Noname manuscript No.
(will be inserted by the editor)

Progress in The Proof of The Conjecture ¢ < rad?(abc) -
Case:c=a+1

Abdelmajid Ben Hadj Salem, Dipl.-Eng.

Received: date / Accepted: date

Abstract In this paper, we consider the abc conjecture. We give some progress
in the proof of the conjecture ¢ < rad?(abc) in the case ¢ = a + 1.
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1 Introduction and notations

Let a a positive integer, a = []; a;", a; prime integers and a; > 1 positive
integers. We call radical of a the integer [], a; noted by rad(a). Then a is

written as:
a:Haf‘i :rad(a).l_[af”*1 (1)

We note:
Ho = Ha?i_l = a = fig.Tad(a) (2)

The abc conjecture was proposed independently in 1985 by David Masser of
the University of Basel and Joseph (Esterlé of Pierre et Marie Curie University
(Paris 6) ([4]). It describes the distribution of the prime factors of two integers
with those of its sum. The definition of the abc conjecture is given below:
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Congecture 1 (abc Conjecture): Let a,b, ¢ positive integers relatively prime
with ¢ = a + b, then for each € > 0, there exists K(¢) such that :

¢ < K(e).rad(abc)'** (3)

Loge
Log(rad(abc))
proposed that ¢ < rad?(abc) ([1]). Here we will give a proof of it for the case
c=a+1.

We know that numerically, < 1.629912 (J2]). A conjecture was

Conjecture 2 Let a, b, ¢ positive integers relatively prime with ¢ = a + b, then:

Logce

d?(ab —_—
¢ < rad’(abe) = Log(rad(abc))

<2 (4)

This result, I think is the key to obtain the final proof of the veracity of the
abc conjecture.

2 A Proof of the conjecture casec=a+1

Let a, ¢ positive integers, relatively prime, with ¢ = a + 1 and R = rad(ac),
By
Cc = Hj’GJ’ C]/J 75j’ 2 1.

If ¢ < rad(ac) then we obtain:
¢ < rad(ac) < rad?(ac) = (5)
and the condition is verified.
If ¢ = rad(ac), then a, ¢ are not coprime, case to reject.

In the following, we suppose that ¢ > rad(ac) and ¢ and a are not prime
numbers.

c=a+1=pgrad(a)+1 ; rad?(ac) (6)

21 fta # 1, pta < rad(a)

We obtain :
c=a+1<2u,rad(a) = c < 2rad*(a) = ¢ < rad?(ac) = (7)

Then @ is verified.
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2.2 pe £ 1, pe < rad(c)

We obtain :

¢ = perad(c) < rad?(c) < rad*(ac) = (8)

and the condition @ is verified.

2.3 pg > rad(a) and p. > rad(c)

2.8.1 Case: p, = radi(a),q > 2, p. = radP(c),p > 2:

In this case, we write ¢ = a+1 as rad?*!(c)—radi™1(a) = 1. Then rad(c), rad(a)
are solutions of the Diophantine equation: :

XPH oyt =1 with (p+1)(¢+1)>9 (9)

But the solutions of the equation @[) are (X =43,p+1=2,Y =42 ¢g+1=
3), we obtain p = 1 < 2, then rad(c), rad(a) are not solutions of (9) and the
case g = rad?(a),q > 2, p. = radP(c),p > 2 is to reject.

2.8.2 Case: rad(c) < p. < rad*(c) and rad(a) < p, < rad?(a):

We can write:

pe < rad?(c) = ¢ < rad?(c)
— ac<R=ad*<ac< R =
o < rad?(a) = a < rad®(a)

a<RVR < R>—=|c=a+1< R?|(10)

2.8.3 Case: . > rad*(c) or u, > rad?(a)

I- We suppose that p. > rad?(c) and rad(a) < p, < rad?(a):

I-1- Case rad(a) < rad(c): In this case a = p,.rad(a) < rad?(a).rad(a) <
rad?(a)rad(c) < rad*(ac) = a < R?> = .

[-2- Case rad(c) < rad(a) < rad®(c): As a < rad*(a).rad(a) < rad?(a).rad*(c) =
0 <R =|c< B

Example: 230.52.127.3532 = 37.55.135.17.1831 + 1, rad(c) = 2.5.127.353 =
448 310, rad?(c) = 200981 856 100,

pe = 2%29.5.353 = 947577 159 680 = rad?(c) < . < rad(c),

rad(a) = 3.5.13.17.1831 = 6 069 765, rad?(a) = 36 842 047 155 225,

pe = 3%.5%.13* = 13013105625 < rad®(a). It is the case : rad(c)
pe < rad®(c) and rad(a) < pg < rad*(a) with rad(c) = 448310 < rad(a)

A
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6069765 < rad? (¢) = 200981 856 100.
I-3- Case rad?(c) < rad(a):
I-3-1- We suppose that ¢ < rad®(c), we obtain:

c <rad®(c) = ¢ < rad?(c).rad*(c) = ¢ < rad*(c).(rad(a))* = R* =

Example: 58.7% = 2437.547 + 1 = 19140625 = 19140624 + 1, rad(c) =
5.7 = 35,rad(a) = 2.3.547 = 3282 = rad(a) > rad®(c), we obtain ¢ =
19140625 > rad>(c) = 42875 and ¢ < rad®(c) = 1838265625 and 3282 =
rad(a) < pa = 5832 < rad?(a) = 10771524 => a < rad®(a) = 35352141 768.

I-3-2- We suppose ¢ > rad®(c) = p. > rad®(c), we suppose p, = rad?(a) =
a = rad®(a). Then we obtain that X = rad(a) is a solution in positive integers
of the equation:

X3 4+1=c= perad(c) (11)

If ¢ = rad™(c) with n > 7, we obtain an equation like @[) that gives a con-
tradiction. In the following, we will study the cases p. = A.rad™(c) with
rad(c) 1 A,n > 0. The above equation can be written as :

(X+D)(X?-X+1)=c¢ (12)
Let § any divisor of ¢, then:

X+1=4 (13)

X2—X+1:§:c’:62—3X (14)
We recall that rad(a) > rad®(c), it follows that § must verifies § — 1 >
rad?(c) = 6 > rad?(c) + 1.

[-3-2-1- We suppose that § = l.rad(c) = lrad(c) > rad*(c) +1 = | >
rad?(c) + 1
rad(c)
We have 6 = l.rad(c) < ¢ = pe.rad(c) =1 < pi.. As ¢ is a divisor of ¢, then [

is a divisor of p., we write p. = l.m. From pu. = [(6? — 3X), we obtain:

. We obtain [ > rad(c) + 2 so rad(c) and [ have the same parity.

m = I>rad®(c) — 3rad(a) = 3rad(a) = *rad*(c) —m

A- Case 3lm = m = 3m/, m' > 1: As u. = ml = 3m'l = 3|rad(c) and
(rad(c),m’) not coprime. We obtain:
rad(c) ,

rad(a) = I*rad(c). 3 ™
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It follows that a,c are not coprime, then the contradiction.

B - Case m = 3 = i, = 3l = ¢ = 3lrad(c) = 3§ = §(6* — 3X) = §° =
3(1+ X) =30 = ¢ =lrad(c) = 3, then the contradiction.

1-3-2-2- We suppose that § = l.rad?(c),l > 2. In this case rad(a) = lrad?(c)—1
verifies rad(a) > rad?(c). If lrad(c) 1 p. then the case to reject. We suppose

that lrad(c)|pe = pe = m.lrad(c), then g =m = 6% — 3rad(a).

C-Casem=1=c/d = 6 —3rad(a) =1 = (6 —1)(§+1) = 3rad(a) =
rad(a)(§ + 1) = § = 2 = l.rad?(c), then the contradiction.

D - Case m = 3, we obtain 3(1 + rad(a)) = 6% = 30 = § = 3 = lrad*(c).
Then the contradiction.

E - Case m # 1,3, we obtain: 3rad(a) = [*rad*(c) — m = rad(a) and
rad(c) are not coprime. Then the contradiction.

I-3-2-3- We suppose that § = l.rad"™(c),l > 2 with n > 3. From ¢ = p..rad(c) =
lrad™(c)(6% — 3rad(a)), let m = 6% — 3rad(a).

F - As seen above (paragraphs C,D), the cases m = 1 and m = 3 give
contradictions, it follows the reject of these cases.

G - Case m # 1,3. Let ¢ a prime that divides m, it follows ¢|u. = ¢ =
cjy = ¢;1]0° = c¢;;|3rad(a). Then rad(a) and rad(c) are not coprime. It
follows the contradiction.

1-3-2-4- We suppose that § = HjeJ1 cfj, B; > 1 with at least one jo € J; with

Bjo > 2, rad(c) {6 and 6 — 1 =], cfj —1>rad*(c) =[lcp 5, L CJ.
We can write:

0 = ps.rad(d), rad(c) = m.rad(9)

Then we obtain:

¢ = perad(c) = pe.m.rad(§) = §(6% — 3X) = ps.rad(8)(6% — 3X) =
m.pie = ps(0* — 3X) (15)

SIf pe = ps = m = 6% —3X = (perad(8))* —3X. As § < 62 —3X =
m > & = rad(c) > m > pe.rad(5) > rad®(c) because p. > rad®(c), it follows
rad(c) > rad®(c). Then the contradiction.
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- We suppose that u, < ps. As rad(a) = psrad(d) — 1, we obtain:

rad(a) > pe.rad(d) —1 > 0= R > c.rad(d) — rad(c) > 0 =
rad(c)
c

¢> R > crad(d) —rad(c) > 0= 1> rad(0) — >0, rad(d)>2

= The contradiction (16)

- We suppose that ps < pe. In this case, from the equation and as
(m, us) = 1, it follows that we can write:

He = p1-pi2,  p1,p2 > 1 (17)
so that  m.u; =62 —3X, o = s (18)

But:
rad(a) = § — 1 = psrad(§) — 1 > rad*(c) = 0 > m?rad*(8) — podrad(s) + 1
Let P(Z) the polynomial:
P(Z) =m?Z% — paZ + 1 = P(rad(8)) < 0 (19)
The discriminant of P(Z) is:
A= pZ —4m? (20)
- A=0= ps = 2m, but (m, u2) = 1, then the contradiction. Case to reject.

- A < 0= P(Z) has no real roots. From it follows that P(Z) > 0,VZ €
R. Then the contradiction with P(rad(d)) < 0. Case to reject.
-A> 0= p > 2m = B2 > 2. We denote t = /A > 0. The roots of

m
P(Z) =0 are Zy, Zy with Z; < Z, given by:

B2 —t Z_M2+t

71 = = 21
! 2m?2 ’ 2 2m? (21)
We approximate ¢ by :
4 2 % 2 2
t:\/,u%—‘lmz:m(l—w;) —i=— 50
Ky H2
Then, we obtain Zl, 22 as :
. -t 1 - t 1
go=t2—t_ Zy=tetlt ke 1 (22)

2m2  pg’ o2m2 m2 o
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13
) m?2
the proof that rad(§) > Zs = P(rad(5)) > 0, then the contradiction with
P(rad(d)) < 0; we write:

As p3 —4m? > 0= p2 —m? >3m? >0 = — 1> 0, we will give below

? 1
md(5)>£7;, g >0 =
2

? py—m 3m?
0> 2 ey
13 2 1 3
as 0>3=0>—"5—-1>3=rad(0) > —5 — — > — (23)
m?2 m2  pp " peo

If follows P(rad(d)) > 0 and the contradiction with the conclusion of the equa-

tion .
It follows that the case ¢ > rad®(c) and a = rad?(a) is impossible.

I-3-3- We suppose ¢ > rad®(c) = ¢ = rad®(c)+h, h > 0 and p, < rad?(a) =
a+1=rad*(a), l > 0. Then we obtain :

rad®(c) + h = rad®(a) — 1+ 1 (24)
As rad®(c) < rad(a) (see I-3), we obtain the equation:
rad®(a) — (rad*(¢))* =h+1—-1=m>0

Let X = rad(a) — rad?(c), then X is an integer root of the polynomial H(X)
defined as:
H(X)=X?®+3Rrad(c)X —m =0 (25)

To resolve the above equation, we note X = u + v, then we obtain the two
conditions:

u? +v3=m, ww=—Rrad(c) <0= u*v® = —R*rad®(c)
It follows that u3,v® are the roots of the polynomial G(t) given by:
G(t) =t* —mt — R3rad®(c) =0 (26)
The discriminant of G(¢) is :
A=m?+4R%*rad*(c) = a®, a >0 (27)
The two real roots of are:
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As m = rad®(a) — rad®(c) > 0, we obtain that o = rad3(a) + rad®(c) > 0,
then from the equation (27), it follows that (o = 2, m = y) is a solution of the
Diophantine equation:

?—y* =N (30)

with N = 4R3rad?(c) > 0. From the equations (2829, we remark that o and
m verify the following equations:

r+y = 2u® = 2rad’(a) (31)
x—y=—20% = 2rad®(c) (32)
then 2% —y? = N = 4R%*rad®(c) (33)

Let Q(N) be the number of the solutions of and 7(N) is the number of
suitable factorization of IV, then we announce the following result concerning
the solutions of the Diophantine equation (see theorem 27.3 in [3]):

- If N=2(mod 4), then Q(N) = 0.

- If N=1 or N=3(mod 4), then Q(N) = [7(N)/2].

- If N=0(mod 4), then Q(N) = [r(N/4)/2].

[x] is the integral part of x for which [z] <z < [x] + 1.

Let (o/,m'), o/, m' € N* be another pair, solution of the equation ,
then o/? — m? = 22 —y?> = N = 4R3rad?(c), but a = z and m = y ver-
ify the equation given by z + y = 2rad3(a), it follows o, m’ verify also
o +m' = 2rad®(a), that gives o/ — m/ = 2rad®(c), then o/ = z = a =
rad3(a) + rad(c) and m’ = y = m = rad®(a) — rad®(c). We have given the
proof of the uniqueness of the solutions of the equation with the condition
4y = 2rad’(a). As N = 4R3rad?(c)=0(mod 4) = Q(N) = [r(N/4)/2] =
[7(rad®(c).rad®(a))/2] > 1. But Q(N) = 1, then the contradiction.

It follows that the case p, < rad?(a) and ¢ > rad®(c) is impossible.
II- We suppose that rad(c) < p. < rad®(c) and p, > rad®(a):

II-1- Case rad(c) < rad(a) : As ¢ < rad*(c) = rad*(c).rad(c) = ¢ <
rad?(c).rad(a) = .

I1-2- Case rad(a) < rad(c) < rad?(a) : As ¢ < rad®(c) = rad?(c).rad(c) =
c < rad?(c).rad?*(a) = m

I1-3- Case rad?(a) < rad(c):

I1-3-1- We suppose that a < rad’(a) = a < rad?(a).rad*(a) a <
rad®*(a).(rad(c))? = R* = a < R> = 1+ a < R? but (c,a) = 1, it

follows [ ¢ < R?|
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I1-3-2- We suppose a > rad®(a) and p. < rad?(c). Using the same method
as it was explicated in the paragraphs I-3-2, I-3-3 (permuting a,c), we arrive
at a contradiction. It follows that the case p. < rad?(c) and a > rad®(a) is
impossible.

2.8.4 II - Case u. > rad?(c) and pg > rad*(a)

We can write ¢ > rad®(c) = ¢ = rad®(c¢)+h and a = rad®(a)+1 with h,1 > 0
positive integers.

ITI-1- We suppose rad(a) < rad(c). We obtain the equation:
rad®(c) —rad®(a) =1—h+1=m >0 (34)

Let X = rad(c) — rad(a), from the above equation, X is a real root of the
polynomial:

P(X)=X?+3RX -m=0 (35)

As above, to resolve , we put X = u+wv, then we obtain the two conditions:
ud i =m (36)

w=-R<0=u’v’=-R? (37)

Then u3,v? are the roots of the equation:
H(Z)=27?-mZ—-R*=0 (38)
The discriminant of H(Z) is:
A =m*+4R? = (rad®(c)+rad®(a))? = o?, taking a > 0= a = rad>(c)+rad’(a)
(39)
From the equation (39)), we obtain that (o = xz,m = y) is a solution of the

Diophantine equation:
2 —y?=N (40)
with N = 4R3 > 0 and N=0(mod 4). Using the same method as in 1-3-3-, we

arrive to a contradiction.

ITI-2- We suppose rad(c) < rad(a). We obtain the equation:
rad®(a) —rad®*(c) =h—1—-1=m >0 (41)

Let X = rad(a) — rad(c), from the above equation, X is a real root of the
polynomial:
P(X)=X*4+3RX —m =0 (42)

As above, to resolve , we put X = u+wv, then we obtain the two conditions:
ud + 0P =m (43)
w=-R<0=u’v’=-R* (44)



10 Abdelmajid Ben Hadj Salem, Dipl.-Eng.

Then u3,v? are the roots of the equation:
H(Z)=2>-mZ - R*=0 (45)
The discriminant of H(Z) is:

A =m?*+4R? = (rad®(c)+rad®(a))? = o?, taking a > 0= a = rad>(c)+rad>(a)
(46)
From the equation , we obtain that (o = x,m = y) is a solution of the
Diophantine equation:
2 —y* =N (47)

with N = 4R3? > 0 and N=0(mod 4). Using the same method as in 1-3-3-, we
arrive to a contradiction.

It follows that the case p. > rad®(c) and p, > rad?(a) is impossible.

We can annonce the following theorem:

Theorem 1 (Abdelmajid Ben Hadj Salem, 2020) Let a,c positive inte-
gers relatively prime with ¢ = a + 1, then ¢ < rad®(ac).

Declaration: My manuscript has no associated data.
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