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Abstract

The traditional definition of the twin prime conjecture is that there is an infinite number of
twin primes. The traditional definition of a twin prime is a pair of primes separated by one
even number, e.g., 29 and 31. We expand this definition and prove the infinitude of two types
of twin primes.

Our primary vehicle for proving the twin prime conjecture is a structure that we call Eratos-
thenes’ Patterns, which are created by Eratosthenes Sieve. First, we describe Eratosthenes’
Sieve, then we describe Eratosthenes’ Patterns, then we give the proof.

The essence of our proof is to show that the number of prime twins between pn and p2
n
approaches

infinity as n approaches infinity.
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Before we begin, we cover two nomenclature topics: a definition and mathematical notation.

Definition of prime number We restrict our definition to the natural numbers, N.
Any number that has exactly two divisors is prime.
Any number that has three or more divisors is composite.
1 is the only number that has exactly one divisor and is neither prime nor composite. ✷

We have a possible confusion in our notation. We use (a,b) for the greatest common divisor of
a and b. This notation is commonly used in Number Theory. We also use (a,b) for an open set
of numbers, bounded by a and b. This notation is commonly used in Set Theory. The reader
should be aware of the context.

The Sieve of Eratosthenes

Eratosthenes sieve is a method for finding prime numbers. Eratosthenes lived circa 200 BC.

In the Sieve of Eratosthenes, primes and multiples of primes are removed from the natural num-
bers. One starts with the natural numbers and creates a second set by removing all multiples
of 2. Then one creates the third set by removing all multiples of 3 from the second set. This
process is continued as long as desired. We name these sets A1, A2, A3, ..., An with A1 being
the natural numbers.

We show some of these sets here.
A1 1 2 3 4 5 6 7 8 . . . the natural numbers
A2 1 3 5 7 9 11 13 15 . . . multiples of 2 removed (odd numbers)
A3 1 5 7 11 13 17 19 23 25 29 31 35 37 . . . multiples of 3 removed from A2

A4 1 7 11 13 17 19 23 29 31 37 41 43 47 49 . . . multiples of 5 removed from A3

...

All of the primes, however many there are, are in A1

All of the primes greater than 2 are in A2, in order.
All of the primes greater than 3 are in A3, in order.
All of the primes greater than 5 are in A4, in order.
...

These statements seem obvious and trivial, but they will prove necessary below.

In each set, the first member is 1 and the second member is the nth prime.
In each set, the first composite is p2

n
.

In each set, apart from the 1, all of the numbers less than p2
n
are prime.

When multiples of pn are removed from An in order to create An+1, an infinity of composites
is removed but only one prime is removed.
By choosing the 2nd member of each set, A1 through An, we construct a list of the first n primes.
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All of the information given above is thousands of years old, except for the names of the sets,
which we have chosen.

Instead of studying the primes that have been found, we have studied the numbers that are
left behind after primes and their multiples have been removed from the natural numbers and
we have found interesting and useful patterns. We call them Eratosthenes’ Patterns. Next,
we give some of the many useful features of Eratosthenes’ Patterns. We have not found these
structures in the literature.

Eratosthenes’ Patterns

We show A3 and A4 rearranged so as to demonstrate the patterns that we have found.

A3 original multiples of 2 and 3 have been removed from A1

1 5 7 11 13 17 19 23 25 29 31 35 37 ...

A3 rearranged

1 7 13 19 25 31 37 43 49 55 61 ...

5 11 17 23 29 35 41 47 53 59 65 ...

A4 original multiples of 5 have been removed from A3

1 7 11 13 17 19 23 29 31 37 41 43 47 49 53 59 61 67 ...

A4 rearranged

1 31 61 91 121 151 181 211 241 271 301 331 361 391 421 ...
7 37 67 97 127 157 187 217 247 277 307 337 367 397 427 ...
11 41 71 101 131 161 191 221 251 281 311 341 371 401 431 ...
13 43 73 103 133 163 193 223 253 283 313 343 373 403 433 ...
17 47 77 107 137 167 197 227 257 287 317 347 377 407 437 ...
19 49 79 109 139 169 199 229 259 289 319 349 379 409 439 ...
23 53 83 113 143 173 203 233 263 293 323 353 383 413 443 ...
29 59 89 119 149 179 209 239 269 299 329 359 389 419 449 ...

As stated above, the first member in the first column is 1 and the second number is the nth
prime. We call the columns patterns. The first pattern is the ’fundamental pattern’. Note the
spaces after every pn patterns. These delineate what we call extended patterns (to be explained
below). The first extended pattern is the ’fundamental extended pattern’.

We use three parameters to describe the patterns, λ, ν, and τ . λ is used for the length of a
pattern. ν is used for the number of members in a pattern, and τ is used for the number of
twins in a pattern. (We explain twins below.) p is used for prime numbers. Note that the
boundaries of the patterns are not members of the set. For example, in A4, the boundaries
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are at 0, 30, 60, 90, ... Note that λ4 = 30. The length of an extended pattern in A4 is 210.
λ4 × p4 = 210.

The creation of An+1 from An involves removing all multiples of pn from An. The extended
patterns in An become the patterns of An+1. When an extended pattern of An becomes a
pattern of An+1, the patterns of An become subpatterns of the patterns of An+1. For example,
in the 2nd pattern of A5, which is bounded by 210 and 420, the subpatterns are bounded by
210, 240, 270, 300, ... (A5 is given below.) In A4, the patterns all contain 8 members. In
A5, the subpatterns have less than 8 members.

We speak of of the first and second halves of an extended pattern. In the case of A4, the first
half of the fundamental extended pattern is from 1 to 103 and the second half is from 107 to 209.

We speak of ’stepping’ from An to An+1.

Next, we show the sets A1 through A5 with the parameters added and certain numbers in
boldface. The numbers in boldface are multiples of pn. The distribution of the multiples of pn
is critical.

A1 p1 = 2, λ1 = 1, ν1 = 1

1 2 3 4 5 6 7 8 9 ...

A2 p2 = 3, λ2 = 2, ν2 = 1

1 3 5 7 9 11 13 15 17 19 ...

A3 p3 = 5, λ3 = 6, ν3 = 2, τ3 = 1

1 7 13 19 25 31 37 43 49 55 61 ...
5 11 17 23 29 35 41 47 53 59 65 ...

A4 p4 = 7, λ4 = 30, ν4 = 8, τ4 = 3

1 31 61 91 121 151 181 211 241 271 301 331 361 391 421 ...
7 37 67 97 127 157 187 217 247 277 307 337 367 397 427 ...
11 41 71 101 131 161 191 221 251 281 311 341 371 401 431 ...
13 43 73 103 133 163 193 223 253 283 313 343 373 403 433 ...
17 47 77 107 137 167 197 227 257 287 317 347 377 407 437 ...
19 49 79 109 139 169 199 229 259 289 319 349 379 409 439 ...
23 53 83 113 143 173 203 233 263 293 323 353 383 413 443 ...
29 59 89 119 149 179 209 239 269 299 329 359 389 419 449 ...

Note the repetition in the distribution of the numbers in boldface (multiples of pn) across the
extended patterns. This is due to the fact that a member of an extended pattern plus the
length of an extended pattern (λn × pn) gives a corresponding member in the next extended
pattern. If one of these is a multiple of pn then the other must also be a multiple. Also, we
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find that in any row of an extended pattern, there is exactly one multiple of pn. We explain
this below.

We continue with A5.

A5 p5 = 11, λ5 = 210, ν5 = 48, τ5 = 15

1 211 421 631 841 1051 1261 1471 1681 1891 2101 2311 2521 ...

11 221 431 641 851 1061 1271 1481 1691 1901 2111 2321 2531 ...

13 223 433 643 853 1063 1273 1483 1693 1903 2113 2323 2533 ...

17 227 437 647 857 1067 1277 1487 1697 1907 2117 2327 2537 ...

19 229 439 649 859 1069 1279 1489 1699 1909 2119 2329 2539 ...

23 233 443 653 863 1073 1283 1493 1703 1913 2123 2333 2543 ...

29 239 449 659 869 1079 1289 1499 1709 1919 2129 2339 2549 ...

31 241 451 661 871 1081 1291 1501 1711 1921 2131 2341 2551 ...

37 247 457 667 877 1087 1297 1507 1717 1927 2137 2347 2557 ...

41 251 461 671 881 1091 1301 1511 1721 1931 2141 2351 2561 ...

43 253 463 673 883 1093 1303 1513 1723 1933 2143 2353 2563 ...

47 257 467 677 887 1097 1307 1517 1727 1937 2147 2357 2567 ...

53 263 473 683 893 1103 1313 1523 1733 1943 2153 2363 2573 ...

59 269 479 689 899 1109 1319 1529 1739 1949 2159 2369 2579 ...

61 271 481 691 901 1111 1321 1531 1741 1951 2161 2371 2581 ...

67 277 487 697 907 1117 1327 1537 1747 1957 2167 2377 2587 ...

71 281 491 701 911 1121 1331 1541 1751 1961 2171 2381 2591 ...

73 283 493 703 913 1123 1333 1543 1753 1963 2173 2383 2593 ...

79 289 499 709 919 1129 1339 1549 1759 1969 2179 2389 2599 ...

83 293 503 713 923 1133 1343 1553 1763 1973 2183 2393 2603 ...

89 299 509 719 929 1139 1349 1559 1769 1979 2189 2399 2609 ...

97 307 517 727 937 1147 1357 1567 1777 1987 2197 2407 2617 ...

101 311 521 731 941 1151 1361 1571 1781 1991 2201 2411 2621 ...

103 313 523 733 943 1153 1363 1573 1783 1993 2203 2413 2623 ...

107 317 527 737 947 1157 1367 1577 1787 1997 2207 2417 2627 ...

109 319 529 739 949 1159 1369 1579 1789 1999 2209 2419 2629 ...

113 323 533 743 953 1163 1373 1583 1793 2003 2213 2423 2633 ...

121 331 541 751 961 1171 1381 1591 1801 2011 2221 2431 2641 ...

127 337 547 757 967 1177 1387 1597 1807 2017 2227 2437 2647 ...

131 341 551 761 971 1181 1391 1601 1811 2021 2231 2441 2651 ...

137 347 557 767 977 1187 1397 1607 1817 2027 2237 2447 2657 ...

139 349 559 769 979 1189 1399 1609 1819 2029 2239 2449 2659 ...

143 353 563 773 983 1193 1403 1613 1823 2033 2243 2453 2663 ...

149 359 569 779 989 1199 1409 1619 1829 2039 2249 2459 2669 ...

151 361 571 781 991 1201 1411 1621 1831 2041 2251 2461 2671 ...

157 367 577 787 997 1207 1417 1627 1837 2047 2257 2467 2677 ...

163 373 583 793 1003 1213 1423 1633 1843 2053 2263 2473 2683 ...

167 377 587 797 1007 1217 1427 1637 1847 2057 2267 2477 2687 ...

169 379 589 799 1009 1219 1429 1639 1849 2059 2269 2479 2689 ...

173 383 593 803 1013 1223 1433 1643 1853 2063 2273 2483 2693 ...

179 389 599 809 1019 1229 1439 1649 1859 2069 2279 2489 2699 ...

181 391 601 811 1021 1231 1441 1651 1861 2071 2281 2491 2701 ...

187 397 607 817 1027 1237 1447 1657 1867 2077 2287 2497 2707 ...

191 401 611 821 1031 1241 1451 1661 1871 2081 2291 2501 2711 ...

193 403 613 823 1033 1243 1453 1663 1873 2083 2293 2503 2713 ...

197 407 617 827 1037 1347 1457 1667 1877 2087 2297 2507 2717 ...

199 409 619 829 1039 1249 1459 1669 1879 2089 2299 2509 2719 ...

209 419 629 839 1049 1259 1469 1679 1889 2099 2309 2519 2729 ...
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Note that the distribution of multiples of 11 in A5 is similar to what we saw in A4: the distri-
bution is the same in all extended patterns and there is exactly one multiple of 11 in each row
of an extended pattern.

We review the structure of these sets. We depict them with the patterns as vertical columns.
The vertical length of an extended pattern is determined by the patterns. The horizontal width
of an extended pattern is determined by pn. As we step through the sets, An, the extended
patterns develop a very large aspect ratio. i.e., the vertical size vs the horizontal width. The
extended patterns are placed left to right and extend to infinity.

The set is shown as a collection of extended patterns, left to right, with finite vertical height
and an infinite horizontal width.

The members of the fundamental pattern in An are a reduced residue system1 of λn since every
member of An is relatively prime to λn.

The members of the fundamental pattern in An are a multiplicative group modulo λn
2

The number of members in the fundamental pattern in An, νn, is Euler’s totient
3 for λn.

The members of a pattern are symmetrically arranged about λn/2. For example, in A4, 7
is a member and 30 - 7 = 23 is a member. (λ4 = 30). This symmetry occurs because
(λn, a) = (λn − a, a) = 1 for any member, a, of An. This is a specific example of a more
general case involving any reduced residue system. In a reduced residue system of m, in which
all members are positive and less than m, the members are symmetrically arranged about m/2.
We show this with the following theorem.

Theorem 1 (m, a) = (m− a, a), where m > a

Proof Let g1 = (m, a) and g2 = (m − a, a). g1 also divides m − a and therefore, g1|g2. g2
also divides m− a+ a = m and therefore, g2|g1. Thus g1 = g2. ✷

There is also a symmetry about the center of an extended pattern of An. If a is a member, so
is (λn × pn)− a. For example, look at the fundamental extended pattern of A4 in the table
above. 53 and 157 are images of each other in this specific type of symmetry. (53 + 157 = 210)

As we search through the extended patterns of An we have seen that there is a multiple of pn
in the same position of a every extended pattern. These particular multiples are separated by
pn × λn. Thus, they are a residue class4 in An.

These are the reasons for our choice of pn patterns as the size of the extended patterns.

When one studies the patterns, in any set, and notes the infinitude of numbers that have been
removed from the natural numbers, one should keep in mind the fact that only composite num-

1See, for example, Apostol, section 5.2
2See, for example, Niven, section 2.11
3See, for example, Niven, section 2.1
4See, for example, Apostol section 5.2
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bers have been removed from the natural numbers, with one exception: the gap between 1 and
pn (the first two numbers in a fundamental pattern) is the only place where primes have been
removed.

When stepping from one set to the next, apart from the fundamental extended pattern, when
an extended pattern in An becomes a pattern in An+1, the ratio of primes to composites in-
creases.

The Twins

Here, we define twins. We define two types of twins: two-twins and four-twins. Historically,
twins have referred to what we call two-twins. Two-twins are two odd numbers which differ
by two, such as 17 and 19. Four-twins differ by four, such as 19 and 23. We shall show that
the four-twins are as significant as the two-twins. The two-twins and four-twins are equal in
number in any pattern. Their distributions in a pattern are similar and their distributions in
extended patterns are similar.

We start by showing different arrangements of A3.

A3 Four-Twins

1 7 13 19 25 31 37 43 49 55 61 ...
5 11 17 23 29 35 41 47 53 59 65 ...

A3 (modified) Two-Twins

5 11 17 23 29 35 41 47 53 ...
1 7 13 19 25 31 37 43 49 55 ...

5 11 17 23 29 35 41 47 53 59 ... (2nd version)
1 7 13 19 25 31 37 43 49 55 ...

In the first case given above, the patterns are four-twins and, in the second and third cases,
the patterns are two-twins.

All the members of A3 are of the form 6n± 1. Thus, all members of any set, Ak, where k ≥ 3,
are of the form 6n ± 1. Since all primes greater than or equal to 5 are in the set, A3, we can
justify the following theorem.

Theorem 2 All primes ≥ 5 are of the form, 6n± 1 ✷

To designate a 2-twin, we use the multiple of 6 (even multiple of 3) on which the twin is cen-
tered. For example, the 2-twin, 17,19, is designated as 18. To designate a 4-twin, we use the
odd multiple of 3 on which the twin is centered. For example, the four-twin, 19,23 is designated
as 21.
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A twin with two prime members is called a prime twin. A twin with one prime member is
called a combination twin, and a twin with two composite members is called a composite twin.

We have adopted the convention that 3,5 is not a two-twin, since 3 is not a member of A3. We
note that no primes fall between the two members of a twin. However, looking at the set A3

above we see that we have to make an exception in the case of the four-twin, 1,5, since there
are two primes, 2 and 3, between 1 and 5. We explain the significance of A3 next.

Another way to describe these features is to note that the number that falls between the mem-
bers of a two-twin is always a multiple of 6 and, of the three numbers that fall between the
members of a four-twin, two are multiples of 2 and one is an odd multiple of 3. A number can
only be a member of a unique two-twin. A number can only be a member of a unique four-twin.
However, a number can simultaneously be a member of both a two-twin and a four-twin. For
example, 19 is a member of the two-twin, 18, and is also a member of the four twin, 21. But
19 is not a member of any other two-twin nor any other four-twin. In the steps to higher num-
bered sets, two-twins and four-twins can only be destroyed and cannot be created. Thus, the
density of either type of these twins in An+1 is always less than that of An. However, six-twins,
eight-twins, and others, are created in almost all steps from one set to the next. The set A3 is
an infinite sequence of alternating 2-twins and 4-twins.

All twins, 2-twins and 4-twins, are created in A3.

According to our definitions there are no twins in A1 nor in A2.

Also, it is clear, from the structure of A3, that the spacing between any two twins, either 2-twins
or 4-twins, is a multiple of 6.

In the remainder of this paper, unless otherwise stated, when we speak of stepping from An to
An+1, n ≥ 3. Also, our use of the word ’twins’ will refer to 2-twins and 4-twins only.

Theorem 3 In any pattern, the number of two-twins is exactly equal to the number of
four-twins.

Proof by induction.

The basis case: A4 has exactly 3 two-twins and 3 four-twins in each pattern. Also, there are
21 two-twins and 21 four-twins in each extended pattern. Recall that there is one half of a
two-twin at the beginning and ending of each pattern.

The induction case: There are τn two-twins and τn four-twins in the patterns of An. There
are pnτn twins of each type in each extended pattern. Each twin in the fundamental pattern is
at the head of two rows of twins and these two rows have two multiples of pn. There will be
2τn two-twins and 2τn four twins removed from the fundamental extended pattern, and from
each extended pattern, in the step to An+1. This will leave τn(pn − 2) two-twins and τn(pn − 2)
four-twins in the extended patterns of An+1. ✷
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Next we show A5 with a count of the twins added.

A5 p5 = 11, λ5 = 210, ν5 = 48, τ5 = 15 (count of twins added)
2-twin 4-twin

15 1 211 421 631 841 1051 1261 1471 1681 1891 2101 2311 ...

1 11 221 431 641 851 1061 1271 1481 1691 1901 2111 2321 ...

1 13 223 433 643 853 1063 1273 1483 1693 19.5 2113 2323 ... 1

2 17 227 437 647 857 1067 1277 1487 1697 1907 2117 2327 ... 1

2 19 229 439 649 859 1069 1279 1489 1699 1909 2119 2329 ... 2

23 233 443 653 863 1073 1283 1493 1703 1913 2123 2333 ... 2

3 29 239 449 659 869 1079 1289 1499 1709 1919 2129 2339 ...

3 31 241 451 661 871 1081 1291 1501 1711 1921 2131 2341 ...

37 247 457 667 877 1087 1297 1507 1717 1927 2137 2347 ... 3

4 41 251 461 671 881 1091 1301 1511 1721 1931 2141 2351 ... 3

4 43 253 463 673 883 1093 1303 1513 1723 1933 2143 2353 ... 4

47 257 467 677 887 1097 1307 1517 1727 1937 2147 2357 ... 4

53 263 473 683 893 1103 1313 1523 1733 1943 2153 2363 ...

5 59 269 479 689 899 1109 1319 1529 1739 1949 2159 2369 ...

5 61 271 481 691 901 1111 1321 1531 1741 1951 2161 2371 ...

67 277 487 697 907 1117 1327 1537 1747 1957 2167 2377 ... 5

6 71 281 491 701 911 1121 1331 1541 1751 1961 2171 2381 ... 5

6 73 283 493 703 913 1123 1333 1543 1753 1963 2173 2383 ...

79 289 499 709 919 1129 1339 1549 1759 1969 2179 2389 ... 6

83 293 503 713 923 1133 1343 1553 1763 1973 2183 2393 ... 6

89 299 509 719 929 1139 1349 1559 1769 1979 2189 2399 ...

97 307 517 727 937 1147 1357 1567 1777 1987 2197 2407 ... 7

7 101 311 521 731 941 1151 1361 1571 1781 1991 2201 2411 ... 7

7 103 313 523 733 943 1153 1363 1573 1783 1993 2203 2413 ... 8

8 107 317 527 737 947 1157 1367 1577 1787 1997 2207 2417 ... 8

8 109 319 529 739 949 1159 1369 1579 1789 1999 2209 2419 ... 9

113 323 533 743 953 1163 1373 1583 1793 2003 2213 2423 ... 9

121 331 541 751 961 1171 1381 1591 1801 2011 2221 2431 ...

127 337 547 757 967 1177 1387 1597 1807 2017 2227 2437 ... 10

131 341 551 761 971 1181 1391 1601 1811 2021 2231 2441 ... 10

9 137 347 557 767 977 1187 1397 1607 1817 2027 2237 2447 ...

9 139 349 559 769 979 1189 1399 1609 1819 2029 2239 2449 ... 11

143 353 563 773 983 1193 1403 1613 1823 2033 2243 2453 ... 11

10 149 359 569 779 989 1199 1409 1619 1829 2039 2249 2459 ...

10 151 361 571 781 991 1201 1411 1621 1831 2041 2251 2461 ...

157 367 577 787 997 1207 1417 1627 1837 2047 2257 2467 ...

163 373 583 793 1003 1213 1423 1633 1843 2053 2263 2473 ... 12

11 167 377 587 797 1007 1217 1427 1637 1847 2057 2267 2477 ... 12

11 169 379 589 799 1009 1219 1429 1639 1849 2059 2269 2479 ... 13

173 383 593 803 1013 1223 1433 1643 1853 2063 2273 2483 ... 13

12 179 389 599 809 1019 1229 1439 1649 1859 2069 2279 2489 ...

12 181 391 601 811 1021 1231 1441 1651 1861 2071 2281 2491 ...

187 397 607 817 1027 1237 1447 1657 1867 2077 2287 2497 ... 14

13 191 401 611 821 1031 1241 1451 1661 1871 2081 2291 2501 ... 14

13 193 403 613 823 1033 1243 1453 1663 1873 2083 2293 2503 ... 15

14 197 407 617 827 1037 1347 1457 1667 1877 2087 2297 2507 ... 15

14 199 409 619 829 1039 1249 1459 1669 1879 2089 2299 2509 ...

15 209 419 629 839 1049 1259 1469 1679 1889 2099 2309 2519 ...
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Here we give formulas for calculating λ, ν, and τ .

The length of a pattern in An is: λn =
n−1∏

i=1

pi, n ≥ 2

λn+1 = λnpn

The number of members in a pattern in An is: νn =
n−1∏

i=1

(pi − 1), n ≥ 2

νn+1 = νn(pn − 1)

The number of twins in a pattern in An is: τn =
n−1∏

i=2

(pi − 2), n ≥ 3

τn+1 = τn(pn − 2)

Here are the parameters for the first 10 sets.

n pn p2
n

λn νn τn
1 2 4 1 1 -
2 3 9 2 1 -
3 5 25 6 2 1
4 7 49 30 8 3
5 11 121 210 48 15
6 13 169 2310 480 135
7 17 289 30030 5760 1485
8 19 361 510510 92160 22275
9 23 529 9699690 1658880 378675
10 29 841 223092870 36495360 7952175

Here we show a formula for any member of any set. This allows one to build the set An without
having any of the previous sets available.

Theorem 4 A formula for any member of any set.

Every member of An, greater than 2, can be represented in the following form.

a = (λn/2)± 2jpb1k1p
b2
k2
... , j > 0, ki ≥ n, bi ≥ 0, n ≥ 2, λn/2 =

n−1∏

i=2

pi

Proof. Let a be a member of An. a, by the definition of membership in An, cannot be divided
by any prime less than pn. The first of the two terms above contains the primes from 3 to pn−1.
The second contains multiples of 2, and possible multiples of primes that are greater than or
equal to pn. Next, we only need to show that every member of An can be represented in the
above form.

Let z be any member of An, greater than 2, and z = x + y, with x being odd and y being

even. x can be any odd number and, when chosen, y is determined. Let x = λn/2 =
n−1∏

i=2

pi.

Therefore, y must contain a power of 2 as a factor. If there are other factors of y, they must be
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divisible by powers of primes greater than or equal to pn. Thus, x and y are of the forms of the
first and second terms, right of the equal sign, in the statement of the theorem given above. ✷

Next, we define four new parameters that we will use in various calculations:
’Vulnerable twins’; ’Singles’; ’ Blocks’; and ’gn’.

Vulnerable twins

In the step to An+1, the number of twins removed from the extended pattern of An is 2τn.
Recall that for each twin in a pattern, two rows are occupied in an extended pattern and each
of these rows has one multiple of pn. The two twins that contain these multiples are the twins
that will be removed in the step to An+1. We call these ’vulnerable’ twins, since they will not
be members of An+1.

Simply put, the vulnerable twins are those twins that are removed from An in the step to An+1.

Singles

A single is a member of An that is not a member of a twin. We consider singles in a pattern
that are not members of two-twins. We also consider singles in a pattern that are not members
of a four-twin. The number of singles among the two-twins is the same as the number of singles
among the four-twins. We have not considered singles in a pattern that not members of both
two-twins and four-twins. That would be an interesting calculation for the future.

There are νn members in a pattern and τn twins in a pattern. This gives νn − 2τn singles in a
pattern. Thus, the average number of singles between twins is (νn − 2τn)/τn = (νn/τn)− 2. As
we step through the sets this average grows monotonically without limit, but the increase, per
step, in this average approaches zero.

Blocks

We separate the members of the various sets into sequences that we call blocks. A block is the
subset of members between p2

n
and p2

n+1. We have two schemes for naming the blocks, one for
A1, the natural numbers, and another for the other sets.
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We divide A1 into ’blocks’ as follows, using cardinal numbers.

B1 = 4 to 8 p21 = 4 , p22 = 9
B2 = 9 to 24
B3 = 25 to 48 Bn begins with p2

n
and ends with p2

n+1 − 1
B4 = 49 to 120
B5 = 121 to 168
...
B10 = 841 to 960
...
B20 = 5041 to 5328
...

Next, we use ordinal numbers for these same blocks when they appear in the various sets.

set primary 2nd 3rd 4th
A1 2 to 3 4 to 8 9 to 24 25 to 48
A2 3 to 8 9 to 24 25 to 48 49 to 120
A3 5 to 24 25 to 48 49 to 120 121 to 168
A4 7 to 48 49 to 120 121 to 168 169 to 288
A5 11 to 120 121 to 168 169 to 288 289 to 360
...
A10 29 to 840 841 to 960 961 to 1368 1369 to 1680
...
A20 71 to 5040 5041 to 5328 5329 to 6240 6241 to 6888
...

We use set theory notation to define a block. For example, in A3, the third block is [49,121).

Note that the block from pn to p2
n
− 1 in a set is called the primary block for that set.

Note that the second block in An is the same as Bn. Also, the jth block in An is the same as
the jth-1 block in An+1, j ≥ 3. Also note that the primary block in An (n ≥ 2) does not have
a corresponding block in A1.

Note that the primary block in An consists of a merger of the primary block in An−1 with the
second block in An−1. In this merger, pn−1 and its multiples are removed.

On average, in An, the blocks in the jth+1 pattern are larger that those in the jth pattern.

As we step through the sets, the size of a block, say Bk, does not change (except for the primary
blocks). The lower and upper boundaries of Bk do not change (except for the primary blocks).
The primary blocks increase in size and both their lower and upper boundaries move forward.
The number of members in the blocks decrease except that, in the primary blocks, the numbers
increase. We prove these statements below.
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Here are some examples.
Let Bk be the jth block in An. Bk = [p2

k
, p2

k+1). We find: k = n + j - 2. k is the cardinal
number associated with Bk. j is the ordinal number associated with the jth block in the set An

Consider B7, [289,361). It is:
4th block in A5 k = 7 , n = 5 , j = 4 16 members
3rd block in A6 k = 7 , n = 6 , j = 3 14 members
2nd block in A7 k = 7 , n = 7 , j = 2 12 members
In all cases B7 spans the numbers from 289 to 360, and its size is 72.

The primary block in A5 is [11,121) 16 members size = 110
The primary block in A6 is [13,169) 34 members. size = 156
The primary block in A7 is [17,289) 55 members. size = 272

We have not found these structures that we call blocks in the literature.

gn

g is the gap between primes. gn = pn+1 − pn.

π(x) is commonly used to designate the number of primes that are less than or equal to x.
According to the prime number theorem:5

lim
x→∞

π(x)
log(x)

x
= 1

If we let π∗(x) =
x

logx, the derivative of π∗(x) =
logx−1
log2x

. This approaches
1

logx as x ap-

proaches infinity.

lim
x→∞

dπ(x)

dx
= lim

x→∞

dπ∗(x)

dx
=

1

logx

As n approaches infinity, the average gap between two consecutive primes approaches log pn,
which approaches infinity.

The Distribution of Twins in a Set

We are currently studying many aspects of the distribution of the twins. We cite three of them
here since we feel these will help the reader understand this proof. In a subsequent paper we
will give more aspects, including constellations of primes other than twins.

This discussion applies to all twins, in all blocks, including the primary blocks.

1. Vulnerables among the twins:
There are τn pn twins and 2τn vulnerable twins in an extended pattern. This gives a ratio of
2/pn vulnerable twins to twins. Another way to look at it is that the average number of twins

5references 3,4,5,6
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that fall between two vulnerable twins is pn/2. This number grows to infinity as n approaches
infinity. As n increases, the vulnerable twins in An become sparse among the twins. For large
n, as one steps through the sets, one finds almost no change in the distribution of twins at each
step. The sparsity of the vulnerable twins is critical in the discussions below.

These calculations apply to both 2-twins and 4-twins.

2. Pattern boundary twins and pattern center twins:
The twins appear to be randomly distributed. However, there are uniform sequences of twins
that are superimposed on the distribution.

We start with what we call the pattern boundary twins. They are created in A3 where the
boundaries are multiples of 6. However, we find it easier to study the sequence in A4 where
the boundaries of the patterns are 30, 60, 90, 120, ... Each of these is the center of a two-twin.
There is an infinite number of these two-twins separated by a distance of 30 each. In an ex-
tended pattern (length = 210) there are 7 of these pattern boundary twins. They occupy two
rows and one from each row will be eliminated in the step to A5, leaving 5 of these twins in
each pattern of A5. In A4, we look at the twin, 210, at the upper boundary of the fundamental
extended pattern. Neither of the members of 210 is a multiple of 7, preventing it from being
eliminated in the step to A5. This leads to a pattern boundary twin in each pattern of A5.
This process continues indefinitely.

In any set, among other twins, there is a uniform distribution of pattern boundary two-twins
throughout the set. They are separated by a distance of λ.

Next we look at the pattern center twins. In A4, at the center of the fundamental pattern
there is a four-twin, 15. This is explained by Theorem 4 above. The center of the fundamental
pattern is λn/2 and the twin is generated by (λn/2)± 2. In A4, 13 and 17 are at the heads of
two rows of four-twins in the fundamental extended pattern. Of the 7 twins in these two rows,
2 will be eliminated in the step to A5, leaving 5 four-twins in every pattern.
At the center of the fundamental extended pattern, neither of the two members of the four-twin,
105, are multiples of 7. The twin, 105, will not be eliminated in the step to A5, leading to a
four-twin at the center of every pattern.

In any set, among other twins, there is a uniform distribution of pattern center four-twins
throughout the set. They are separated by a distance of λ.

There are many other constellations of twins that give a uniform distribution superimposed on
the random distribution of other twins. For example, there is a constellation that we call ’hex-
tuples’. They are created in A4 by using Theorem 4. Their structure is (λn/2)± 2, (λn/2)± 4,
and (λn/2)± 8. For example, at the center of the fundamental pattern of A5, we find 97, 101,
103, 107, 109, 113. They include 2 two-twins and 3 four-twins. Notice that the pattern center
twins are embedded in the hextuples. There is a hextuple at the center of every pattern in
every set, An where n ≥ 4, and they are uniformally distributed throughout the sets with a
spacing of λn.

We will cover other constellations in a subsequent paper.
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3. Growth of gaps:
Here we look at the growth of a gap between twins in the steps to subsequent sets. We shall
show that this growth is limited.

First, we introduce new terminology. We borrow from the field of aeronautical engineering and
speak of the leading edge of a primary block. For example, in stepping through the sets, A6,
A7, and A8, the leading edge of the primary blocks advances from 168 to 288 to 360. We speak
of the advance of the leading edge.

In addition to the leading edge of the primary blocks we speak of the leading edge of a gap
between twins and note its advance. At each step the average size of the advance of the leading
edge of a gap is equal to the average distance between twins.

For a demonstration of the growth of a gap we choose four consecutive 2-twins, 462, 480, 492,
and 522 which are in the fundamental pattern of A6 and have gaps of 18, 12, and 30 between
them. (A partial listing of A6 is given in the appendix.) 481 is a multiple of 13 and, in the
step to A7, the twin, 480, will be eliminated. (479 will remain as a single.) Thus, we find in the
fundamental pattern of A7 a gap of 30 between the twins 462 and 492. We have seen a simple
example of a gap growing from 18 to 30 in one step.

We now have three of the four original consecutive 2-twins in A7, 462, 492, and 522 with gaps
of 30 and 30. 493 is a multiple of 17 and the twin, 492, will be eliminated in the step to A8.
In A8 we have two of the twins left, 462 and 522, with a gap of 60.

The original sequence of four 2-twins is in B8, [361,529), which is the 4th block of A6 and
the 2nd block of A8. The primary block of A9 is [23,529). The leading edge of the A9 pri-
mary block is greater than 523 and the two twins, 462 and 522, neither of which contains a
multiple of 19, in the step to A9, will be merged into the primary block and must be prime twins.

There are two methods by which the growth of a gap can be terminated. First, in stepping
through the sets, a gap can become bounded on both ends by prime twins, even though it is
outside of a primary block. Second, as we have seen above, the leading edge of the primary
blocks advances beyond the leading edge of the gap.

Let’s look at the advance of the leading edge of the gap in the example above. The original
gap was 462 to 480, with 480 being the leading edge, with a gap of 18. In the step to A7, the
leading edge advances to 492 and 12 is added to the gap. In the step to A8, the leading edge
advances to 522 and 30 is added to the gap.
Note that in A6 the average gap size between twins (λ6/τ6) is 17.1 and in A8 it’s 22.9.

Let’s look at the advance of the leading edge of the primary blocks during these same steps. It
advanced from 168 to 288 to 360. The leading edge of the gap between the twins advanced by
40; the leading edge of the primary blocks advanced by 192.

The leading edge of the primary blocks moves forward at the same rate as the advance of p2
n
.

We show below that the leading edge of a gap moves forward at a near constant rate which
leads to an ever increasing ratio of block size to gap size. The speeds of the advances have the
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same increasing ratio.

The crucial point here is:

In one step, the leading edge of a primary block moves forward one block, and the leading edge

of a gap between twins moves forward one twin.

The growth of the gap between twins is limited. The growth of any gap will be terminated in
a finite number of steps by either the appearance of a prime twin or by being overtaken by the
advancing primary blocks.

We have shown three aspects of the distribution of twins. There is a sparsity of vulnerable
twins. There is a uniformity in the distribution of some of the twins that is superimposed
on the random distribution of the other twins. The growth of the gaps between the twins is
limited. We are ready to state the proof of the infinitude of the twins.

The Proof

We shall show that the number of twins in the primary blocks increases to infinity as one steps
through the sets. All members of a primary block are prime. We start with a count of the
twins in any block, then a count of the twins in the primary blocks.

The Number of Twins in a Block

The number of twins in a block is the product of two factors: the size (length) of the block;
and the density of the twins. However, we prefer to use the gap between twins, which is the
reciprocal of the density, giving the number of twins as the block size divided by the average
gap between twins.

In An, the average gap between twins is (λn/τn) and in An+1 it is (λn+1/τn+1).

(λn+1/τn+1) = (λn/τn)(
pn

pn − 2
)

lim
n→∞

λn+1/τn+1

λn/τn
= 1

This implies that, for large n, in each step, the change in λn/τn is negligible. Therefore, the
average number of twins in a block depends almost entirely on the size of the block. Next, we
look at the sizes of the blocks and calculate the number twins in a block.

Recall the letters that we use for specifying the blocks: n, k, and j, and the equation relating
them: k = n+ j − 2. n is the set number, k is the block number in A1, and j is the position
number of the block in a set other than A1.

There are three ways to look at the number of twins in the various blocks. First we look at a
particular set, i.e., n is constant. The average gap between twins, λn/τn, is the same throughout
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the set. Thus, the average number twins in each block is simply the size of the block divided
by the average gap between twins.

Secondly, we let k be constant. As we step through the sets, the block Bk does not change in
size or location among the natural numbers, only its contents change. When stepping forward,
n increases and j decreases and the number of members and the number of twins in Bk decrease.
We show below that we are interested in 2nd blocks and we step forward through the sets until
Bk is the 2nd block of a set. When this occurs, j = 2, n = k, and the average number twins in
the block is (p2

n+1 − p2
n
)/(λn/τn).

We are not interested in these first two ways and place our interest on the third.

Let j be constant. As an example, we let j = 2. Below we explain the significance of 2nd
blocks. As we step through the sets, j = 2 and n = k. The size of the second block is
p2
n+1 − p2

n
= 2pngn + g2

n
which approaches infinity as n approaches infinity. Thus, the average

number of twins in a 2nd block increases without bound as n increases.

One could calculate block sizes and numbers of twins for blocks other than the 2nd. Just change
the value of j and follow the same procedures. However, in calculating the numbers of twins
in the primary blocks below, we need to use the number twins in the 2nd blocks.

The Number of Twins in a Primary Block

One might argue that the ratio of the size of the primary block to the size of the fundamental
pattern approaches zero as n approaches infinity. It is true that this ratio approaches zero, but
the size of the primary block approaches infinity as n approaches infinity. Here we have a case
where each of the lengths of two sequences approaches infinity while the ratio of their lengths
approaches zero.

Next we show that the number of twins in the primary block of An+1 is always greater than
the number of twins in the primary block of An.

This is the essence of the proof of the infinitude of the prime twins. As n approaches infinity the
lengths of the primary blocks approach infinity and the number of twins (2-twins and 4-twins)
in a primary block approaches infinity. All members of a primary block are primes.

First we show that, in some cases, the second member of a set, pn, is the first member of a
twin and this causes a twin to be eliminated from the primary block in the step to the next
set. However, for large n, this occurs so infrequently that we can ignore this in our count of
the number of twins in a primary block. We show this by recalling from above that the average
number of singles between consecutive twins, (νn/τn)− 2, grows without bound.

Next, we compare the length of a primary block to the length of a 2nd block. The length of a
primary block is p2

n
− pn = pn(pn − 1).

The length of a second block is p2
n+1 − p2

n
= 2pngn + g2

n
.

When n is large, the length of the second block is approximately 2 pn log pn + log2pn
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When we compare the lengths for large n, we find p2
n
compared to pn×2 log pn, or equivalently,

we compare pn to 2 log pn. We see that the ratio of the length of the primary block to the
length of the second block grows to infinity as n increases.
Next, we count the number of twins in the primary and 2nd blocks.

Let the numbers of twins in the primary and 2nd block of An be a1 and a2. These two blocks
merge to become the primary block of An+1.

We look at the two blocks before the merger and find that the total number of twins is a1+ a2.
After the merger, the total number of twins is a1+ ra2, where r is the fraction of twins remain-
ing in what was the 2nd block of An. We calculate r as follows.

Recall from above that the average number of twins per vulnerable twin is pn/2. The average
fraction of twins removed from a 2nd block in the step from An to An+1 is 2/pn, which gives
r = 1− 2/pn.

It is possible that in some sets no twins are eliminated from the 2nd block in the step to the
next set, i.e., all the multiples of pn in the 2nd block are singles and r = 1.

The number of twins in the primary block of An+1 is greater than the number in An. The
number of twins in the primary block grows without bound as we step through the sets.

This completes our proof of the infinitude of the twin primes. We have shown that the number
twins (two-twins or four-twins) in the primary blocks increases to infinity as we step through
the sets, An, with n approaching infinity. All members of a primary block are prime.
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Appendix

A partial listing of A6

A6 p6 = 13, λ6 = 2310, ν6 = 480, τ6 = 135

1 2311 4621...
13 2323 4633...
17 2327 4637...
...

461 2771 5081...
463 2773 5083...
467 2777 5087...
479 2789 5099...
481 2791 5101...
487 2797 5107...
491 2801 5111...
493 2803 5113...
499 2809 5119...
503 2813 5123...
509 2819 5129...
521 2831 5141...
523 2833 5143...

...
2309 4619 6929...
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