A Proof of the Twin Prime Conjecture

A W. Draut
Embry Riddle Aeronautical University
Prescott, AZ

draut129@erau.edu
20 August 2020

Abstract

The traditional definition of the twin prime conjecture is that there is an infinite number of twin primes. The traditional definition of a twin prime is a pair of primes separated by one even number, e.g., 29 and 31. We expand this definition and prove the infinitude of two types of twin primes.

Our primary vehicle for proving the twin prime conjecture is a structure that we call Eratosthenes' Patterns, which are created by Eratosthenes Sieve. First, we describe Eratosthenes' Sieve, then we describe Eratosthenes' Patterns, then we give the proof.

The essence of our proof is to show that the number of prime twins between p_{n} and p_{n}^{2} approaches infinity as n approaches infinity.

Before we begin, we cover two nomenclature topics: a definition and mathematical notation.
Definition of prime number We restrict our definition to the natural numbers, \mathbb{N}.
Any number that has exactly two divisors is prime.
Any number that has three or more divisors is composite.
1 is the only number that has exactly one divisor and is neither prime nor composite.
We have a possible confusion in our notation. We use (a, b) for the greatest common divisor of a and b . This notation is commonly used in Number Theory. We also use (a, b) for an open set of numbers, bounded by a and b. This notation is commonly used in Set Theory. The reader should be aware of the context.

The Sieve of Eratosthenes

Eratosthenes sieve is a method for finding prime numbers. Eratosthenes lived circa 200 BC.
In the Sieve of Eratosthenes, primes and multiples of primes are removed from the natural numbers. One starts with the natural numbers and creates a second set by removing all multiples of 2 . Then one creates the third set by removing all multiples of 3 from the second set. This process is continued as long as desired. We name these sets $A_{1}, A_{2}, A_{3}, \ldots, A_{n}$ with A_{1} being the natural numbers.

We show some of these sets here.
$A_{1} 12345678 \ldots \quad$ the natural numbers
$A_{2} 13579111315 \ldots \quad$ multiples of 2 removed (odd numbers)
$A_{3} 15711131719232529313537 \ldots$
multiples of 3 removed from A_{2}
$A_{4} \quad 17111317192329313741434749 \ldots \quad$ multiples of 5 removed from A_{3}
\vdots

All of the primes, however many there are, are in A_{1}
All of the primes greater than 2 are in A_{2}, in order.
All of the primes greater than 3 are in A_{3}, in order.
All of the primes greater than 5 are in A_{4}, in order.
\vdots
These statements seem obvious and trivial, but they will prove necessary below.
In each set, the first member is 1 and the second member is the nth prime.
In each set, the first composite is p_{n}^{2}.
In each set, apart from the 1 , all of the numbers less than p_{n}^{2} are prime.
When multiples of p_{n} are removed from A_{n} in order to create A_{n+1}, an infinity of composites is removed but only one prime is removed.
By choosing the 2nd member of each set, A_{1} through A_{n}, we construct a list of the first n primes.

All of the information given above is thousands of years old, except for the names of the sets, which we have chosen.

Instead of studying the primes that have been found, we have studied the numbers that are left behind after primes and their multiples have been removed from the natural numbers and we have found interesting and useful patterns. We call them Eratosthenes' Patterns. Next, we give some of the many useful features of Eratosthenes' Patterns. We have not found these structures in the literature.

Eratosthenes' Patterns

We show A_{3} and A_{4} rearranged so as to demonstrate the patterns that we have found.
A_{3} original multiples of 2 and 3 have been removed from A_{1}
15711131719232529313537 ...
A_{3} rearranged

1	7	13	19	25	31	37	43	49	55	61	\ldots
5	11	17	23	29	35	41	47	53	59	65	

A_{4} original multiples of 5 have been removed from A_{3}
1711131719232931374143474953596167 ...
A_{4} rearranged

1	31	61	91	121	151	181	211	241	271	301	331	361	391	421	\ldots
7	37	67	97	127	157	187	217	247	277	307	337	367	397	427	\ldots
11	41	71	101	131	161	191	221	251	281	311	341	371	401	431	\ldots
13	43	73	103	133	163	193	223	253	283	313	343	373	403	433	\ldots
17	47	77	107	137	167	197	227	257	287	317	347	377	407	437	\ldots
19	49	79	109	139	169	199	229	259	289	319	349	379	409	$439 \ldots$	
23	53	83	113	143	173	203	233	263	293	323	353	383	413	$443 \ldots$	
29	59	89	119	149	179	209	239	269	299	329	359	389	419	$449 \ldots$	

As stated above, the first member in the first column is 1 and the second number is the nth prime. We call the columns patterns. The first pattern is the 'fundamental pattern'. Note the spaces after every p_{n} patterns. These delineate what we call extended patterns (to be explained below). The first extended pattern is the 'fundamental extended pattern'.

We use three parameters to describe the patterns, λ, ν, and τ. λ is used for the length of a pattern. ν is used for the number of members in a pattern, and τ is used for the number of twins in a pattern. (We explain twins below.) p is used for prime numbers. Note that the boundaries of the patterns are not members of the set. For example, in A_{4}, the boundaries
are at $0,30,60,90, \ldots$ Note that $\lambda_{4}=30$. The length of an extended pattern in A_{4} is 210 . $\lambda_{4} \times p_{4}=210$.

The creation of A_{n+1} from A_{n} involves removing all multiples of p_{n} from A_{n}. The extended patterns in A_{n} become the patterns of A_{n+1}. When an extended pattern of A_{n} becomes a pattern of A_{n+1}, the patterns of A_{n} become subpatterns of the patterns of A_{n+1}. For example, in the 2nd pattern of A_{5}, which is bounded by 210 and 420, the subpatterns are bounded by $210,240,270,300, \ldots \quad$ (A_{5} is given below.) In A_{4}, the patterns all contain 8 members. In A_{5}, the subpatterns have less than 8 members.

We speak of of the first and second halves of an extended pattern. In the case of A_{4}, the first half of the fundamental extended pattern is from 1 to 103 and the second half is from 107 to 209.

We speak of 'stepping' from A_{n} to A_{n+1}.
Next, we show the sets A_{1} through A_{5} with the parameters added and certain numbers in boldface. The numbers in boldface are multiples of p_{n}. The distribution of the multiples of p_{n} is critical.

$$
A_{4} \quad p_{4}=7, \lambda_{4}=30, \nu_{4}=8, \tau_{4}=3
$$

1	31	61	$\mathbf{9 1}$	121	151	181	211	241	271	$\mathbf{3 0 1}$	331	361	391	$421 \ldots$
$\mathbf{7}$	37	67	97	127	157	187	$\mathbf{2 1 7}$	247	277	307	337	367	397	$\mathbf{4 2 7}$

Note the repetition in the distribution of the numbers in boldface (multiples of p_{n}) across the extended patterns. This is due to the fact that a member of an extended pattern plus the length of an extended pattern $\left(\lambda_{n} \times p_{n}\right)$ gives a corresponding member in the next extended pattern. If one of these is a multiple of p_{n} then the other must also be a multiple. Also, we
find that in any row of an extended pattern, there is exactly one multiple of p_{n}. We explain this below.

We continue with A_{5}.

$$
A_{5} \quad p_{5}=11, \lambda_{5}=210, \nu_{5}=48, \tau_{5}=15
$$

1	211	421	631	841	1051	1261	1471	1681	1891	2101	2311	2521.
11	221	431	641	851	1061	1271	1481	1691	1901	2111	2321	2531
13	223	433	643	853	1063	1273	1483	1693	1903	2113	2323	2533
17	227	437	647	857	1067	1277	1487	1697	1907	2117	2327	2537
19	229	439	649	859	1069	1279	1489	1699	1909	2119	2329	2539
23	233	443	653	863	1073	1283	1493	1703	1913	2123	2333	2543 ...
29	239	449	659	869	1079	1289	1499	1709	1919	2129	2339	2549
31	241	451	661	871	1081	1291	1501	1711	1921	2131	2341	2551
37	247	457	667	877	1087	1297	1507	1717	1927	2137	2347	2557
41	251	461	671	881	1091	1301	1511	1721	1931	2141	2351	2561
43	253	463	673	883	1093	1303	1513	1723	1933	2143	2353	2563
47	257	467	677	887	1097	1307	1517	1727	1937	2147	2357	2567
53	263	473	683	893	1103	1313	1523	1733	1943	2153	2363	2573
59	269	479	689	899	1109	1319	1529	1739	1949	2159	2369	2579
61	271	481	691	901	1111	1321	1531	1741	1951	2161	2371	2581
67	277	487	697	907	1117	1327	1537	1747	1957	2167	2377	2587.
71	281	491	701	911	1121	1331	1541	1751	1961	2171	2381	2591
73	283	493	703	913	1123	1333	1543	1753	1963	2173	2383	2593
79	289	499	709	919	1129	1339	1549	1759	1969	2179	2389	2599
83	293	503	713	923	1133	1343	1553	1763	1973	2183	2393	2603
89	299	509	719	929	1139	1349	1559	1769	1979	2189	2399	2609
97	307	517	727	937	1147	1357	1567	1777	1987	2197	2407	2617
101	311	521	731	941	1151	1361	1571	1781	1991	2201	2411	2621
103	313	523	733	943	1153	1363	1573	1783	1993	2203	2413	2623
107	317	527	737	947	1157	1367	1577	1787	1997	2207	2417	2627
109	319	529	739	949	1159	1369	1579	1789	1999	2209	2419	2629
113	323	533	743	953	1163	1373	1583	1793	2003	2213	2423	2633
121	331	541	751	961	1171	1381	1591	1801	2011	2221	2431	2641
127	337	547	757	967	1177	1387	1597	1807	2017	2227	2437	2647
131	341	551	761	971	1181	1391	1601	1811	2021	2231	2441	2651
137	347	557	767	977	1187	1397	1607	1817	2027	2237	2447	2657
139	349	559	769	979	1189	1399	1609	1819	2029	2239	2449	2659
143	353	563	773	983	1193	1403	1613	1823	2033	2243	2453	2663
149	359	569	779	989	1199	1409	1619	1829	2039	2249	2459	2669
151	361	571	781	991	1201	1411	1621	1831	2041	2251	2461	2671
157	367	577	787	997	1207	1417	1627	1837	2047	2257	2467	2677
163	373	583	793	1003	1213	1423	1633	1843	2053	2263	2473	2683
167	377	587	797	1007	1217	1427	1637	1847	2057	2267	2477	2687
169	379	589	799	1009	1219	1429	1639	1849	2059	2269	2479	2689
173	383	593	803	1013	1223	1433	1643	1853	2063	2273	2483	2693
179	389	599	809	1019	1229	1439	1649	1859	2069	2279	2489	2699
181	391	601	811	1021	1231	1441	1651	1861	2071	2281	2491	2701 ...
187	397	607	817	1027	1237	1447	1657	1867	2077	2287	2497	2707
191	401	611	821	1031	1241	1451	1661	1871	2081	2291	2501	2711
193	403	613	823	1033	1243	1453	1663	1873	2083	2293	2503	2713
197	407	617	827	1037	1347	1457	1667	1877	2087	2297	2507	2717
199	409	619	829	1039	1249	1459	1669	1879	2089	2299	2509	2719 ...
209	419	629	839	1049	1259	1469	1679	1889	2099	2309	2519	2729

Note that the distribution of multiples of 11 in A_{5} is similar to what we saw in A_{4} : the distribution is the same in all extended patterns and there is exactly one multiple of 11 in each row of an extended pattern.

We review the structure of these sets. We depict them with the patterns as vertical columns. The vertical length of an extended pattern is determined by the patterns. The horizontal width of an extended pattern is determined by p_{n}. As we step through the sets, A_{n}, the extended patterns develop a very large aspect ratio. i.e., the vertical size vs the horizontal width. The extended patterns are placed left to right and extend to infinity.

The set is shown as a collection of extended patterns, left to right, with finite vertical height and an infinite horizontal width.

The members of the fundamental pattern in A_{n} are a reduced residue system ${ }^{1}$ of λ_{n} since every member of A_{n} is relatively prime to λ_{n}.

The members of the fundamental pattern in A_{n} are a multiplicative group modulo $\lambda_{n}{ }^{2}$
The number of members in the fundamental pattern in A_{n}, ν_{n}, is Euler's totient ${ }^{3}$ for λ_{n}.
The members of a pattern are symmetrically arranged about $\lambda_{n} / 2$. For example, in $A_{4}, 7$ is a member and $30-7=23$ is a member. $\left(\lambda_{4}=30\right)$. This symmetry occurs because $\left(\lambda_{n}, a\right)=\left(\lambda_{n}-a, a\right)=1$ for any member, a, of A_{n}. This is a specific example of a more general case involving any reduced residue system. In a reduced residue system of m, in which all members are positive and less than m , the members are symmetrically arranged about $\mathrm{m} / 2$. We show this with the following theorem.

Theorem $1 \quad(m, a)=(m-a, a), \quad$ where $m>a$
Proof Let $g_{1}=(m, a)$ and $g_{2}=(m-a, a) . g_{1}$ also divides $m-a$ and therefore, $g_{1} \mid g_{2} . g_{2}$ also divides $m-a+a=m$ and therefore, $g_{2} \mid g_{1}$. Thus $g_{1}=g_{2}$.

There is also a symmetry about the center of an extended pattern of A_{n}. If a is a member, so is $\quad\left(\lambda_{n} \times p_{n}\right)-a$. For example, look at the fundamental extended pattern of A_{4} in the table above. 53 and 157 are images of each other in this specific type of symmetry. $(53+157=210)$

As we search through the extended patterns of A_{n} we have seen that there is a multiple of p_{n} in the same position of a every extended pattern. These particular multiples are separated by $p_{n} \times \lambda_{n}$. Thus, they are a residue class ${ }^{4}$ in A_{n}.

These are the reasons for our choice of p_{n} patterns as the size of the extended patterns.

When one studies the patterns, in any set, and notes the infinitude of numbers that have been removed from the natural numbers, one should keep in mind the fact that only composite num-

[^0]bers have been removed from the natural numbers, with one exception: the gap between 1 and p_{n} (the first two numbers in a fundamental pattern) is the only place where primes have been removed.

When stepping from one set to the next, apart from the fundamental extended pattern, when an extended pattern in A_{n} becomes a pattern in A_{n+1}, the ratio of primes to composites increases.

The Twins

Here, we define twins. We define two types of twins: two-twins and four-twins. Historically, twins have referred to what we call two-twins. Two-twins are two odd numbers which differ by two, such as 17 and 19. Four-twins differ by four, such as 19 and 23 . We shall show that the four-twins are as significant as the two-twins. The two-twins and four-twins are equal in number in any pattern. Their distributions in a pattern are similar and their distributions in extended patterns are similar.

We start by showing different arrangements of A_{3}.

In the first case given above, the patterns are four-twins and, in the second and third cases, the patterns are two-twins.

All the members of A_{3} are of the form $6 n \pm 1$. Thus, all members of any set, A_{k}, where $k \geq 3$, are of the form $6 n \pm 1$. Since all primes greater than or equal to 5 are in the set, A_{3}, we can justify the following theorem.

Theorem 2 All primes ≥ 5 are of the form, $6 n \pm 1$
To designate a 2 -twin, we use the multiple of 6 (even multiple of 3) on which the twin is centered. For example, the 2 -twin, 17,19 , is designated as 18 . To designate a 4 -twin, we use the odd multiple of 3 on which the twin is centered. For example, the four-twin, 19,23 is designated as 21 .

A twin with two prime members is called a prime twin. A twin with one prime member is called a combination twin, and a twin with two composite members is called a composite twin.

We have adopted the convention that 3,5 is not a two-twin, since 3 is not a member of A_{3}. We note that no primes fall between the two members of a twin. However, looking at the set A_{3} above we see that we have to make an exception in the case of the four-twin, 1,5 , since there are two primes, 2 and 3 , between 1 and 5 . We explain the significance of A_{3} next.

Another way to describe these features is to note that the number that falls between the members of a two-twin is always a multiple of 6 and, of the three numbers that fall between the members of a four-twin, two are multiples of 2 and one is an odd multiple of 3 . A number can only be a member of a unique two-twin. A number can only be a member of a unique four-twin. However, a number can simultaneously be a member of both a two-twin and a four-twin. For example, 19 is a member of the two-twin, 18, and is also a member of the four twin, 21. But 19 is not a member of any other two-twin nor any other four-twin. In the steps to higher numbered sets, two-twins and four-twins can only be destroyed and cannot be created. Thus, the density of either type of these twins in A_{n+1} is always less than that of A_{n}. However, six-twins, eight-twins, and others, are created in almost all steps from one set to the next. The set A_{3} is an infinite sequence of alternating 2 -twins and 4 -twins.

All twins, 2-twins and 4-twins, are created in A_{3}.

According to our definitions there are no twins in A_{1} nor in A_{2}.
Also, it is clear, from the structure of A_{3}, that the spacing between any two twins, either 2-twins or 4 -twins, is a multiple of 6 .

In the remainder of this paper, unless otherwise stated, when we speak of stepping from A_{n} to $A_{n+1}, n \geq 3$. Also, our use of the word 'twins' will refer to 2 -twins and 4 -twins only.

Theorem 3 In any pattern, the number of two-twins is exactly equal to the number of four-twins.

Proof by induction.
The basis case: A_{4} has exactly 3 two-twins and 3 four-twins in each pattern. Also, there are 21 two-twins and 21 four-twins in each extended pattern. Recall that there is one half of a two-twin at the beginning and ending of each pattern.

The induction case: There are τ_{n} two-twins and τ_{n} four-twins in the patterns of A_{n}. There are $p_{n} \tau_{n}$ twins of each type in each extended pattern. Each twin in the fundamental pattern is at the head of two rows of twins and these two rows have two multiples of p_{n}. There will be $2 \tau_{n}$ two-twins and $2 \tau_{n}$ four twins removed from the fundamental extended pattern, and from each extended pattern, in the step to A_{n+1}. This will leave $\tau_{n}\left(p_{n}-2\right)$ two-twins and $\tau_{n}\left(p_{n}-2\right)$ four-twins in the extended patterns of A_{n+1}.

Next we show A_{5} with a count of the twins added.

	A_{5}		$p_{5}=11, \lambda_{5}=210, \nu_{5}=48, \tau_{5}=15$							(count of twins added)			4-twin
2-twin													
15	1	211	421	631	841	1051	1261	1471	1681	1891	2101	2311 ...	
1	11	221	431	641	851	1061	1271	1481	1691	1901	2111	2321	
1	13	223	433	643	853	1063	1273	1483	1693	19.5	2113	2323	1
2	17	227	437	647	857	1067	1277	1487	1697	1907	2117	2327 ...	1
2	19	229	439	649	859	1069	1279	1489	1699	1909	2119	2329 ...	2
	23	233	443	653	863	1073	1283	1493	1703	1913	2123	2333 ...	2
3	29	239	449	659	869	1079	1289	1499	1709	1919	2129	2339	
3	31	241	451	661	871	1081	1291	1501	1711	1921	2131	2341	
	37	247	457	667	877	1087	1297	1507	1717	1927	2137	2347	3
4	41	251	461	671	881	1091	1301	1511	1721	1931	2141	2351	3
4	43	253	463	673	883	1093	1303	1513	1723	1933	2143	2353	4
	47	257	467	677	887	1097	1307	1517	1727	1937	2147	2357	4
	53	263	473	683	893	1103	1313	1523	1733	1943	2153	2363	
5	59	269	479	689	899	1109	1319	1529	1739	1949	2159	2369 ...	
5	61	271	481	691	901	1111	1321	1531	1741	1951	2161	2371 ...	
	67	277	487	697	907	1117	1327	1537	1747	1957	2167	2377 ...	5
6	71	281	491	701	911	1121	1331	1541	1751	1961	2171	2381 ...	5
6	73	283	493	703	913	1123	1333	1543	1753	1963	2173	2383 ...	
	79	289	499	709	919	1129	1339	1549	1759	1969	2179	2389 ...	6
	83	293	503	713	923	1133	1343	1553	1763	1973	2183	2393 ...	6
	89	299	509	719	929	1139	1349	1559	1769	1979	2189	2399 ...	
	97	307	517	727	937	1147	1357	1567	1777	1987	2197	2407 ...	7
7	101	311	521	731	941	1151	1361	1571	1781	1991	2201	2411	7
7	103	313	523	733	943	1153	1363	1573	1783	1993	2203	2413 ...	8
8	107	317	527	737	947	1157	1367	1577	1787	1997	2207	2417 ...	8
8	109	319	529	739	949	1159	1369	1579	1789	1999	2209	2419 ...	9
	113	323	533	743	953	1163	1373	1583	1793	2003	2213	2423 ...	9
	121	331	541	751	961	1171	1381	1591	1801	2011	2221	2431 ...	
	127	337	547	757	967	1177	1387	1597	1807	2017	2227	2437 ...	10
	131	341	551	761	971	1181	1391	1601	1811	2021	2231	2441 ...	10
9	137	347	557	767	977	1187	1397	1607	1817	2027	2237	2447 ...	
9	139	349	559	769	979	1189	1399	1609	1819	2029	2239	2449 ...	11
	143	353	563	773	983	1193	1403	1613	1823	2033	2243	2453 ...	11
10	149	359	569	779	989	1199	1409	1619	1829	2039	2249	2459	
10	151	361	571	781	991	1201	1411	1621	1831	2041	2251	2461 ...	
	157	367	577	787	997	1207	1417	1627	1837	2047	2257	2467 ...	
	163	373	583	793	1003	1213	1423	1633	1843	2053	2263	2473 ...	12
11	167	377	587	797	1007	1217	1427	1637	1847	2057	2267	2477 ...	12
11	169	379	589	799	1009	1219	1429	1639	1849	2059	2269	2479 ...	13
	173	383	593	803	1013	1223	1433	1643	1853	2063	2273	2483 ...	13
12	179	389	599	809	1019	1229	1439	1649	1859	2069	2279	2489 ...	
12	181	391	601	811	1021	1231	1441	1651	1861	2071	2281	2491 ...	
	187	397	607	817	1027	1237	1447	1657	1867	2077	2287	2497 ...	14
13	191	401	611	821	1031	1241	1451	1661	1871	2081	2291	2501 ...	14
13	193	403	613	823	1033	1243	1453	1663	1873	2083	2293	2503 ...	15
14	197	407	617	827	1037	1347	1457	1667	1877	2087	2297	2507 ...	15
14	199	409	619	829	1039	1249	1459	1669	1879	2089	2299	2509 ...	
15	209	419	629	839	1049	1259	1469	1679	1889	2099	2309	2519 ...	

Here we give formulas for calculating λ, ν, and τ.
The length of a pattern in A_{n} is: $\quad \lambda_{n}=\prod_{i=1}^{n-1} p_{i}, \quad n \geq 2$

$$
\lambda_{n+1}=\lambda_{n} p_{n}
$$

The number of members in a pattern in A_{n} is: $\quad \nu_{n}=\prod_{i=1}^{n-1}\left(p_{i}-1\right), \quad n \geq 2$

$$
\nu_{n+1}=\nu_{n}\left(p_{n}-1\right)
$$

The number of twins in a pattern in A_{n} is: $\quad \tau_{n}=\prod_{i=2}^{n-1}\left(p_{i}-2\right), \quad n \geq 3$

$$
\tau_{n+1}=\tau_{n}\left(p_{n}-2\right)
$$

Here are the parameters for the first 10 sets.

n	p_{n}	p_{n}^{2}	λ_{n}	ν_{n}	τ_{n}
1	2	4	1	1	-
2	3	9	2	1	-
3	5	25	6	2	1
4	7	49	30	8	3
5	11	121	210	48	15
6	13	169	2310	480	135
7	17	289	30030	5760	1485
8	19	361	510510	92160	22275
9	23	529	9699690	1658880	378675
10	29	841	223092870	36495360	7952175

Here we show a formula for any member of any set. This allows one to build the set A_{n} without having any of the previous sets available.

Theorem 4 A formula for any member of any set.
Every member of A_{n}, greater than 2, can be represented in the following form.

$$
a=\left(\lambda_{n} / 2\right) \pm 2^{j} p_{k_{1}}^{b_{1}} p_{k_{2}}^{b_{2}} \cdots, \quad j>0, k_{i} \geq n, b_{i} \geq 0, n \geq 2, \lambda_{n} / 2=\prod_{i=2}^{n-1} p_{i}
$$

Proof. Let a be a member of A_{n}. a, by the definition of membership in A_{n}, cannot be divided by any prime less than p_{n}. The first of the two terms above contains the primes from 3 to p_{n-1}. The second contains multiples of 2 , and possible multiples of primes that are greater than or equal to p_{n}. Next, we only need to show that every member of A_{n} can be represented in the above form.

Let z be any member of A_{n}, greater than 2 , and $z=x+y$, with x being odd and y being even. x can be any odd number and, when chosen, y is determined. Let $x=\lambda_{n} / 2=\prod_{i=2}^{n-1} p_{i}$. Therefore, y must contain a power of 2 as a factor. If there are other factors of y, they must be
divisible by powers of primes greater than or equal to p_{n}. Thus, x and y are of the forms of the first and second terms, right of the equal sign, in the statement of the theorem given above.

Next, we define four new parameters that we will use in various calculations:
'Vulnerable twins'; 'Singles'; 'Blocks'; and ' g_{n} '.

Vulnerable twins

In the step to A_{n+1}, the number of twins removed from the extended pattern of A_{n} is $2 \tau_{n}$. Recall that for each twin in a pattern, two rows are occupied in an extended pattern and each of these rows has one multiple of p_{n}. The two twins that contain these multiples are the twins that will be removed in the step to A_{n+1}. We call these 'vulnerable' twins, since they will not be members of A_{n+1}.

Simply put, the vulnerable twins are those twins that are removed from A_{n} in the step to A_{n+1}.

Singles

A single is a member of A_{n} that is not a member of a twin. We consider singles in a pattern that are not members of two-twins. We also consider singles in a pattern that are not members of a four-twin. The number of singles among the two-twins is the same as the number of singles among the four-twins. We have not considered singles in a pattern that not members of both two-twins and four-twins. That would be an interesting calculation for the future.

There are ν_{n} members in a pattern and τ_{n} twins in a pattern. This gives $\nu_{n}-2 \tau_{n}$ singles in a pattern. Thus, the average number of singles between twins is $\left(\nu_{n}-2 \tau_{n}\right) / \tau_{n}=\left(\nu_{n} / \tau_{n}\right)-2$. As we step through the sets this average grows monotonically without limit, but the increase, per step, in this average approaches zero.

Blocks

We separate the members of the various sets into sequences that we call blocks. A block is the subset of members between p_{n}^{2} and p_{n+1}^{2}. We have two schemes for naming the blocks, one for A_{1}, the natural numbers, and another for the other sets.

We divide A_{1} into 'blocks' as follows, using cardinal numbers.

```
B1 = 4 to 8 }\quad\mp@subsup{p}{1}{2}=4,\mp@subsup{p}{2}{2}=
B2 = 9 to 24
B3=25 to 48 Bn begins with }\mp@subsup{p}{n}{2}\mathrm{ and ends with }\mp@subsup{p}{n+1}{2}-
B4=49 to 120
B5 = 121 to 168
B10 = 841 to 960
:
B20 = 5041 to 5328
```

Next, we use ordinal numbers for these same blocks when they appear in the various sets.

set	primary	2 nd	3 rd	4 th
A_{1}	2 to 3	4 to 8	9 to 24	25 to 48
A_{2}	3 to 8	9 to 24	25 to 48	49 to 120
A_{3}	5 to 24	25 to 48	49 to 120	121 to 168
A_{4}	7 to 48	49 to 120	121 to 168	169 to 288
A_{5}	11 to 120	121 to 168	169 to 288	289 to 360
\vdots				
A_{10}	29 to 840	841 to 960	961 to 1368	1369 to 1680
\vdots				
A_{20}	71 to 5040	5041 to 5328	5329 to 6240	6241 to 6888

!

We use set theory notation to define a block. For example, in A_{3}, the third block is $[49,121)$.
Note that the block from p_{n} to $p_{n}^{2}-1$ in a set is called the primary block for that set.
Note that the second block in A_{n} is the same as Bn. Also, the jth block in A_{n} is the same as the jth-1 block in $A_{n+1}, j \geq 3$. Also note that the primary block in $A_{n}(n \geq 2)$ does not have a corresponding block in A_{1}.

Note that the primary block in A_{n} consists of a merger of the primary block in A_{n-1} with the second block in A_{n-1}. In this merger, p_{n-1} and its multiples are removed.

On average, in A_{n}, the blocks in the $\mathrm{jth}+1$ pattern are larger that those in the j th pattern.
As we step through the sets, the size of a block, say Bk, does not change (except for the primary blocks). The lower and upper boundaries of Bk do not change (except for the primary blocks). The primary blocks increase in size and both their lower and upper boundaries move forward. The number of members in the blocks decrease except that, in the primary blocks, the numbers increase. We prove these statements below.

Here are some examples.
Let Bk be the jth block in A_{n}. $\mathrm{Bk}=\left[p_{k}^{2}, p_{k+1}^{2}\right)$. We find: $\mathrm{k}=\mathrm{n}+\mathrm{j}-2 . \quad \mathrm{k}$ is the cardinal number associated with Bk. j is the ordinal number associated with the jth block in the set A_{n}

Consider B7, $[289,361)$. It is:
4th block in $A_{5} \quad \mathrm{k}=7, \mathrm{n}=5, \mathrm{j}=4 \quad 16$ members
3rd block in $A_{6} \quad \mathrm{k}=7, \mathrm{n}=6, \mathrm{j}=3 \quad 14$ members
2nd block in $A_{7} \quad \mathrm{k}=7, \mathrm{n}=7, \mathrm{j}=2 \quad 12$ members
In all cases B 7 spans the numbers from 289 to 360 , and its size is 72 .
The primary block in A_{5} is $[11,121) \quad 16$ members \quad size $=110$
The primary block in A_{6} is $[13,169) \quad 34$ members. \quad size $=156$
The primary block in A_{7} is $[17,289) \quad 55$ members. \quad size $=272$
We have not found these structures that we call blocks in the literature.

$$
g_{n}
$$

g is the gap between primes. $\quad g_{n}=p_{n+1}-p_{n}$.
$\pi(x)$ is commonly used to designate the number of primes that are less than or equal to x . According to the prime number theorem: ${ }^{5}$

$$
\lim _{x \rightarrow \infty} \pi(x) \frac{\log (x)}{x}=1
$$

If we let $\pi^{*}(x)=\frac{x}{\log x}$, the derivative of $\pi^{*}(x)=\frac{\log x-1}{\log ^{2} x}$. This approaches $\frac{1}{\log x}$ as x approaches infinity.

$$
\lim _{x \rightarrow \infty} \frac{d \pi(x)}{d x}=\lim _{x \rightarrow \infty} \frac{d \pi^{*}(x)}{d x}=\frac{1}{\log x}
$$

As n approaches infinity, the average gap between two consecutive primes approaches $\log p_{n}$, which approaches infinity.

The Distribution of Twins in a Set

We are currently studying many aspects of the distribution of the twins. We cite three of them here since we feel these will help the reader understand this proof. In a subsequent paper we will give more aspects, including constellations of primes other than twins.

This discussion applies to all twins, in all blocks, including the primary blocks.

1. Vulnerables among the twins:

There are $\tau_{n} p_{n}$ twins and $2 \tau_{n}$ vulnerable twins in an extended pattern. This gives a ratio of $2 / p_{n}$ vulnerable twins to twins. Another way to look at it is that the average number of twins

[^1]that fall between two vulnerable twins is $p_{n} / 2$. This number grows to infinity as n approaches infinity. As n increases, the vulnerable twins in A_{n} become sparse among the twins. For large n, as one steps through the sets, one finds almost no change in the distribution of twins at each step. The sparsity of the vulnerable twins is critical in the discussions below.

These calculations apply to both 2 -twins and 4 -twins.
2. Pattern boundary twins and pattern center twins:

The twins appear to be randomly distributed. However, there are uniform sequences of twins that are superimposed on the distribution.

We start with what we call the pattern boundary twins. They are created in A_{3} where the boundaries are multiples of 6 . However, we find it easier to study the sequence in A_{4} where the boundaries of the patterns are $30,60,90,120, \ldots$ Each of these is the center of a two-twin. There is an infinite number of these two-twins separated by a distance of 30 each. In an extended pattern (length $=210$) there are 7 of these pattern boundary twins. They occupy two rows and one from each row will be eliminated in the step to A_{5}, leaving 5 of these twins in each pattern of A_{5}. In A_{4}, we look at the twin, 210, at the upper boundary of the fundamental extended pattern. Neither of the members of 210 is a multiple of 7 , preventing it from being eliminated in the step to A_{5}. This leads to a pattern boundary twin in each pattern of A_{5}. This process continues indefinitely.

In any set, among other twins, there is a uniform distribution of pattern boundary two-twins throughout the set. They are separated by a distance of λ.

Next we look at the pattern center twins. In A_{4}, at the center of the fundamental pattern there is a four-twin, 15. This is explained by Theorem 4 above. The center of the fundamental pattern is $\lambda_{n} / 2$ and the twin is generated by $\left(\lambda_{n} / 2\right) \pm 2$. In $A_{4}, 13$ and 17 are at the heads of two rows of four-twins in the fundamental extended pattern. Of the 7 twins in these two rows, 2 will be eliminated in the step to A_{5}, leaving 5 four-twins in every pattern.
At the center of the fundamental extended pattern, neither of the two members of the four-twin, 105 , are multiples of 7 . The twin, 105 , will not be eliminated in the step to A_{5}, leading to a four-twin at the center of every pattern.

In any set, among other twins, there is a uniform distribution of pattern center four-twins throughout the set. They are separated by a distance of λ.

There are many other constellations of twins that give a uniform distribution superimposed on the random distribution of other twins. For example, there is a constellation that we call 'hextuples'. They are created in A_{4} by using Theorem 4. Their structure is $\left(\lambda_{n} / 2\right) \pm 2,\left(\lambda_{n} / 2\right) \pm 4$, and $\left(\lambda_{n} / 2\right) \pm 8$. For example, at the center of the fundamental pattern of A_{5}, we find 97,101 , 103, 107, 109, 113. They include 2 two-twins and 3 four-twins. Notice that the pattern center twins are embedded in the hextuples. There is a hextuple at the center of every pattern in every set, A_{n} where $n \geq 4$, and they are uniformally distributed throughout the sets with a spacing of λ_{n}.

We will cover other constellations in a subsequent paper.

3. Growth of gaps:

Here we look at the growth of a gap between twins in the steps to subsequent sets. We shall show that this growth is limited.

First, we introduce new terminology. We borrow from the field of aeronautical engineering and speak of the leading edge of a primary block. For example, in stepping through the sets, A_{6}, A_{7}, and A_{8}, the leading edge of the primary blocks advances from 168 to 288 to 360 . We speak of the advance of the leading edge.

In addition to the leading edge of the primary blocks we speak of the leading edge of a gap between twins and note its advance. At each step the average size of the advance of the leading edge of a gap is equal to the average distance between twins.

For a demonstration of the growth of a gap we choose four consecutive 2-twins, 462, 480, 492, and 522 which are in the fundamental pattern of A_{6} and have gaps of 18,12 , and 30 between them. (A partial listing of A_{6} is given in the appendix.) 481 is a multiple of 13 and, in the step to A_{7}, the twin, 480, will be eliminated. (479 will remain as a single.) Thus, we find in the fundamental pattern of A_{7} a gap of 30 between the twins 462 and 492 . We have seen a simple example of a gap growing from 18 to 30 in one step.

We now have three of the four original consecutive 2-twins in $A_{7}, 462,492$, and 522 with gaps of 30 and 30. 493 is a multiple of 17 and the twin, 492, will be eliminated in the step to A_{8}. In A_{8} we have two of the twins left, 462 and 522 , with a gap of 60 .

The original sequence of four 2 -twins is in B8, $\left[361,529\right.$), which is the 4 th block of A_{6} and the 2 nd block of A_{8}. The primary block of A_{9} is $[23,529)$. The leading edge of the A_{9} primary block is greater than 523 and the two twins, 462 and 522 , neither of which contains a multiple of 19 , in the step to A_{9}, will be merged into the primary block and must be prime twins.

There are two methods by which the growth of a gap can be terminated. First, in stepping through the sets, a gap can become bounded on both ends by prime twins, even though it is outside of a primary block. Second, as we have seen above, the leading edge of the primary blocks advances beyond the leading edge of the gap.

Let's look at the advance of the leading edge of the gap in the example above. The original gap was 462 to 480 , with 480 being the leading edge, with a gap of 18 . In the step to A_{7}, the leading edge advances to 492 and 12 is added to the gap. In the step to A_{8}, the leading edge advances to 522 and 30 is added to the gap.
Note that in A_{6} the average gap size between twins $\left(\lambda_{6} / \tau_{6}\right)$ is 17.1 and in A_{8} it's 22.9.
Let's look at the advance of the leading edge of the primary blocks during these same steps. It advanced from 168 to 288 to 360 . The leading edge of the gap between the twins advanced by 40; the leading edge of the primary blocks advanced by 192 .

The leading edge of the primary blocks moves forward at the same rate as the advance of p_{n}^{2}. We show below that the leading edge of a gap moves forward at a near constant rate which leads to an ever increasing ratio of block size to gap size. The speeds of the advances have the
same increasing ratio.
The crucial point here is:
In one step, the leading edge of a primary block moves forward one block, and the leading edge of a gap between twins moves forward one twin.

The growth of the gap between twins is limited. The growth of any gap will be terminated in a finite number of steps by either the appearance of a prime twin or by being overtaken by the advancing primary blocks.

We have shown three aspects of the distribution of twins. There is a sparsity of vulnerable twins. There is a uniformity in the distribution of some of the twins that is superimposed on the random distribution of the other twins. The growth of the gaps between the twins is limited. We are ready to state the proof of the infinitude of the twins.

The Proof

We shall show that the number of twins in the primary blocks increases to infinity as one steps through the sets. All members of a primary block are prime. We start with a count of the twins in any block, then a count of the twins in the primary blocks.

The Number of Twins in a Block

The number of twins in a block is the product of two factors: the size (length) of the block; and the density of the twins. However, we prefer to use the gap between twins, which is the reciprocal of the density, giving the number of twins as the block size divided by the average gap between twins.

In A_{n}, the average gap between twins is $\left(\lambda_{n} / \tau_{n}\right)$ and in A_{n+1} it is $\left(\lambda_{n+1} / \tau_{n+1}\right)$.

$$
\begin{aligned}
& \left(\lambda_{n+1} / \tau_{n+1}\right)=\left(\lambda_{n} / \tau_{n}\right)\left(\frac{p_{n}}{p_{n}-2}\right) \\
& \lim _{n \rightarrow \infty} \frac{\lambda_{n+1} / \tau_{n+1}}{\lambda_{n} / \tau_{n}}=1
\end{aligned}
$$

This implies that, for large n, in each step, the change in λ_{n} / τ_{n} is negligible. Therefore, the average number of twins in a block depends almost entirely on the size of the block. Next, we look at the sizes of the blocks and calculate the number twins in a block.

Recall the letters that we use for specifying the blocks: n, k, and j, and the equation relating them: $k=n+j-2$. $\quad \mathrm{n}$ is the set number, k is the block number in A_{1}, and j is the position number of the block in a set other than A_{1}.

There are three ways to look at the number of twins in the various blocks. First we look at a particular set, i.e., n is constant. The average gap between twins, λ_{n} / τ_{n}, is the same throughout
the set. Thus, the average number twins in each block is simply the size of the block divided by the average gap between twins.

Secondly, we let k be constant. As we step through the sets, the block Bk does not change in size or location among the natural numbers, only its contents change. When stepping forward, n increases and j decreases and the number of members and the number of twins in Bk decrease. We show below that we are interested in 2nd blocks and we step forward through the sets until Bk is the 2nd block of a set. When this occurs, $j=2, n=k$, and the average number twins in the block is $\left(p_{n+1}^{2}-p_{n}^{2}\right) /\left(\lambda_{n} / \tau_{n}\right)$.

We are not interested in these first two ways and place our interest on the third.
Let j be constant. As an example, we let $j=2$. Below we explain the significance of 2 nd blocks. As we step through the sets, $j=2$ and $n=k$. The size of the second block is $p_{n+1}^{2}-p_{n}^{2}=2 p_{n} g_{n}+g_{n}^{2}$ which approaches infinity as n approaches infinity. Thus, the average number of twins in a 2 nd block increases without bound as n increases.

One could calculate block sizes and numbers of twins for blocks other than the 2nd. Just change the value of j and follow the same procedures. However, in calculating the numbers of twins in the primary blocks below, we need to use the number twins in the 2nd blocks.

The Number of Twins in a Primary Block

One might argue that the ratio of the size of the primary block to the size of the fundamental pattern approaches zero as n approaches infinity. It is true that this ratio approaches zero, but the size of the primary block approaches infinity as n approaches infinity. Here we have a case where each of the lengths of two sequences approaches infinity while the ratio of their lengths approaches zero.

Next we show that the number of twins in the primary block of A_{n+1} is always greater than the number of twins in the primary block of A_{n}.

This is the essence of the proof of the infinitude of the prime twins. As n approaches infinity the lengths of the primary blocks approach infinity and the number of twins (2-twins and 4 -twins) in a primary block approaches infinity. All members of a primary block are primes.

First we show that, in some cases, the second member of a set, p_{n}, is the first member of a twin and this causes a twin to be eliminated from the primary block in the step to the next set. However, for large n, this occurs so infrequently that we can ignore this in our count of the number of twins in a primary block. We show this by recalling from above that the average number of singles between consecutive twins, $\left(\nu_{n} / \tau_{n}\right)-2$, grows without bound.

Next, we compare the length of a primary block to the length of a 2nd block. The length of a primary block is $p_{n}^{2}-p_{n}=p_{n}\left(p_{n}-1\right)$.

The length of a second block is $p_{n+1}^{2}-p_{n}^{2}=2 p_{n} g_{n}+g_{n}^{2}$.
When n is large, the length of the second block is approximately $2 p_{n} \log p_{n}+\log ^{2} p_{n}$

When we compare the lengths for large n , we find p_{n}^{2} compared to $p_{n} \times 2 \log p_{n}$, or equivalently, we compare p_{n} to $2 \log p_{n}$. We see that the ratio of the length of the primary block to the length of the second block grows to infinity as n increases.
Next, we count the number of twins in the primary and 2nd blocks.
Let the numbers of twins in the primary and 2 nd block of A_{n} be a_{1} and a_{2}. These two blocks merge to become the primary block of A_{n+1}.

We look at the two blocks before the merger and find that the total number of twins is $a_{1}+a_{2}$. After the merger, the total number of twins is $a_{1}+r a_{2}$, where r is the fraction of twins remaining in what was the 2nd block of A_{n}. We calculate r as follows.

Recall from above that the average number of twins per vulnerable twin is $p_{n} / 2$. The average fraction of twins removed from a 2 nd block in the step from A_{n} to A_{n+1} is $2 / p_{n}$, which gives $r=1-2 / p_{n}$.

It is possible that in some sets no twins are eliminated from the 2 nd block in the step to the next set, i.e., all the multiples of p_{n} in the 2 nd block are singles and $r=1$.

The number of twins in the primary block of A_{n+1} is greater than the number in A_{n}. The number of twins in the primary block grows without bound as we step through the sets.

This completes our proof of the infinitude of the twin primes. We have shown that the number twins (two-twins or four-twins) in the primary blocks increases to infinity as we step through the sets, A_{n}, with n approaching infinity. All members of a primary block are prime.

References

1. I. Niven and H.S. Zuckerman

An Introduction to the Theory of Numbers, 4th Ed., Wiley, 1980
2. T. Apostol Introduction to Analytic Number Theory, Springer-Verlag, 1976

Comment on $\pi(n)$. References 2 and 3 were written almost simultaneously by different researchers who were not in contact with each other. Both used analytical methods. References 3 and 4 were similar discoveries and used elementary methods.
3. J. Hadamard Sur la distribution des zeros de la fonction $\zeta(s)$ et ses consequences arithmetiques
Bull. Soc. Math. France, 24, pp. 199-220, 1896
4. Ch.-J. de la vallee poussin

La Fonction $\zeta(s)$ de Riemann et les Nombres Premiers en General
Annales de la Societe Scienifique de Bruxelles, 20, pp. 185-256, 1896
5. P. Erdos On a New Method in Elementary Number Theory Which Leads to an Elementary Proof of the Prime Number Theory
Proceedings of the National Academy of Sciences, Vol 35, No. 7, pp. 374-384, July 1949
6. A. Selberg An Elementary Proof of the Prime-Number Theorem

The Annals of Mathematics, Vol. 50, N0. 2, pp. 303-313, April, 1949

Appendix

```
        A partial listing of }\mp@subsup{A}{6}{
        A
    1 2311 4621...
    13 2323 4633...
    17 2327 4637...
461 2771 5081...
463 2773 5083...
467 2777 5087...
479 2789 5099...
481 2791 5101...
487 2797 5107...
491 2801 5111...
493 2803 5113...
499 2809 5119...
503 2813 5123...
509 2819 5129...
521 2831 5141...
523 2833 5143...
2309 4619 6929...
```


[^0]: ${ }^{1}$ See, for example, Apostol, section 5.2
 ${ }^{2}$ See, for example, Niven, section 2.11
 ${ }^{3}$ See, for example, Niven, section 2.1
 ${ }^{4}$ See, for example, Apostol section 5.2

[^1]: ${ }^{5}$ references $3,4,5,6$

