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Abstract. In this paper, we consider five proofs related to the super-generalised

Fermat equation, Pax + Qby = Rcz . All proofs depend on a new identity for
ax + by which can be expressed as a binomial sum to an indeterminate power,

z. We begin with the Generalised Fermat Conjecture, for the case P,Q,R = 1,

also known as the Tijdeman-Zagier Conjecture and Beal Conjecture. We then
show how the method applies to its famous corollary Fermat’s Last Theorem,

where x, y, z = n. We then return to the title equation, considered by Henri

Darmon and Andrew Granville and extend the proof for the case P,Q,R > 1
and x, y, z > 2. Finally, we use the results to prove Catalan’s Conjecture, and

from this a weak proof that under certain conditions only one solution exists

for equations of the form a4 − c2 = by .

Introduction
In this paper, we consider the generalised Fermat equation, Pax + Qby = Rcz and
propose five related proofs where gcd(a, b, c) = 1. All proofs depend on a new
identity for ax + by which can be expressed as a binomial sum to an indeterminate
power, z.

First, we begin with the case for P,Q,R = 1 where ax + by = cz. This forms the
basis for the Generalised Fermat Conjecture (GFC)1, also known as the Tijdeman-
Zagier Conjecture and Beal Conjecture2. Closely related to this is the Fermat-
Catalan Conjecture, which states that when 1/x + 1y + 1/z < 1, this equation has
only finite solutions. Only 10 solutions are known, namely:

1 + 23 = 32,

25 + 72 = 34,

73 + 132 = 29,

27 + 173 = 712,

35 + 114 = 1222,

177 + 762713 = 210639282,

14143 + 22134592 = 657
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92623 + 153122832 = 1137,

438 + 962223 = 300429072,

338 + 15490342 = 156133.

Here, however we prove GFC which states that no integer solutions exist for values
of x, y, z > 2, where x, y, z are square-free integers, and gcd(x, y, z) = 1.

Secondly, we apply the same method to demonstrate the famous corollary of
this conjecture, Fermat’s Last Theorem (FLT), for the case x, y, z = n. This more
simply states that for the equation an + bn = cn, where gcd(a, b, c) = 1, no integer
solutions exist for the values of n > 2. A proof for FLT was first discovered by
Sir Andrew Wiles in 1993. Here, we give just a brief recapitulation of the proof
showing only the salient points.

Thirdly, we return to consider whether our method extends to the title equa-
tion, Pax + Qby = Rcz, where P,Q,R ∈ Z>1. In 1994, using Faltings Theorem,
Henri Darmon and Andrew Granville proved that where a, b, c, P,Q,R are non-zero
square-free integers, gcd(a, b, c, P,Q,R) = 1, for the hyperbolic case 1/x+1y+1/z <
1, there are only finitely many integral solutions. However, we wish to go one step
further and use our method to prove that no integer solutions exist for the values
x, y, z > 2 and gcd(x, y, z) = 1. We call this the Super-Generalised Fermat Conjec-
ture (SGFC).

Fourthly, we use the results of GFC to prove Catalan’s Conjecture (CC). This
conjecture was first made by Belgian mathematician Eugne Charles Catalan in
1844, which states that the only solution in the natural numbers of ax + 1y = cz

for a, c > 0, x, z, y > 1 is a = 2, x = 3, c = 3, z = 2. In other words, Catalan
conjectured that 23 + 1 = 32 is the only nontrivial solution. It was finally proved
in 2002 by number theorist Preda Mihailescu making extensive use of the theory of
cyclotomic fields and Galois modules.

Fifthly, using the results of CC, we give a weak proof that, when (a2 + c) and
(a2 − c) are divisible by b, the only solution that exists for the case a4 − c2 = by

is 34 − 72 = 25. This is one of the 10 known solutions of the Fermat-Catalan
Conjecture mentioned above.

Theorem 0.1. Generalised Fermat Conjecture. To prove that the equation ax +
by = cz, in a, b, c ∈ Z with gcd(a, b, c) = 1, in x, y, z ∈ Z≥3, has no solutions.

We first observe the following identity for ax+by as a binomial expansion (where
the upper index n is an indeterminate integer):

(0.1) ax + by =

n∑
k=0

(
n

k

)
(a + b)n−k(−ab)k(ax−n−k + by−n−k).

Note how this new identity includes standard factors for a binomial expansion, i.e.
(a + b)n−k(−ab)k, but also a non-standard factor, i.e. (ax−n−k + by−n−k).
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Note, further, that regardless of the value of n, the right hand side always equals
ax + by. This allows us to fix n to any value we choose. So let n = z, such that:

(0.2) ax + by =

z∑
k=0

(
z

k

)
(a + b)z−k(−ab)k(ax−z−k + by−z−k).

Proof. We now assume that a solution exists for the equation ax+by = cz for values
of x, y, z > 2.

Now let [(a + b)(±s)− ab(±t)] = c for all s, t ∈ Z (although gcd(s, ab) = 1 since
a shared factor would mean that c would no longer be coprime with ab), such that:

(0.3)

z∑
k=0

(
z

k

)
(a + b)z−k(−ab)k(ax−z−k + by−z−k) = [(a + b)(±s)− ab(±t)]z.

We now rearrange cz as [(a + b)(±s)− (ab)(±t)]z and use the binomial theorem to
expand (0.3) as:
(0.4)
z∑

k=0

(
z

k

)
(a+b)z−k(−ab)k(ax−z−k+by−z−k) =

z∑
k=0

(
z

k

)
(a+b)z−k(−ab)k(±s)z−k(±t)k.

Comment : We know that the right hand side is a perfect power (it has the correct
exponential form for a standard binomial expansion of a single power); the left hand
side may or may not be. The question now becomes how can the left hand side be a
perfect power greater than 2? Answer: only if (ax−z−k + by−z−k) = (±s)z−k(±t)k
for any given value of z > 2 and for every value of k (from k = 0 to k = z). If
so, then solutions will exist and GFC will be proved false. But if just one term
(i.e. one value of k) exists where (ax−z−k + by−z−k) 6= (±s)z−k(±t)k then not only
will the integrity of that particular term be compromised as a standard binomial
term for a power to z, but also the whole expansion of ax−by, and GFC will be true.

For example, if (ax−z−k + by−z−k) = f2z+kgk+1, say, then since f2z+k and gk+1

do not have the correct standard exponents for a perfect power, no solutions could
exist for (0.4). Essentially, therefore, we are proving that (ax−z−k + by−z−k) can
never have the correct exponents for a perfect power when x, y, z > 2.

Therefore, continuing our assumption, we can simplify the problem by stating
that for any value of z > 2 and for every value of k (from 0 to z):

(0.5) (±s)z−k(±t)k = (ax−z−k + by−z−k).

At this point, we can derive a contradiction from just the second and penulti-
mate terms for any given value of z. This means that however large z becomes, we
need not test every term ad infinitum.

First, we calculate the second term directly from (0.5). So when k = 1, the
second term is:

(0.6) (±s)z−1(±t) = ±(ax−z−1 + by−z−1).

We can also deduce the second term indirectly by manipulating the first term
and the last term for any given z. Thus the first term, when k = 0, will be (±s)z =
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±(ax−z + by−z), and the last term, when k = z, will be (±t)z = ±(ax−2z + by−2z).
Now we can raise the powers accordingly and multiply together to get:

(0.7) (±s)z−1(±t) = ±[(ax−z + by−z)1/z](z−1)[(ax−2z + by−2z)1/z].

Now we subtract (0.6) from (0.7) and rearrange to get:

(0.8) (ax−z−1 + by−z−1) = [(ax−z + by−z)1/z](z−1)[(ax−2z + by−2z)1/z].

Now we raise both sides by z and divide both sides by (ax−z + by−z)(z−2) and
rearrange to get:

(0.9)
(ax−z−1 + by−z−1)z

(ax−z + by−z)(z−2)
= (ax−z + by−z)(ax−2z + by−2z).

The procedure for the penultimate term is exactly the same. First, directly from
(0.5), when k = z − 1, the penultimate term is:

(0.10) (±s)(±t)z−1 = ±(ax−2z+1 + by−2z+1).

And again indirectly from the first and last terms, we raise the powers accordingly
and multiply together to get the penultimate term:

(0.11) (±s)(±t)z−1 = ±[(ax−z + by−z)1/z][(ax−2z + by−2z)1/z](z−1).

Now we subtract (0.10) from (0.11) and rearrange to get:

(0.12) (ax−2z+1 + by−2z+1) = (ax−z + by−z)1/z(ax−2z + by−2z)1/z](z−1).

This time, we raise both sides by z and divide both sides of by (ax−2z + by−2z)(z−2)

and rearrange to get:

(0.13)
(ax−2z+1 + by−2z+1)z

(ax−2z + by−2z)(z−2)
= (ax−z + by−z)(ax−2z + by−2z).

But now observe that in (0.9) and (0.13) the right hand sides are exactly the
same. This means we can subtract (0.9) from (0.13) and rearrange to get:

(0.14)

(
ax−z−1 + by−z−1

ax−2z+1 + by−2z+1

)z

=

(
ax−z + by−z

ax−2z + by−2z

)(z−2)

.

Solutions will exist to this equation
a) either if the large bracketed fractions on each side of have a value of 1 (since the
outer exponents are not equal),
b) or if the numerators (to their respective outer exponents) on both sides are
equal, and simultaneously if the denominators (to their respective outer exponents)
on both sides are equal.

Taking these two options in turn (still when x, y, z > 2):

a) since z 6= 2z, (ax−z−1 + by−z−1) 6= (ax−2z+1 + by−2z+1) and (ax−z + by−z) 6=
(ax−2z + by−2z). So neither side in (0.14) has a value of 1, eliminating this option;

b) beginning with denominators, even without its outer exponent the left hand
denominator (ax−2z+1+by−2z+1) is greater than its right hand counterpart (ax−2z+
by−2z); but when the outer exponent is also greater, (i.e. z > (z − 2)), then the
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inequality is even greater. So it follows that (ax−2z+1 + by−2z+1)z 6= (ax−2z +
by−2z)(z−2). We do not even need to bother with the numerators.

Having now eliminated both options it follows that, for all values of x, y, z > 2
and all values of k:

(0.15) (±s)z−k(±t)k 6= (ax−z−k + by−z−k).

However, this contradicts our equation in (0.5). In turn, therefore, the left hand
side of the equation in (0.4) cannot be a perfect power (as we assumed it was).
And so our initial assumption that solutions exist for the equation cz = ax + by for
values of x, y, z > 2 is false. Therefore GFC is true. �

However, it leaves us with an important final question. What happens for the
cases for z = 1, 2? Well, from (0.14), when z = 1 it follows that:

(0.16)

(
ax−2 + by−2

ax−1 + by−1

)1

=

(
ax−1 + by−1

ax−2 + by−2

)−1

,

(0.17) ⇒
(
ax−2 + by−2

ax−1 + by−1

)
=

(
ax−2 + by−2

ax−1 + by−1

)
.

No contradiction.

And again from (0.14), when z = 2, it follows that:

(0.18)

(
ax−3 + by−3

ax−3 + by−3

)2

=

(
ax−2 + by−2

ax−4 + by−4

)0

,

(0.19) ⇒ 1 = 1.

Again, no contradiction.

So in both cases, when z = 1 and when z = 2, there is no contradiction. Our
non-standard binomial factor, (ax−z−k+by−z−k) is equal to (±s)z−k(±t)k for every
value of k, which, in turns, means that solutions to both Fermat equations exist, a
fact already known.

0.1. Comment. It is worth noting that when z = 1 the two fractions themselves
in (0.17) are equal. This suggests that there is always a solution for the sum of two
powers. But when z = 2, the two fractions in (0.18) are not equal. The equality only
exists by virtue of the zero exponent. This suggests that the sum (or difference) of
two powers may be a perfect square (as in the case 35 + 114 = 1222), but may not
be (e.g. FRTT where a4 − b4 6= c2). Indeed, when we apply this method directly
to FRTT, it produces a false positive. So this method is limited. When z = 2
we cannot directly prove that solutions do not exist. We can only indirectly prove
whether solutions exist or not, and even then only under certain conditions.

Theorem 0.2. Fermat’s Last Theorem. To prove that, for the equation an + bn =
cn, for all a, b, c, n ∈ Z and where gcd(a, b, c) = 1, integer solutions only exist for
the values of n = 1, 2, but not for values of n > 2.
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Proof. FLT is a corollary of GFC for cases x, y, z = n. So let x, y, z = n. And
without retracing each step, here we will simply outline the proof, highlighting
some of the key equations of GFC. So, parallel to (0.4), using our new binomial
identity the equation an + bn = cn can be reconfigured as:
(0.20)

n∑
k=0

(
n

k

)
(a + b)n−k(−ab)k(a−k + b−k) =

n∑
k=0

(
n

k

)
(a + b)n−k(−ab)k(±s)n−k(±t)k.

Parallel to (0.5), the problem can be simplified to this equation:

(0.21) (±s)n−k(±t)k = (a−k + b−k).

We assume that this equation has solutions for some value of n > 2 and for every
value of k for any given value of n. From the second and penultimate terms, we
reach the following equation, parallel to (0.14):

(0.22)

(
a−1 + b−1

a−n+1 + b−n+1

)n

=

(
a0 + b0

a−n + b−n

)(n−2)

.

As before, solutions to this equation will only exist:
a) either if the large bracketed fractions on each side of have a value of 1 (since the
outer exponents are not equal),
b) or if the numerators (to their respective outer exponents) on both sides are
equal, and simultaneously if the denominators (to their respective outer exponents)
on both sides are equal.
Taking these two options in turn (still when n > 2):

a) as before, (a−1 + b−1) 6= (a−n+1 + b−n+1) and (a0 + b0) 6= (a−n + b−n). So
neither fraction in (0.22) has a value of 1, eliminating this option;

b) beginning with denominators, even without its outer exponent the left hand
denominator (a−n+1+b−n+1) is greater than its right hand counterpart (a−n+b−n);
but when the outer exponent is also greater, (i.e. n > (n− 2)), then the inequality
is even greater. So it follows that (a−n+1 + b−n+1)n 6= (a−n + b−n)(n−2). We do
not even need to bother with the numerators.

Having now eliminated both options it follows that, for all values of n > 2 and
all values of k:

(0.23) (±s)n−k(±t)k 6= (a−k + b−k).

However, this contradicts the equation in (0.21). In turn, therefore, the left hand
side of the equation in (0.20) cannot be a perfect power greater than 2 (as we
assumed it was). And so our initial assumption that solutions exist for the equation
cn = an + bn for values of n > 2 is false. Therefore FLT is true.

�

Again, we want to see what happens when n = 1, 2? Well, from (0.22), when
n = 1 it follows that:

(0.24)

(
a−1 + b−1

a0 + b0

)1

=

(
a0 + b0

a−1 + b−1

)−1

.
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(0.25) ⇒
(
a−1 + b−1

a0 + b0

)1

=

(
a−1 + b−1

a0 + b0

)1

.

No contradiction.

And again from (0.22), when n = 2, it follows that:

(0.26)

(
a−1 + b−1

a−1 + b−1

)2

=

(
a0 + b0

a−2 + b−2

)0

,

(0.27) ⇒ 1 = 1.

Again, as expected, no contradiction.

We now extend the proof to SFGC.

Theorem 0.3. The Super-Generalised Fermat Conjecture. To demonstrate that for
the Fermat equation Pax +Qby = Rcz, where a, b, c, P,Q,R are square-free positive
integers (of which one of Pa,Qb,Rc at most must be even), and gcd(a, b, c, P,Q,R) =
1, no integer solutions exist for the values of x, y, z > 2.

Proof. We note first that,

Pax + Qby =

z∑
k=0

(
z

k

)
(a + b)z−k(−ab)k(Pax−z−k + Qby−z−k).

Then, parallel to (0.4):

(0.28)

z∑
k=0

(
z

k

)
(a+b)z−k(−ab)k(Pax−z−k +Qby−z−k) =

z∑
k=0

(
z

k

)
R(±s)z−k(±t)k.

And assuming that Pax + Qby = Rcz has solutions, the problem can again be
reduced to the following equation, parallel to (0.5):

(0.29) (Pax−z−k + Qby−z−k) = R(±s)z−k(±t)k

for any value of z > 2 and for every value of k for any given value of z. From the
second and penultimate terms, as we did in Theorems (0.1) and (0.2), we reach the
following equation, parallel to (0.14), noting that R has been cancelled out:

(0.30)

(
Pax−z−1 + Qby−z−1

Pax−2z+1 + Qby−2z+1

)z

=

(
Pax−z + Qby−z

Pax−2z + Qby−2z

)(z−2)

.

As before, solutions will exist to this equation
a) either if the large bracketed fractions on each side of have a value of 1 (since the
outer exponents are not equal), b) or if the numerators (to their respective outer
exponents) on both sides are equal, and simultaneously if the denominators (to
their respective outer exponents) on both sides are equal. Taking these two options
in turn (still when x, y, z > 2):

a) Since z 6= 2z, Pax−z−1 + Qby−z−1 6= Pax−2z+1 + Qby−2z+1, eliminating this
option.
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b) beginning with denominators, even without its outer exponent the left hand
denominator (Pax−2z+1 + Qby−2z+1) is greater than its right hand counterpart
(Pax−2z +Qby−2z); but when the outer exponent is also greater, (i.e. z > (z− 2)),
then the inequality is even greater. So it follows that (Pax−2z+1 + Qby−2z+1)z 6=
(Pax−2z + Qby−2z)(z−2). We do not even need to bother with the numerators.
Having now eliminated both options it follows that, for all values of x, y, z > 2 and
all values of k:

(0.31) (±s)z−k(±t)k 6= (Pax−z−k + Qby−z−k).

However, this contradicts our equation in (0.29). In turn, therefore, the left hand
side of the equation in (0.28) cannot be a perfect power (as we assumed it was).
And so our initial assumption that solutions exist for the equation cz = Pax +Qby

for values of x, y, z > 2 is false. Therefore the DG is true. �

However, it leaves us with an important final question. What happens for the
cases for z = 1, 2? Well, from (0.30), when z = 1 it follows that:

(0.32)

(
Pax−2 + Qby−2

Pax−1 + Qby−1

)1

=

(
Pax−1 + Qby−1

Pax−2 + Qby−2

)−1

,

(0.33) ⇒
(
Pax−2 + Qby−2

Pax−1 + Qby−1

)
=

(
Pax−2 + Qby−2

Pax−1 + Qby−1

)
.

No contradiction.
And again from (0.30), when z = 2, it follows that:

(0.34)

(
Pax−3 + Qby−3

Pax−3 + Qby−3

)2

=

(
Pax−2 + Qby−2

Pax−4 + Qby−4

)0

,

(0.35) ⇒ 1 = 1.

Again, no contradiction. Thus solutions will always exist for z = 1 and solutions
may exist for particular cases when z = 2.

Theorem 0.4. Catalan’s Conjecture. To prove that the only solution for the
equation Pax + Qby = Rcz, in a, b, c, P,Q,R ∈ Z with gcd(a, b, c) = 1, where
P,Q,R, b = 1, x, y, z ∈ Z>1, is a = 2, x = 3, c = 3, z = 2.

Proof. So for the equation, ax + 1y = cz, let y = 7, say, and rearrange such that:

(0.36) ax = cz − 17.

Finding the value of z.
In GFC we concluded that there can be no solutions for z > 2, and since z > 1, it
follows that z = 2.

Finding the value of a.
Since z = 2, it follows that:

(0.37) ax = c2 − 1.
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(0.38) ⇒ ax = (c + 1)(c− 1).

This gives us two options.

1) If (c + 1) and (c− 1) are not divisible by a, they must themselves be powers
to x. So let (c + 1) = px and (c − 1) = qx for all integers p, q (p > q). But since
the difference between two identical powers is always greater than 2, and since the
difference between (c+1) and (c−1) is only 2, they cannot be themselves be powers
to x. Therefore they must be divisible by a.

2) If (c+1) and (c−1) are divisible by a, then let (c+1) = a.j and (c−1) = a.k
for integers j, k (j > k, j 6= k). We subtract one from the other, such that:

(0.39) (c + 1)− (c− 1) = a(j − k) = 2.

From this, either a = 1 and (j − k) = 2, or a = 2 and (j − k) = 1. But since a > 1,
it follows that a = 2 and (j − k) = 1.

Finding the value of x.
If we multiply aj by ak, we get:

(0.40) a2(jk) = c2 − 1.

But since c2 − 1 = ax from our original equation, it follows that:

(0.41) a2(jk) = ax,

(0.42) ⇒ jk = ax−2.

Since a = 2, it follows that:

(0.43) jk = 2x−2.

And since j − k = 1, j and k must have opposite polarity. And since their product
is a pure power of 2, the odd variable must have a value of 1 and the even variable
a value of 2. And since j > k, it follows that j = 2, k = 1, such that from (0.43):

(0.44) 2 = 2x−2,

(0.45) ⇒ x = 3.

Finding the value of c.
Now since (c + 1) = a.j it follows that:

(0.46) (c + 1) = 2× 2,

(0.47) ⇒ c = 3.

We now know that z = 2, a = 2, x = 3, c = 3, from which we can conclude that the
only solution for the equation ax + 1 = cz is:

(0.48) 23 + 1 = 32.

Thus CC is true. �

Theorem 0.5. To prove that when (a2 + c) and (a2− c) are divisible by b, the only
solution that exists for the case a4 − c2 = by is 34 − 72 = 25.
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Proof. We begin with the equation:

(0.49) a4 − c2 = by.

Finding the value of b.
From (0.49) it follows that:

(0.50) (a2 + c)(a2 − c) = by.

Assuming that (a2 + c) and (a2 − c) are divisible by b, then let (a2 + c) = b.j
and (a2 − c) = b.k for integers j, k (j > k, j 6= k). We subtract one from the other,
such that:

(0.51) (a2 + c)− (a2 − c) = b(j − k),

(0.52) ⇒ 2c = b(j − k).

Since gcd(b, c) = 1 it follows that c = (j − k) and b = 2.

Finding the values of a.
Since b = 2, it follows that a2 + c = 2j and a2 − c = 2k. So multiplying these
together, we get:

(0.53) a4 − c2 = 4jk.

But since a4 − c2 = by from our original equation, it follows that:

(0.54) 4jk = 2y,

(0.55) ⇒ jk = 2y−2.

Now since b is even, it follows that a and c must both be odd. And since j−k = c
it follows that j and k must have opposite polarity. But from (0.55) since jk is a
pure power of 2, and since j > k, then k = 1.

But since j + k = a2, it follows that a2 − j = 1. But we also know, from CC,
that the only case of two consecutive powers is 32 − 23 = 1. Therefore j = 23 and
a = 3.

Finding the values of y.
Now if j = 23, then jk = 8. Therefore from (0.55) y = 5.

Finding the values of c.
From (0.49) we can now say that

(0.56) 34 − c2 = 25,

(0.57) ⇒ c2 = 81− 32 = 49,

(0.58) ⇒ c = 7.

We have now shown that the only solution that exists for the case a4 − c2 = by is
34 − 72 = 5y. �



THE SUPER-GENERALISED FERMAT EQUATION Pax+Qby = Rcz AND FIVE RELATED PROOFS11

Unfortunately, this weak proof does not account for circumstances when (a2 + c)
and (a2 − c) are not divisible by b. For example, when (a2 − c) = 1, then
35 = 1222−114. If we could prove that there are also no solutions when (a2+c) and
(a2 − c) are not divisible by b, then we have also proved Fermat’s Right Triangle
Theorem. In his life, Pierre de Fermat only left one proof in relation to number
theory. He used his method of infinite descent to show that the area of a right
triangle cannot be a square within the domain of whole numbers. The proof itself
was found after his death in his notes on Diophantus’ Arithmetica. He wrote: “If
the area of a right-angled triangle were a square, there would exist two biquadrates
the difference of which would be a square number.” (A biquadrate is a value to the
fourth-power. So, the biquadrate of 3 is 34 = 81.). This is equivalent to stating
that there are no solutions to the equation p4 − q4 = z2.
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