A New Sieve for Twin Primes

Xuan Zhong Ni

(September, 2020)

Abstract

In this article, we find a new sieve for twin primes to prove the twin prime theory.

We use p_{i} for all the primes, $2,3,5,7,11,13, \ldots ., \mathrm{i}=1,2,3, \ldots$. ,

When we sieve numbers 2 and 3 to the whole natural numbers by removing all the multiplies of 2 or 3 , the remaining numbers are 1 and all pairs of $\{6 \mathrm{k}-1,6 \mathrm{k}+1 ; \mathrm{k}=1,2,3, \ldots\}$. The remaining numbers set is a group of multiply.

We call the integer k as the id of the pair $(6 \mathrm{k}-1,6 \mathrm{k}+1)$.

By mulitiplication, two pairs of $\left(6 k_{1}-1,6 k_{1}+1\right)$, and $\left(6 k_{2}-1,6 k_{2}+\right.$ 1), can generate four new numbers, $6 \mathrm{k}-1$,or $6 \mathrm{k}+1$, with id k takes four new integers of $\left(6 k_{1} \pm 1\right) k_{2} \pm k_{1}$ when $k_{1} \neq k_{2}$, while four new k will reduce to three when $k_{1}=k_{2}$.

We have a new sieve based on the above observation, we sieve the whole integer set I of id integers by the numbers of $6 k_{1}-1$, and $6 k_{1}+1$ for $k_{1}=1,2, \ldots, m$, by removing all the numbers of $\left\{i \in I ; i= \pm k_{1}, \bmod \right.$ $\left.\left(6 k_{1} \pm 1\right), k_{1} \leq m\right\} ;$
the remaining numbers are set of $\left\{i \in I ; i \neq \pm k_{1}, \bmod \left(6 k_{1} \pm 1\right)\right.$, $\left.k_{1} \leq m\right\} ;$

If we limit our sieve upto a finite large number N , we have $\mathrm{m}=\left[\sqrt{ } \frac{N}{6}\right]$, here [a] means the largest integer less than a.

Theorem;
By using the above sieve when sieve all $\left(6 k_{1} \pm 1\right), k_{1} \leq m$ for the first N integers $(0, \mathrm{~N})$, the total number of the remaining numbers inside $(0, \mathrm{~N})$ is larger than $N \times \prod_{5 \leq p \leq(6 m+1)}(1-2 / p)$,

The remaining numbers less than N is the set, $\left\{i \leq N ; i \neq \pm k_{1}, \bmod \right.$ $\left.\left(6 k_{1} \pm 1\right), k_{1} \leq m\right\} ;$

Each remaining number i is an $i d$ for a twin primes of $(6 i \pm 1)$,
For example, if $\mathrm{N}=100$, we get $\mathrm{m}=4$. Here we only need to sieve by primes of, $5,7,11,13,17,19,23$, which are less than $(6 m+1)$;

The total remaining number is larger than $100(1-2 / 5)(1-2 / 7)(1-2 / 11)(1-$ $2 / 13)(1-2 / 17)(1-2 / 19)(1-2 / 23)$, which is about 21 ;
with i equals to $5,7,10,12,17,18,23,25,30,32,33,38,40,45,47,52,58,70,72,77,87,95$;
here the actual total remaining id's is 22 . For example $\mathrm{i}=95$, the twin primes is $(569,571)$.

This also proves the twin prime conjecture.

