A Sieve for Goldbach Conjecture

Xuan Zhong Ni
Campbell, CA, USA
(September, 2020)

Abstract

In this article, we find a new sieve for pair of primes whose summation equals to a given Even Number.

When we sieve numbers 2 and 3 to the whole natural numbers by removing all the multiplies of 2 or 3 , the remaining numbers are 1 and all pairs of $\{6 \mathrm{k}-1,6 \mathrm{k}+1 ; \mathrm{k}=1,2,3, \ldots$.$\} . The remaining numbers set is a group of$ multiply.

We call the integer k as the id of the pair $(6 \mathrm{k}-1,6 \mathrm{k}+1)$.

By mulitiplication, two pairs of $\left(6 k_{1}-1,6 k_{1}+1\right)$, and $\left(6 k_{2}-1,6 k_{2}+\right.$ 1), can generate four new numbers, $6 \mathrm{k}-1$, or $6 \mathrm{k}+1$, with id k takes four new integers of $\left(6 k_{1} \pm 1\right) k_{2} \pm k_{1}$ when $k_{1} \neq k_{2}$, while four new k will reduce to three when $k_{1}=k_{2}$.

We have a new sieve for Goldbach Conjecture based on the above observation,

For any large Even Number of forms as, 6 N , or $6 \mathrm{~N}+2$, or $6 \mathrm{~N}-2$. we sieve the whole integer set I of id integers by the numbers of $6 k_{1}-1$, and $6 k_{1}+1$ for $k_{1}=1,2, \ldots, m$, by removing all the numbers of $\left\{i \in I ; i=k_{1}\right.$,or $\mathrm{N}-k_{1}, \bmod$ $\left(6 k_{1}+1\right)$, or $i=-k_{1}$,or $\left.\mathrm{N}+k_{1}, \bmod \left(6 k_{1}-1\right), k_{1} \leq m\right\} ;$
the remaining numbers are set of $\left\{i \in I ; i \neq k_{1}\right.$,or $\mathrm{N}-k_{1}, \bmod \left(6 k_{1}+1\right)$, and $i \neq-k_{1}$, or $\left.\mathrm{N}+k_{1}, \bmod \left(6 k_{1}-1\right), k_{1} \leq m\right\}$;

If we limit our sieve upto this large number N, we have $m=\left[\sqrt{ } \frac{N}{6}\right]$, here [a] means the largest integer less than a.

Theorem;

By using the above sieve when sieve all $\left(6 k_{1} \pm 1\right), k_{1} \leq m$ for the first N integers, $(0, \mathrm{~N})$, the total number of the remaining numbers inside $(0, \mathrm{~N})$ is larger than $N \times \prod_{5 \leq p \leq(6 m+1)}(1-2 / p)$,

The remaining numbers less than N is the set, $\left\{i<N ; i \neq k_{1}\right.$, or $\mathrm{N}-k_{1}$, $\bmod \left(6 k_{1}+1\right)$, and $i \neq-k_{1}$, or $\left.\mathrm{N}+k_{1}, \bmod \left(6 k_{1}-1\right), k_{1} \leq m\right\}$;

Each remaining number i and N -i are id's for possible primes of ($6 i \pm 1$), and $(6(N-i) \pm 1)$

When the even Number is $6 \mathrm{~N}+2$, take the possible pairs of, $(6 i+1)$, and $(6(N-i)+1)$;

When the even Number is 6 N , take the possible pairs of, $(6 i+1)$, and $(6(N-i)-1)$; or $(6 i-1)$, and $(6(N-i)+1)$;

When the even Number is $6 \mathrm{~N}-2$, take the possible pairs of, $(6 i-1)$, and $(6(N-i)-1)$;

For example, if $\mathrm{N}=100$, we get $\mathrm{m}=4$. Here we only need to sieve by primes of, $5,7,11,13,17,19,23$, which are less than $(6 \mathrm{~m}+1)$;

The total remaining number is larger than $100(1-2 / 5)(1-2 / 7)(1-2 / 11)(1-$ $2 / 13)(1-2 / 17)(1-2 / 19)(1-2 / 23)$, which is about 21 ;
with i equals to $5,10,12,13,17,23,27,30,32,37,38,45,55,62,63,68,70,73,77,87,90,95$;
here the actual total remaining id's is 22 . For example, when $\mathrm{i}=5$, $\mathrm{N}-\mathrm{i}=95$, the pair primes is $(31,571)$ which add up to 602 ; or pair primes of $(29,569)$ which add up to 698 ; or pair primes of $(29,571)$,or $(31,569)$ which add up to 600 .

This proves the Goldbach conjecture.

