}\right]^{1 / 2}\right\rangle<-1\right]$								\bigcirc		
$[w<0] \rightarrow\left[0>\langle-\| 2 \mathbb{H}_{d \mid 2]}\left\|=-(\|w\|+1)\left[1+4 N_{3}{ }^{2} / w^{2}(1-\|w\|)^{2}\right]^{1 / 2}\right\rangle>-1\right]$									\bigcirc	
$\|l e a d s ~ t o\|$								\downarrow	\downarrow	
$0<\left\|2 \mathrm{H}_{d[1]}\right\|>1$								\bigcirc		
$0<\left\|2 \mathrm{H}_{d[2]}\right\|<1$									\bigcirc	
$\|l e a d s ~ t o\|$								\downarrow	\downarrow	
$\mathbb{H}_{d[1]}$: Component associated with repeller-point on quaternion-JULIA-set								\bigcirc		
$\mathbb{H}_{d[2]}$: Component associated with sink-point in quaternion-prisoner-set									\bigcirc	

2.1.2. Fixed-Points as Ouaternion-Points.

(HI) as a quaternion can generally be given in a form like:

- $\left.H=\left[\left({a_{0}}^{2}+{a_{1}}^{2}+{a_{2}}^{2}+{a_{3}}^{2}\right)^{1 / 2}\right] \cdot \exp \left\{\Theta\left(i a_{1}+j a_{2}+d a_{3}\right) /\left({a_{1}}^{2}+{a_{2}}^{2}+{a_{3}}^{2}\right)^{1 / 2}\right)\right\}$

$$
\begin{aligned}
& =T \cdot \exp \{\underline{n} \Theta\} \\
& =T \cdot \exp \left\{i \Psi_{1}+j \Psi_{2}+d \Psi_{3}\right\} \\
& =\left(t_{1} \cdot \exp \left\{\stackrel{i}{i} \Psi_{1}\right\}\right) \cdot\left(t_{2} \cdot \exp \left\{j \Psi_{2}\right\}\right) \cdot\left(\mathbf{t}_{3} \cdot \exp \left\{d \Psi_{3}\right\}\right) \\
& =t_{1}\left(\cos \left\{\Psi_{1}\right\}+i \sin \left\{\Psi_{1}\right\}\right) \cdot t_{2}\left(\cos \left\{\Psi_{2}\right\}+j \sin \left\{\Psi_{2}\right\}\right) \cdot t_{3}\left(\cos \left\{\Psi_{3}\right\}+d \sin \left\{\Psi_{3}\right\}\right)
\end{aligned}
$$

Because $\left(\mathbb{H}_{i[1 \& 2]} \wedge H_{j[1 \& 2]} \wedge \mathbb{H}_{d[1 \& 2]}\right)$ may be expressed due to (2.1.1^1. - 2.1.1^3.), this will further lead to:

- $t_{1}\left(\cos \left\{\Psi_{1}\right\}+i \sin \left\{\Psi_{1}\right\}\right) \Rightarrow$

$$
\mathbb{H}_{i[1 \& 2]}=\left\{1 / 2 \pm\left\langle 1 / 8-1 / 2 N_{i 0}+\left\langle\left(1 / 8-1 / 2 N_{i 0}\right)^{2}-1 / 4 N_{1}{ }^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2}\right\} \mp i\left\{N_{1} /\left\langle 1 / 2-2 N_{i 0}+\left\langle\left(1 / 2-2 N_{i 0}\right)^{2}-4 N_{1}{ }^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2}\right\}
$$

- $\mathrm{t}_{2}\left(\cos \left\{\Psi_{2}\right\}+j \sin \left\{\Psi_{2}\right\}\right) \Rightarrow$ $H_{j[1 \& 2]}=\left\{1 / 2 \pm\left\langle 1 / 8-1 / 2 N_{j 0}+\left\langle\left(1 / 8-1 / 2 N_{j 0}\right)^{2}-1 / 4 N_{2}{ }^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2}\right\} \mp j\left\{N_{2} /\left\langle 1 / 2-2 N_{j 0}+\left\langle\left(1 / 2-2 N_{j 0}\right)^{2}-4 N_{2}{ }^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2}\right\}$
- $\mathrm{t}_{3}\left(\cos \left\{\Psi_{3}\right\}+d \sin \left\{\Psi_{3}\right\}\right) \Rightarrow$

$$
H_{d[1 \& 2]}=\left\{1 / 2 \pm\left\langle\left(1 / 8-1 / 2 N_{d 0}+\left\langle\left(1 / 8-1 / 2 N_{d 0}\right)^{2}-1 / 4 N_{3}^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2}\right\} \mp d\left\{N_{3} /\left\langle 1 / 2-2 N_{d 0}+\left\langle\left(1 / 2-2 N_{d 0}\right)^{2}-4 N_{3}^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2}\right\} .\right.
$$

Thus the fixed-points for JULIA- and prisoner-set will appear as follows:

$$
\begin{aligned}
& \text { 2.1.2~1. } \quad H_{[1]}=H_{i[1]} \cdot H_{j[1]} \cdot H_{d[1]}-2 \\
& \left.=\left\{1 / 2+\left\langle 1 / 8-1 / 2 N_{i 0}+\left\langle\left(1 / 8-1 / 2 N_{i 0}\right)^{2}-1 / 4 N_{1}^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2}\right\}-i\left\{N_{1} /\left\langle 1 / 2-2 N_{i 0}+\|\left(1 / 2-2 N_{i 0}\right)^{2}-4 N_{1}^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2}\right\} . \\
& \left\{1 / 2+\left\langle\left\langle 1 / 8-1 / 2 N_{j 0}+\|\left(1 / 8-1 / 2 N_{j 0}\right)^{2}-1 / 4 N_{2}{ }^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2}\right\}-j\left\{N_{2} /\left\langle\left\langle 1 / 2-2 N_{j 0}+\left\langle\left(1 / 2-2 N_{j 0}\right)^{2}-4 N_{2}^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2}\right\} .\right. \\
& \left\{1 / 2+\left\langle\left(1 / 8-1 / 2 N_{d 0}+\left\langle\left\langle\left(1 / 8-1 / 2 N_{d 0}\right)^{2}-1 / 4 N_{3}^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2}\right\}-d\left\{N_{3} /\left\langle 1 / 2-2 N_{d 0}+\left\langle\left(1 / 2-2 N_{d 0}\right)^{2}-4 N_{3}^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2}\right\}-2\right.\right. \\
& \text { 2.1.2^2. } \quad H_{[2]}=H_{i \mid 2]} \cdot H_{j \mid 2]} \cdot H_{d|2|}-2 \\
& \left.=\left\{1 / 2-\left\langle 1 / 8-1 / 2 N_{i 0}+\left\langle\left(1 / 8-1 / 2 N_{i 0}\right)^{2}-1 / 4 N_{1}{ }^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2}\right\}+i\left\{N_{1} /\left\langle/ 1 / 2-2 N_{i 0}+\|\left(1 / 2-2 N_{i 0}\right)^{2}-4 N_{1}^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2}\right\} . \\
& \left.\left\{1 / 2-\left\langle 1 / 8-1 / 2 N_{j 0}+\|\left(1 / 8-1 / 2 N_{j 0}\right)^{2}-1 / 4 N_{2}{ }^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2}\right\}+j\left\{N_{2} /\left\langle 1 / 2-2 N_{j 0}+\left\langle\left(1 / 2-2 N_{j 0}\right)^{2}-4 N_{2}^{2}\right\rangle^{2 / 2}\right\rangle^{1 / 2}\right\} . \\
& \left.\left.\left\{1 / 2-\left\langle 1 / 8-1 / 2 N_{d 0}+\|\left(1 / 8-1 / 2 N_{d 0}\right)^{2}-1 / 4 N_{3}{ }^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2}\right\}+d\left\{N_{3} /\left\langle 1 / 2-2 N_{d 0}+《\left(1 / 2-2 N_{d 0}\right)^{2}-4 N_{3}{ }^{2}\right\rangle^{1 / 3}\right\rangle^{1 / 2}\right\}-2 .
\end{aligned}
$$

2.3.The fractal Structure of the JULIA-Set.

A JULIA-set is a complete invariant fractal with respect to forward- and backward-iteration. A \mathbf{j}-th pre-image (in a backward-iteration) and a k-th image (in a forward-iteration) starting from the repeller ($H_{[1]}$ given by equation 2.1.2^1.) are to be obtained in the following way:
2.3^1. Images: $\mathbb{R}^{(+1)}=\mathbb{H}_{[1]}^{2}+\mathbb{N}, \mathbb{R}^{(+2)}=\left[\mathbb{R}^{(+1)}\right]^{2}+\mathbb{N}, \ldots ., \mathbb{R}^{(+K)}=\left[\mathbb{R}^{(+K-1)}\right]^{2}+\mathbb{N}, \ldots .$.
2.3^2. Pre-images: $\mathbb{R}_{1 \wedge 2}^{(-1)}= \pm\left(\mathbb{H}_{[1]}-\mathbb{N}\right)^{1 / 2}, \mathbb{R}_{1 \wedge 2}^{(-2)}= \pm\left(\mathbb{R}_{1 \wedge 2}{ }^{(-1)}-\mathbb{N}\right)^{1 / 2}, \ldots . ., \mathbb{R}_{1 \wedge 2}^{(-J)}= \pm\left(\mathbb{R}_{1 \wedge 2}^{(-\mathrm{J}+1)}-\mathbb{N}\right)^{1 / 2}, \ldots .$.

Because $\left(\mathbb{H}_{[1]}\right)$ is a point of the JULIA-set, $\mathbb{R}^{(+K)}$ and $\mathbb{R}^{(-J)}$ cannot in the basin of attraction of infinity otherwise the initial point ($\mathbb{H}_{[1]}$) would have to be part of the escape-set too. On the other hand, both kinds of images cannot be in the interior (the prisoner-set), because then ($\mathbb{H}_{[1]}$) would then have to be from prisoner-set too, what again is not the case. Thus $\mathbb{R}^{(+K)}$ and $\mathbb{R}^{(-J)}$ must be from the boundary (the JULIAset). The reason for all this can also be found in the continuity of the quadratic transformation. Arbitrarily close to the images and pre-images there are escaping- and prisoner-points and the continuity of iteration implies, neighbourhood relation must hold for the whole set of transformation points. This finally leads to the statement, the JULIA-set is invariant with respect to forward-and backward-transformation as well.

The total, unlimited set of images and pre-images from the repeller-fixed-point on Julia-set determines the fractal structure of the JULIA-set.

3. Symmetries of a related JULIA-Network.

It is obvious from equations (2.1.2^1.) and (2.1.2^2.), the fixed-points ($\mathbb{H}_{[1 \& 2]}$) of the network (escape-prisoner- and JULIA-set) obtained from iteration (1^3.) depend on selection of (\mathbb{N}) only. Thus (16)
different choices of (\mathbb{N}^{\prime} s) chosen appropriately from the black part of the MANDELBROT-set will define (16) different fixed-points $\left(\mathbb{H}_{[1]}\right)$ for JULIA-sets as square-points of a hyper-cube. This hyper-cube together with the JULIA-sets belonging to each of the square-points will represent a related JULIAnetwork. The symmetry-properties of this JULIA-network is to be obtained on base of a hyper-cube's symmetry-group extended by some additional considerations.

The symmetry-group of a cube can be derived from the symmetry-group of a square. With this knowledge in mind all hints are provided to further obtain the symmetry-group of a hyper-cube. The symmetry-group of a hyper-cube with additional considerations will then finally lead to the symmetryproperties of the related JULIA-network.

3.1.The Symmetries of a Square.

The symmetry-group of a square can best be described by the group-table below, consisting of (64) permutations of the square-points (contained in the entries of the table) obtained when (8) operations act on the square. The (8) operations consist of:

- The identity-operation (id) to reinstall the starting configuration,
- (3) right-turning rotations ($\left.\left[r_{1}=\pi / 2\right] \wedge\left[r_{2}=\pi\right] \wedge\left[r_{3}=3 \pi / 2\right]\right)$ around the centre of the square,
- (4) flip-operations $\left(f_{1}{ }^{\wedge} f_{2}{ }^{\wedge} f_{3}{ }^{\wedge} f_{4}\right)$ with respect to indicated directions.

The permutations within entries $(1 \rightarrow 64)$ of the group-table have the meaning:

- Positions of square-points after an operation of column(0) having acted on the square
- Positions of square-points after operation of row(0) being performed on top of operation in column(0).

\star	id	r_{1}	r_{2}	r_{3}	f_{1}	f_{2}	f_{3}	f_{4}
id	$\begin{gathered} 0123 \\ 01_{1}{ }^{2}{ }^{2} \\ =\mathrm{id} \end{gathered}$	$\begin{gathered} 0_{1}^{1} 1^{2}{ }^{3} \\ 3_{0} 1_{2} \\ =r_{1} \end{gathered}$	$\begin{gathered} 0_{2}{ }^{1} 3^{2} 0^{3} \\ =0_{2} \\ =r_{2} \end{gathered}$	$\begin{gathered} { }^{0} 1_{1}{ }^{3} 2_{3}^{3} \\ =r_{3} \end{gathered}$	$\begin{gathered} 0_{3}{ }_{3}^{1} \mathbf{1}^{1} \mathbf{1}^{3} \\ =f_{1} \\ \hline \end{gathered}$	$\begin{gathered} 01_{0}{ }^{2}{ }^{3}{ }^{3}{ }^{0} \\ =f_{2} \end{gathered}$	$\begin{gathered} 0_{1}{ }_{1}{ }^{3}{ }^{3}{ }^{3}{ }_{2} \\ =f_{3} \end{gathered}$	$\begin{gathered} \mathbf{o}_{2} 1_{1} \mathbf{2 0}^{3}{ }^{3} \\ =f_{4} \end{gathered}$
r_{1}	$\begin{gathered} { }_{3}^{3}{ }_{3}{ }_{0}^{11} 1_{12}{ }^{2} \\ =r_{1} \\ \hline \end{gathered}$	$\begin{gathered} { }_{3}^{3} 0_{3}{ }^{1}{ }^{2}{ }_{1}^{1} \\ =r_{2} \\ \hline \end{gathered}$	$\begin{gathered} { }_{3}^{3} \mathbf{0}_{2} \mathbf{1 2}^{2} 0 \\ =\mathbf{r}_{3} \\ \hline \end{gathered}$	$\begin{gathered} 300_{1}^{1}{ }^{2} \\ 0.12 \\ =1 \mathrm{id} \end{gathered}$		$\begin{gathered} \mathbf{3}_{3} \mathbf{0}_{2}{ }^{1}{ }_{2}{ }^{2}{ }_{0} \\ =f_{1} \end{gathered}$	$\begin{gathered} 3_{3} 0_{3} \mathbf{1}_{2}{ }^{2} \\ =f_{2} \\ = \end{gathered}$	
r_{2}	$\begin{gathered} { }_{2}^{2}{ }^{3}{ }_{30}^{0}{ }^{1}{ }_{1} \\ =r_{2} \\ \hline \end{gathered}$	$\begin{gathered} { }_{2}^{2}{ }^{3}{ }_{2}^{0}{ }_{3}^{1}{ }^{1} \\ =\mathrm{r}_{3} \\ \hline \end{gathered}$	$\begin{gathered} c_{2}^{2}{ }^{3} 0_{2}{ }^{1}{ }_{3}^{3} \\ =1 \end{gathered}$	$\begin{gathered} 2_{3}^{3} 3_{0} 0_{1}^{1} \\ =r_{1} \\ = \end{gathered}$	$\begin{gathered} 2^{23} \mathbf{3}^{0} \mathbf{0}^{1} \\ = \\ =f_{3} \end{gathered}$	$\begin{gathered} { }^{2}{ }_{21}^{3}{ }^{0} 1_{0}^{1} \\ = \\ =f_{4} \\ \hline \end{gathered}$	$\begin{gathered} { }_{2}^{2} 3_{2} \mathbf{3}^{01}{ }_{10} \\ =f_{1} \end{gathered}$	$\begin{gathered} { }_{2}^{3}{ }^{3} 0_{2}{ }^{1} \\ =f_{2} \\ =f_{2} \end{gathered}$
r_{3}	$\begin{gathered} { }_{1}^{12}{ }_{2}^{3} 3_{3}^{0} \\ = \\ =r_{3} \\ \hline \end{gathered}$	$\begin{gathered} 1_{0} 2_{1} 3_{2}^{0} 0^{3} \\ =1 \mathrm{id} \end{gathered}$	$\begin{gathered} 1_{3} 2_{0}{ }^{3} 1_{1}^{0}{ }_{2} \\ =r_{1} \end{gathered}$	$\begin{gathered} 1_{2}{ }_{2} 3^{3}{ }_{0}^{0}{ }_{1} \\ = \\ =r_{2} \\ \hline \end{gathered}$	$\begin{gathered} 1_{0}{ }_{0}{ }^{3}{ }^{3}{ }_{2}^{0}{ }^{0} \\ = \\ =f_{2} \\ \hline \end{gathered}$	$\begin{gathered} { }_{1}^{1}{ }^{2}{ }^{3}{ }_{3}^{0}{ }_{2} \\ = \\ =f_{3} \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{1}_{2}^{2} \mathbf{1 O}^{\mathbf{3}} \mathbf{0}_{3} \\ =\mathrm{f}_{4} \\ \hline \end{gathered}$	$\begin{gathered} { }_{3}{ }_{2} 2_{2}{ }^{10}{ }^{0} 0 \\ = \\ =f_{1} \end{gathered}$
f_{1}	$\begin{gathered} 3_{3}{ }_{3}{ }_{2}^{1} \mathbf{1}_{10}^{0} \\ =\mathrm{f}_{1} \\ \hline \end{gathered}$	$\begin{gathered} 3_{0} 2_{3} 1_{2}^{0}{ }_{1} \\ =\mathrm{f}_{2} \\ \hline \end{gathered}$	$\begin{gathered} { }_{3}^{3}{ }_{10} 1_{3}{ }^{0}{ }_{2} \\ =f_{3} \\ \hline \end{gathered}$	$\begin{gathered} { }^{3}{ }^{2}{ }^{11} 1_{0}^{0} \\ =\mathrm{f}_{4} \\ \hline \end{gathered}$	$\begin{gathered} { }^{3}{ }_{0}^{2} 1_{1}^{1} \mathbf{1}_{2}^{0} \\ = \\ =10 \end{gathered}$	$\begin{gathered} 3_{3} 2_{01}^{1} 1_{1}^{0} \\ =r_{1} \\ = \end{gathered}$	$\begin{gathered} 3_{2}^{3} 2_{3}^{1} 0_{01}^{0} \\ = \\ =r_{2} \\ \hline \end{gathered}$	$\begin{gathered} { }^{3}{ }_{1}{ }_{2} 1_{1}^{1}{ }^{0}{ }_{0} \\ = \\ =r_{3} \\ \hline \end{gathered}$
f_{2}	$\begin{gathered} 0_{0}{ }_{0} \mathbf{3}^{2}{ }^{1}{ }^{1} \\ =f_{2} \end{gathered}$	$\begin{gathered} 0_{0}{ }^{3}{ }^{2} 3^{1} \\ =f_{3} \\ = \end{gathered}$	$\begin{gathered} \mathbf{0}_{2}{ }^{3}{ }_{1}^{2}{ }^{1}{ }^{1}{ }_{3} \\ =f_{4} \\ \hline \end{gathered}$	$\begin{gathered} 0_{3} \mathbf{3}_{2}{ }^{4} 1_{1}^{1} \\ =f_{1} \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{0}_{12} \mathbf{3}^{2} \mathbf{3}^{1}{ }_{0}^{0} \\ =r_{3} \\ \hline \end{gathered}$	$\begin{gathered} 0_{0} 3_{1}{ }_{2} 1_{1} \\ =\mathrm{id} \end{gathered}$	$\begin{gathered} 0_{3} 3_{0}{ }^{2} 1_{1}{ }_{2} \\ =r_{1} \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{0}_{2} 3_{3}^{2}{ }^{2} 1_{1}^{1} \\ =\mathbf{r}_{2} \\ \hline \end{gathered}$
f_{3}	$\begin{gathered} { }_{1}^{1} 0_{0} \mathbf{3}_{3}{ }^{2} \\ =f_{3} \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{1}_{2} 0_{1}^{3} 0_{0}^{2} \\ =f_{4} \\ = \end{gathered}$		$\begin{gathered} \mathbf{1}_{0}^{0} \mathbf{0}^{3}{ }^{2}{ }_{1} \\ =f_{2} \\ \hline \end{gathered}$	$\begin{gathered} { }_{2}^{1} 0_{0}{ }^{3}{ }^{0}{ }_{0}{ }^{1} \\ = \\ =r_{2} \end{gathered}$	$\begin{gathered} { }_{1}^{1} 0_{2} 3_{3}{ }^{2}{ }_{2} \\ =r_{3} \end{gathered}$	$\begin{gathered} 1_{0} 0_{1} 3_{2}^{2}{ }^{2} \\ =10 \\ =\mathrm{id} \end{gathered}$	$1_{3} 0_{0} 3_{1}{ }^{2}{ }_{2}$ $=r_{1}$ $=1$
f_{4}	$\begin{gathered} { }_{2}^{21} 1_{1} 0_{0} 0^{3} \\ =f_{4} \\ \hline \end{gathered}$	$\begin{gathered} { }_{2}^{2} 11_{2} 0_{1}^{3}{ }_{3} \\ =f_{1} \\ \hline \end{gathered}$	$\begin{gathered} 2_{0}{ }_{0} 0_{2}{ }^{3}{ }^{1} \\ =f_{2} \\ \hline \end{gathered}$	$\begin{gathered} 2_{1} 1_{0} 0_{3} \mathbf{3}_{2} \\ =f_{3} \\ \hline \end{gathered}$	$\begin{gathered} 2_{3} \mathbf{y}_{0}^{1} 0_{1} \mathbf{3}_{2} \\ = \\ =r_{1} \\ \hline \end{gathered}$	$\begin{gathered} { }_{2}^{2}{ }_{2}^{1}{ }^{0} 0_{0}{ }^{3} \\ =r_{2} \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{r}_{1} 1_{2} 0_{3}^{0}{ }^{3}{ }_{0} \\ =\mathrm{r}_{3} \\ \hline \end{gathered}$	
id			r_{1}		r_{2}		${ }_{3}$	
			$\underbrace{1}_{0}$					
f_{1}			f_{2}		f_{3}		f_{4}	

The yellow-marked sub-group is the cyclic group of the square.

3.2. Symmetries of a Cube.

From symmetry-group of a square, (3) symmetry-sub-groups of a cube can be derived by replacing:

- Rotations around centre of square by right-turning rotations ($\mathbf{R}_{\mathbf{1}}{ }^{\wedge} \mathbf{R}_{\mathbf{2}}{ }^{\wedge} \mathbf{R}_{\mathbf{3}}$) around each of the axes ($\mathrm{AB}^{\wedge} \mathrm{CD}^{\wedge} \mathrm{EF}$):

- Flip-operations ($f_{1} \wedge^{\wedge} f_{2}{ }^{\wedge} f_{3}{ }^{\wedge} f_{4}$) with respect to directions (black^red ${ }^{\wedge}$ blue ${ }^{\wedge}$ green) respectively replaced by mirror-operations $\left(m_{1}{ }^{\wedge} \mathbf{m}_{\mathbf{2}}{ }^{\wedge} \mathbf{m}_{3}{ }^{\wedge} \mathbf{m}_{4}\right)$ with respect to appropriate mirror-planes:
$-\langle N K L M\rangle-\mathrm{m}_{1}-,\langle 0264\rangle-\mathrm{m}_{2}-,\langle\mathrm{GHIJ}\rangle-\mathrm{m}_{3}-$ and $\langle 1573\rangle-\mathrm{m}_{4}-$ plane for rotation in AB -direction
- $\langle\mathrm{OPQR}\rangle-\mathrm{m}_{1}-,\langle 0167\rangle-\mathrm{m}_{2}-,\langle\mathrm{NKLM}\rangle-\mathrm{m}_{3}-$ and $\langle 2543\rangle-\mathrm{m}_{4}-$ plane for rotation in CD-direction
$-\langle O P Q R\rangle-m_{1}-,\langle 0563\rangle-m_{2}-,\langle G H I J\rangle-m_{3}-$ and $\langle 1274\rangle-m_{4}$-plane for rotation in EF-direction.
Under these conditions one will obtain (3) symmetry-sub-groups of a cube with respect to the directions ($\mathrm{AB} \wedge^{\wedge} \mathrm{CD}^{\wedge} \mathrm{EF}$), each one is isomorphic with the symmetry-group of a square.

The first sub-group based on direction (AB) follows immediately with (64) elements, which belonging to multiplications of operations(column(0)) and operations(row(0)):

A second sub-group based on direction (CD) follows next with (64) elements belonging to multiplications of operations(column(0)) and operations(row(0)):

Finally one obtains a sub-group based on direction (EF) which follows next with (64) elements belonging to all multiplications of operations(column(0)) and operations(row(0)):

	\star	id	R_{1}	\mathbf{R}_{2}	\mathbf{R}_{3}	m_{1}	m_{2}	m_{3}	m_{4}
EF	id	$\begin{gathered} 0^{2} 1_{5}{ }^{7}{ }^{3}{ }^{3} \\ =1 d \end{gathered}$	$\begin{gathered} 4^{3} 0^{2} 1_{5}^{7} \\ =R_{1} \\ \hline \end{gathered}$	$\begin{gathered} 5^{730}{ }^{36} \\ =R_{2} \\ \hline \end{gathered}$	$\begin{gathered} 1^{6} 5^{7} 4^{3}{ }^{2} \\ =R_{3} \end{gathered}$	$\begin{gathered} 4^{3}{ }^{7} 1^{6}{ }^{2} \\ =\mathrm{m}_{1} \end{gathered}$	$\begin{gathered} 0^{2}{ }_{4}^{3} 5^{7}{ }^{6} \\ =m_{2} \end{gathered}$	$\begin{gathered} 1^{6}{ }_{0}^{2} 4^{3}{ }^{7} \\ =m_{3} \\ \hline \end{gathered}$	$\begin{gathered} 5^{7} 1_{0}^{2}{ }_{4}^{3} \\ =m_{4} \end{gathered}$
	\mathbf{R}_{1}	$\begin{gathered} 4^{3} \mathbf{N 1}^{6}{ }^{7}{ }^{7} \\ =R_{1} \\ \hline \end{gathered}$	$\begin{gathered} 5^{7} 4^{3} 0^{2}{ }_{1}^{6} \\ =R_{2} \\ \hline \end{gathered}$	$\begin{gathered} 1_{5}{ }^{7} 4^{3}{ }^{2} \\ =R_{3} \\ \hline \end{gathered}$	$\begin{gathered} 0^{2} 1_{5}{ }^{7} 4^{3} \\ =\mathrm{id} \end{gathered}$	$\begin{gathered} 5^{7} 1_{0}^{2} 4^{3} \\ =m_{4} \\ \hline \end{gathered}$	$\begin{gathered} 35^{76} 1^{2} \\ =m_{1} \\ \hline \end{gathered}$	$\begin{gathered} 0_{4}^{3}{ }^{3}{ }^{6} \\ =m_{2} \\ \hline \end{gathered}$	$\begin{gathered} 1^{6}{ }^{2} 4^{3}{ }^{4}{ }^{7} \\ =m_{3} \\ \hline \end{gathered}$
	\mathbf{R}_{2}	$\begin{gathered} 5^{7} 4^{3}{ }^{3} \mathbf{2}_{1}{ }^{6} \\ =R_{2} \\ \hline \end{gathered}$	$\begin{gathered} 1^{6} 5^{7} 4^{3} 0^{2} \\ =R_{3} \\ \hline \end{gathered}$	$\begin{gathered} 0^{2}{ }^{6}{ }^{7}{ }^{3} 4^{3} \\ =\mathrm{id} \end{gathered}$	$\begin{gathered} { }_{4}^{3} 0_{1}^{26}{ }^{7} \\ =R_{1} \end{gathered}$	$\begin{gathered} 1^{6}{ }^{2} 4^{3}{ }^{7} \\ =m_{3} \end{gathered}$	$\begin{gathered} 5^{7} 1_{6} 0^{2}{ }^{3} \\ =m_{4} \\ \hline \end{gathered}$	$\begin{gathered} 4_{5}^{7} 1^{6}{ }^{2} \\ =\mathrm{m}_{1} \end{gathered}$	$\begin{gathered} 0_{4}^{3}{ }^{3}{ }^{6} \\ =m_{2} \end{gathered}$
	\mathbf{R}_{3}	$\begin{gathered} 1^{6} 5^{7} 4^{3} 0^{2} \\ =R_{3} \\ \hline \end{gathered}$	$\begin{gathered} 0^{2} 1{ }^{6} 5^{7} 4^{3} \\ =\mathrm{id} \end{gathered}$	$\begin{gathered} 4^{3} 0_{1}^{26}{ }^{7} \\ =R_{1} \end{gathered}$	$\begin{gathered} 5^{7} 4_{4} 0^{2}{ }^{6}{ }^{6} \\ =R_{2} \\ \hline \end{gathered}$	$\begin{gathered} 0^{2} 4^{3} 5^{7} 1^{6} \\ =\mathrm{m}_{2} \end{gathered}$	$\begin{gathered} 62^{2}{ }^{3}{ }^{7} \\ =\mathrm{m}_{3} \\ \hline \end{gathered}$	$\begin{gathered} 5^{7} 1^{6} 0^{2}{ }^{2}{ }^{3} \\ =m_{4} \end{gathered}$	$\begin{gathered} 4^{3} 5^{76} 1_{0}^{2} \\ =m_{1} \end{gathered}$
OPQR	m_{1}	$\begin{gathered} 4^{3} 5^{7} 1_{0}^{2} \\ =m_{1} \end{gathered}$	$\begin{gathered} 0^{2} 4^{3} 5^{7}{ }^{6}{ }^{6} \\ =m_{2} \end{gathered}$	$\begin{gathered} 1_{0}^{6} \mathbf{2 F}_{4}{ }^{7} \\ =\mathrm{m}_{3} \end{gathered}$	$\begin{gathered} 5^{7} 1_{1}^{6}{ }_{0}^{2}{ }_{4}^{3} \\ =m_{4} \end{gathered}$	$\begin{gathered} 0^{2} 1_{5} 7^{7} 4^{3} \\ =\mathrm{id} \end{gathered}$	$\begin{gathered} 4^{3}{ }^{3} 2_{1} 6_{5}{ }^{7} \\ =R_{1} \end{gathered}$	$\begin{gathered} 5^{7} 4^{3} 0^{2}{ }^{6} \\ =R_{2} \\ \hline \end{gathered}$	$\begin{gathered} 1^{6} 5^{7} 4_{4}^{3}{ }^{2} \\ =R_{3} \end{gathered}$
0563	\mathbf{m}_{2}	$\begin{gathered} 0^{2}{ }_{4}{ }^{3}{ }^{7}{ }^{6}{ }^{6} \\ =\mathrm{m}_{2} \\ \hline \end{gathered}$	$\begin{gathered} 60^{6} 3^{7}{ }^{7} \\ =\mathrm{m}_{3} \\ \hline \end{gathered}$	$\begin{gathered} 5^{7} 1_{0} 0^{2}{ }^{3} \\ =m_{4} \\ \hline \end{gathered}$	$\begin{gathered} 3_{5} 7_{1} 6_{0}{ }^{2} \\ =\mathrm{m}_{1} \\ \hline \end{gathered}$	$\begin{gathered} 1_{6}^{6}{ }^{7} 4^{3}{ }_{0}^{2} \\ =R_{3} \\ \hline \end{gathered}$	$\begin{gathered} 0^{2}{ }_{1}{ }^{6}{ }^{7}{ }^{3}{ }^{3} \\ =1 d \end{gathered}$	$\begin{gathered} 4^{3} \mathbf{2 1}_{1}{ }^{5}{ }^{7} \\ =R_{1} \\ \hline \end{gathered}$	$\begin{gathered} 5^{7}{ }^{3} 0_{0}^{2}{ }^{6} \\ =R_{2} \end{gathered}$
GHIJ	m_{3}	$\begin{gathered} \mathbf{1 0}_{0}^{2}{ }_{4}{ }^{7}{ }^{7} \\ =m_{3} \\ \hline \end{gathered}$	$\begin{gathered} 5^{7} 1^{6} 0^{2}{ }^{3} \\ =m_{4} \\ \hline \end{gathered}$	$\begin{gathered} 4_{5} 7_{1}^{6} 1^{2} \\ =m_{1} \\ \hline \end{gathered}$	$\begin{gathered} 0^{2} 4^{3} 5_{1}{ }^{6} \\ =m_{2} \\ \hline \end{gathered}$	$\begin{gathered} 5^{7} 4_{4}^{3} 0^{2}{ }^{6} \\ =R_{2} \\ \hline \end{gathered}$	$\begin{gathered} 16{ }^{7}{ }^{3}{ }^{3}{ }^{2} \\ =R_{3} \end{gathered}$	$\begin{gathered} 0^{2}{ }_{1}{ }^{5}{ }_{5}{ }^{4}{ }^{3} \\ =1 d \end{gathered}$	$\begin{gathered} 4_{0}^{326}{ }^{7} \\ =R_{1} \end{gathered}$

1274	mm_{4}	$5^{7} 1^{7}{ }^{6}{ }_{0}{ }^{2}{ }_{4}{ }^{3}$ $=m_{4}$	$4^{3} 5^{7}{ }^{7}{ }^{6} 0^{2}$ $=\mathrm{m}_{1}$	$0^{2} 4^{3}{ }^{3} 5^{7}{ }^{6}$ $=\mathrm{m}_{2}$ $=$	$\begin{gathered} 1_{0}^{6}{ }_{0}{ }^{3} 4^{3}{ }^{7} \\ =m_{3} \\ \hline \end{gathered}$	$\begin{gathered} 4^{3} 0^{2} 1^{6} 5^{7} \\ =R_{1} \\ \hline \end{gathered}$	$\begin{gathered} 5^{7}{ }^{4}{ }^{3} 0_{0}^{2}{ }^{6} \\ =R_{2} \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{r}_{6}^{6}{ }^{7}{ }^{3} 0^{2} \\ =R_{3} \\ \hline \end{gathered}$	$\begin{gathered} 0^{2} 1^{6} 5^{7} 4^{3} \\ =\mathrm{id} \end{gathered}$

In addition (4) flip-operations ($\mathrm{F}_{5} \wedge \mathrm{~F}_{6} \wedge \mathrm{~F}_{7}{ }^{\wedge} \mathrm{F}_{8}$) with respect to the space-diagonals of the cube will have be taken into consideration. The properties of these operations are summarized in the next table:

\star	id	f_{5}	f_{6}	f_{7}	f_{8}
id	$\begin{gathered} 0^{4} 1^{5} 2^{6} 3^{7} \\ =i d \end{gathered}$	$\begin{gathered} 0^{2}{ }^{7}{ }^{3}{ }_{4}{ }^{6}{ }^{1} \\ =f_{5} \\ \hline \end{gathered}$	$\begin{gathered} { }^{241}{ }^{3}{ }_{4}{ }^{5}{ }^{7} \\ = \\ =\mathrm{f}_{6} \\ \hline \end{gathered}$	$\begin{gathered} { }^{4} \mathbf{4}^{3} \mathbf{3}_{2} \mathbf{5}^{1} \\ =\mathrm{f}_{7} \\ \hline \end{gathered}$	$\begin{gathered} { }^{2}{ }^{2}{ }^{5}{ }_{4}^{0}{ }^{1}{ }^{1} \\ =\mathrm{f}_{8} \\ \hline \end{gathered}$
f_{5}	$\begin{gathered} 0^{2} 7^{3}{ }_{4}{ }^{6}{ }^{1} \\ =f_{5} \\ \hline \end{gathered}$	$\begin{gathered} 0^{4} 1_{2}{ }_{2}^{6}{ }^{7} \\ =\mathrm{id} \\ \hline \end{gathered}$	$\begin{gathered} { }^{44^{4}{ }^{5} 2_{0}{ }_{3}^{1}} \\ A^{8} \\ \hline \end{gathered}$	$\begin{gathered} 6^{2} 1_{4} 4_{3}{ }^{7} \\ =\mathrm{id} \end{gathered}$	$\begin{gathered} { }^{4} 1^{3}{ }^{0} 0^{0}{ }^{7}{ }^{7} \\ B \end{gathered}$
f_{6}	$\begin{gathered} 6^{2}{ }^{2}{ }^{3} 4_{4} 0_{5}{ }^{7} \\ =f_{6} \end{gathered}$	$\begin{gathered} 6^{4} 7^{5} 2^{0} 3^{1} \\ \mathrm{~A} \end{gathered}$	$\begin{gathered} 0^{4} 1_{2} 2_{2} 6^{7}{ }^{7} \\ =\mathrm{id} \end{gathered}$	$\begin{gathered} 0^{2} 7^{5}{ }_{4}{ }^{6} 3^{1} \\ C \end{gathered}$	$0^{4} 7^{3}{ }_{2}^{6} 5_{5}^{1}$ D
f_{7}	$\begin{gathered} 6^{4} 7^{3} 2^{0}{ }^{0}{ }^{1} \\ =f_{7} \end{gathered}$	$\begin{gathered} { }^{2}{ }^{21}{ }^{5} 0_{4}{ }^{7} \\ =\mathrm{id} \end{gathered}$	$\begin{gathered} 0^{2} 7^{5} 4_{4}^{6}{ }^{1} \\ \mathrm{C} \end{gathered}$	$\begin{gathered} { }^{4} 0_{1}^{5} 2_{6}{ }^{7} \\ =\mathrm{id} \end{gathered}$	$\begin{gathered} 0^{2} 1^{3}{ }_{4}{ }^{6}{ }^{7} \\ E \end{gathered}$
f_{8}	$\begin{gathered} { }^{2}{ }_{7}{ }^{5}{ }_{4} 0_{3}{ }^{1} \\ =f_{8} \\ \hline \end{gathered}$	$6_{1}^{43} 2_{2}^{0}{ }^{7}$ B	$\begin{gathered} 0^{4} 7^{3}{ }_{2}{ }^{6}{ }_{5}{ }^{1} \\ \mathrm{D} \end{gathered}$	$\begin{gathered} 0^{2} 1^{3}{ }_{4}{ }^{6}{ }_{5}{ }^{7} \\ E \\ \hline \end{gathered}$	$\begin{gathered} 0^{4} 1_{2}^{5}{ }_{2}^{6}{ }^{7} \\ =\text { id } \end{gathered}$

Thus finally (25) symmetry-operations in total will make up the symmetry-group of a cube.

3.3. Symmetries of a Hyper-Cube.

If one replaces in a cube:

- Each pair of parallel planes involved in one of the rotations $\left(R_{1} \vee R_{2} \vee R_{3}\right)$ by a quadruple of cubes (from hyper-cube's structure) with surfaces parallel to a perpendicular common axis of rotation out of $(\alpha \beta \vee \gamma \delta \vee \varepsilon \zeta)$,
- Each mirror-plane of a cube by a 3-dimensional object with a pair of parallel planes suitable for a further more mirror-operation,
(3) symmetry-sub-groups of a hyper-cube are obtained, each isomorphic with the symmetry-group of a square and a symmetry-sub-groups of a cube. Each symmetry-sub-group of the hyper-cube consists of:
- Right-turning rotations ($\mathrm{R}_{1} \wedge \mathrm{R}_{2} \wedge \mathrm{R}_{3}$), around a ($\alpha \beta \vee \gamma \delta \vee \varepsilon \zeta$)-axis,
- Mirror-operation ($M_{1} \wedge M_{2} \wedge M_{3} \wedge M_{4}$) with respect to the appropriate mirror-objects.

The first sub-group based on direction ($\alpha \beta$) follows immediately with (64) permutations according to all multiplications of operations(column(0)) and of operations(row(0)):

Udo E. Steinemann, About Structure of a connected Quaternion-Julia-Set and Symmetries of a related JULIA-Network, 1/10/2020.

A second sub-group based on direction ($\gamma \delta$) follows next with (64) permutations according to all multiplications of operations(olumn(0)) and of operations(row(0)):

And finally a sub-group based on direction ($\varepsilon \zeta$) with (64) permutations will follow according all multiplications of operations(column(0)) and operations(row(0)):

	\star	id	R_{1}	R_{2}	\mathbf{R}_{3}	M_{1}	M_{2}	M_{3}	M_{4}
$\varepsilon \zeta$	id								
	R_{1}								
	\mathbf{R}_{2}								
	\mathbf{R}_{3}			$\begin{gathered} \mathrm{MiAB}^{\mathrm{EA} \mathrm{~B}^{\prime}} \\ \mathrm{P}^{\mathrm{L} \mathrm{~L}_{\mathrm{K}} \mathrm{O}^{2}} \\ =\mathrm{R}_{1} \\ \hline \end{gathered}$					
	M_{1}								
	M_{2}								
	M_{3}								
	M_{4}								

In addition to these (21) symmetry-operations (8) flip-operations will have be considered, due to the (8) quaternion-diagonals of the hypercube:

*	id	F_{5}	F_{6}	F_{7}	F_{8}	F_{9}	F_{10}	F_{11}	F_{12}
id									

\mathbf{F}_{5}									
\mathbf{F}_{6}									
F_{7}									
F_{8}									
F_{9}									
F_{10}									
F_{11}									
F_{12}									

Together with (200) symmetry-operations for the (8) inner cubes of a hyper-cube, presumably (232) different symmetry-operation in total have to be counted for a hyper-cube and are responsible for its symmetry-group.

3.4. Symmetrv-Group of the related JULIA-Network.

The (16) different fixed-points $\left(\mathbb{H}_{\left[1^{\wedge} J \in(0,15)\right]}\right)$ by definition from above will form a hyper-cube in quaternion-space. Thus a probe-point moving from $\left(\mathbb{H}_{\left[1^{\wedge} \sim\right.}\right)$ to $\left(\mathbb{H}_{\left[1^{\wedge} N\right]}\right)$ by execution of a hyper-cube's symmetry-operations will change its (\mathbb{N}) fluently from $\left(\mathbb{N}_{[\mathrm{M}]}\right)$ to $\left(\mathbb{N}_{[\mathbb{N}]}\right)$. Because any image or pre-image of the probe-point must follow equations ($2.3^{\wedge} 1 . \wedge 2.3^{\wedge} 2$) in any position of the probe-point, they will always be adapted in relation to the probe-point's location. Therefore the probe-point in essence mediates between the JULIA-sets with fixed-points $\left(\mathbb{H}_{\left[1^{\wedge} \mathrm{M}\right]}\right)$ and $\left(\mathbb{H}_{\left[1^{\wedge} \mathrm{N}\right]}\right)$.

In summery one may say, that the related JULIA-network under the action of any symmetry-operation of a hyper-cube will remain completed in itself, related JULIA-network and the symmetry-operations of a hyper-cube will built a symmetry-group.

4. Summary.

The iteration of sequence ($1^{\wedge} 3$.) in quaternion-space - with restrictions from MANDELBROT-set on the complex components of its iteration-constant - resulted in a network of (3) sets. An unbounded escapeset (with trajectories escaping to infinity) accompanied by a set caught in a limited area (prisoner-set,
whose trajectories tended to a sink-point) and the boundary-set of the prisoner-set built by points acting repulsively on points from escape- and prisoner-set as well.

The iteration stopped if the sink-point of the prisoner-set and a fixed repeller-point on JULIA-set had been obtained, that is, when equality between the iteration's predecessor-and successor-state had been reached. A Quaternion-condition for this stop-event (the fixed-point-condition) could be formulized and - by taking into account the HAMILTONian rules - could be separated into three sub-conditions (according to the quaternion-space's complex subspaces). Every one of these sub-conditions could subsequently be solved independently. On base of these results it became possible to express the quaternion fixed-points of prisoner-and JULIA-set as well.

With knowledge of the fixed-repeller-point of a JULIA-set it became possible to describe the structure of the JULIA-set by the set of images and pre-images, which are obtained from forward- or backwarditeration relative to the fixed-repeller-point.

Fixed-points and JULIA-set of the network, obtained by iterative execution of sequence (1^3.) will only depended on the choice of the actual iteration-constant. Therefore, (16) constants appropriately chosen from black part of the MANDELBROT-set will make it possible to arrange the repeller-fixed-points of the iteratively obtained JULIA-sets in the square-points of a hyper-cube. Fixed-points and their JULIA-sets positioned this way will then represent a related JULIA-network. The set of quaternionpoints of the related JULIA-network together with the symmetry-operations of a hyper-cube will form the symmetry-group of the related JULIA-network.

5. References.

[1] H. O. Pleitgen, Chaos and Fractals, New Frontiers of Science, Springer 1992.
H. Jürgens,
D. Saupe:
[2] A. Douady, Êtude dynamique des pôlynomes complexes, Publications Mathematique d'Orsay, J. H. Hubbard:
[3] B. B. Mandelbrot: Fractal aspects of the iteration of $z \rightarrow \lambda z(1-z)$ for complex λ and z, Annals N.Y. Acadey of Sciences 357, 1980.

