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Abstract

In the article “The introduction of the Einstein Model of a Solid, to
Analytical Psychology”, I documented that from an energetic perspective,
the psyche as defined in Analytical Psychology (AP), can be considered
an abstract Einstein Solid (ES). According to the theory of AP, and par-
ticularly the “principle of equivalence”, the total number q of Values of
the psyche, or equivalently the internal energy U when viewed as an ES,
is a constant of the system. This allows, though, the psyche to be free
to alter the number of its Structures (AP), or equivalently the number
of its quantum harmonic oscillators (ES). As a consequence, the psyche’s
information content will vary.

In this article I study the case of small deviations of the psyche, or
ES, from equilibrium and I do not do non-equilibrium statistics.
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1 Introduction.

In this article the term ES and the term psyche as defined in AP, as well as all
the associated terms, are considered identical and will be used interchangeably
since [https://vixra.org/abs/1908.0290].
In Appendix A, I calculate the chemical potential of the ES.
In Appendix B, I introduce Information theory and particularly the concept of
missing information. This concept helps us establish the second principle of
statistical mechanics [3]. In the section “Discussion of the findings” I point out
how the second principle can be virtually violated and the consequences this
has to the psyche.
In Appendix C, I study the dependence of the missing information I, on ∆N .
In the section “Discussion of the findings” I produce a graph Figure 1. of this
relationship [equations (C.4) and (C.5)].
In Appendix D, I produce an estimation of the mean number of Quantum
Harmonic Oscillators (QHO), N̄ . I also produce a graph of the dependence of
N̄ on T ′. See Figure 2.
In Appendix E, I prove that the average energy of the interacting ES,
described by the grand canonical ensemble is U ≡ Ē = qhf . This result is
accurate in the high temperature limit, i.e. q � N . This means that after the
interacting ES has reached equilibrium, it can be moved to isolation
(microcanonical ensemble) having the same internal energy U = qhf , as it
started with. The number of energy quanta q, Values in AP, is practically
conserved.
In the section “Discussion of the findings” I give an estimation of the energy of
the system in the microcanonical ensemble E.
I give an estimation/measure of the fluctuations in the number of QHO’s
∆N ∝

√
N , based on [7]. These estimations are valid in the case of

equilibrium statistics.

2 Discussion of the findings.

According to [1]:
Let A be a macroscopic, system that is in thermal and chemical equilibrium
with a reservoir (i.e. described by the grand canonical ensemble). It is clear
that the relative fluctuations of its energy around a mean number Ē and of its
number of particles around a mean number N̄ , are very small: [7].
As a result the system A could be moved from contact with the reservoir, to
isolation. This procedure would cause no observable effects on Ē and N̄ . As a
result we can choose, equivalently, the microcanonical ensemble to describe A:

U = qhf ≡ E

Figure 1. Equations (C.4), blue line, and (C.5), red line. The missing
information I, as a function of ∆N > 0, ∆N ∝

√
N , [7]. I have set q = 1012
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and N = 1010. In both equations (C.4) and (C.5), I is linearly dependent on
∆N .
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As a result, when a patient[14] “chooses” (its actually fluctuations who
“choose”) to decrease N (as much or more, than equilibrium dictates) then the
information that the patient posses about his/her system, increases. I.e. the
missing information I decreases. This comes in contrast to the Second
Principle of statistical mechanics [3]: “The probability distribution must be
such that reproduces all available information, with the maximum missing
information”. This means that, when the missing information decreases: “the
extra information must be something other than the truth” [3]. I.e. the
patient loses touch with reality.
In the opposite case when I increases by ∆N > 0, again due to fluctuations,
then the patient observes/comes closer to reality and his/her wishful scenarios,
“something other than the truth”, are disproved. The patient collapses
emotionally.
We must strain here that although fluctuations can make I increase, they do
not make N = N̄ ⇔ ∆N = 0. This means that the statistical ensemble and
the statistical element f [3], are not accurately followed. More importantly
this increase in I, may go against to the second principle of statistical
mechanics: The missing information I may be too large to “reproduce all
available information” [3].
The above analysis can be summarized as: The patient either loses touch with
reality so he/she can make wishful scenarios, or observes only a part of reality
which is only enough to disprove these scenarios.
Finally in Appendix D I introduce the concept of average number of
QHO’s/Structures, N̄ . I also introduce the dimensionless temperature T ′

which could also be described as the “psychological” version of temperature.
That is because T ′ is related to the convergence/deviation to/from
equilibrium. T ′ is connected to the average number of Structures of the psyche
by (D.5). The plot of (D.5) can be found in Figure 2.
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Appendices.

A Calculation of the Chemical Potential of a large ES.

We first start from the definition of the multiplicity of an ES. We have from
[10]:

Ω =

(
N + q − 1

q

)
=

(N + q − 1)!

N !(q − 1)!
=

(N + q)!

N !q!
· q

N + q
(A.1)

From Stirling’s approximation (2.14) we have:

N ! ≈ NNe−N
√

2πN (A.2)

Applying (A.2) we get:

(N + q)! ≈ (N + q)(N+q)e−(N+q)
√

2π(N + q) (A.3)

q! ≈ qqe−q
√

2πq (A.4)

From (A.3) and (A.4), equation (A.1) becomes:

Ω ≈
(N + q)(N+q)e−(N+q)

√
2π(N + q)

NNe−N
√

2πN · qqe−q
√

2πq
· N

N + q
⇒

⇒ Ω =

(
q +N

N

)N (
q +N

q

)q√
N

2πq(q +N)
(A.5)

We now have for entropy S:

S = k ln Ω (A.6)

Substituting (A.5) to (A.6) and since the logarithm is additive, we have:

S = k ln

(
q +N

N

)N
+ k ln

(
q +N

q

)q
+ k ln

√
N

2πq(q +N)
=

= kN ln

(
q +N

N

)
+ kq ln

(
q +N

q

)
+ k ln

√
N

2πq(q +N)
(A.7)

We can clearly notice, that the last logarithmic term in (A.7) is negligible
compared to the first two, multiples of N and q, respectively. As such we can
omit it. As a result (A.7) becomes:

S ≈ k ln

(
q +N

N

)N
+ k ln

(
q +N

q

)q
(A.8)

By exponentiating (A.8) we get for the multiplicity Ω = S/k:

Ω ≈
(
q +N

N

)N
·
(
q +N

q

)q
(A.9)
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By applying the First Law of Thermodynamics to the ES, we get:

dU = TdS − PdV + µdN

For Entropy:

dS =

(
∂S

∂U

)
N,V

dU +

(
∂S

∂V

)
U,N

dV +

(
∂S

∂N

)
U,V

dN (A.10)

For the temperature T :

1

T
=

(
∂S

∂U

)
N,V

(A.11)

Substituting U = qhf and (A.8) in (A.11) we have:

hf

kT
= ln (1 +

N

q
)⇒

⇒ q

N
=

1

ehf/kT − 1
(A.12)

The definition of chemical potential µ:

µ ≡ −kT
(
∂S

∂N

)
U,V

=

= −kT ln (1 + q/N) (A.13)

From (A.13) and N � q, we have that:

µ = −kT q

N
(A.14)

From (A.14) and (A.12), µ becomes:

µ =
kT

1− ehf/kT
(A.15)

B Information content.

Based on [6].
Let us assume that we are faced with a number n of possibilities of the
outcome of an experiment. Let us further assume that these possibilities are
mutually exclusive, equally probable and complete in the sense that all
together imply certainty about the outcome of the experiment. Since there is a
set of possibilities, there is missing information about the outcome. We denote
this amount of missing information as:

I(n) (B.1)
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I(n) is a real number and n is an non-negative integer. We naturally expect
that the greater the number of possibilities, the greater the amount of missing
information. So I(n) is a strictly increasing function:

I(n) > I(m), n > m (B.2)

In the special case of one scenario, we expect that there is no information
missing, so:

I(1) = 0 (B.3)

Let us now assume that we have two independent experiments, one with n
possibilities about its outcome and another with m possibilities. Since the
experiments are independent the total number of possibilities about their
outcome is their Cartesian product:

n ·m (B.4)

We denote the total missing information as:

I(n ·m) = I(nm) (B.5)

In this case, the total missing information is the sum of the ignorance about
the outcome of the first experiment, plus the ignorance about the second:

I(nm) = I(n) + I(m) (B.6)

So far we have chosen the number of possibilities to be a non-negative integer.
We will generalize this statement to include the positive rational numbers. We
define:

I(
n

m
) ≡ I(n)− I(m) (B.7)

From (B.2) and (B.7) we can extend I(x) to all positive real numbers, x. We
can also prove that I(x), is continuous. Finally we can prove, from the above,
that:

I(x) = k log(x), k > 0 (B.9)

In the case of a probability distribution, such that the probabilities Pα are
non-negative numbers:

Pα ≥ 0, α = 1, . . . , N (B.10)

and the probabilities sum to one:

N∑
α=1

Pα = 1 (B.11)

then

I = −k
N∑
α=1

Pα logPα (B.12)
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In the case of an isolated system:

Pα = P = constant, ∀α = 1, . . . , N (B.13)

In the case of an isolated Einstein Solid, with multiplicity Ω:

I = −k
Ω∑
α=1

Pα logPα =

= −k
Ω∑ 1

Ω
log

1

Ω
⇒

⇒ I = k log Ω (B.14)

We will be using by convention ln Ω, instead of log Ω. As a result (B.14)
becomes:

I = ln Ω (B.15)

The entropy (divided by Boltzmann’s constant (k) is identical to the missing
information, at equilibrium. [11].

C The dependence of the missing information I, on ∆N .

For an Einstein Solid with q � N , we have from [4]:

Ω ∼=
(eq
N

)N
(C.1)

So, for N decreasing by ∆N > 0 and N � ∆N , since ∆N ∝
√
N and from

(B.15), we have for the missing information I:

I ∼= ln

(
eq

N −∆N

)(N−∆N)

= (N −∆N) ln

(
eq

N −∆N

)
⇒

⇒ I ∼= N ln

(
eq

N −∆N

)
− (∆N) ln

(
eq

N −∆N

)
(C.2)

We have:

ln (N −∆N) = lnN

(
1− ∆N

N

)
=

= ln

(
1− ∆N

N

)
+ lnN (C.3)

Since ∆N ∝
√
N and ln(1 + x) = x, when x→ 0, (C.3) becomes:

ln (N −∆N) ∼= −
∆N

N
+ lnN ∼=

∼= lnN
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As a result (C.2) becomes:

I ∼= (N −∆N) ln
(eq
N

)
⇒

I ∼= N ln
(eq
N

)
−∆N ln

(eq
N

)
(C.4)

In the opposite case, i.e. when N increases by ∆N > 0, equation (C.4)
becomes:

I ∼= N ln
(eq
N

)
+ ∆N ln

(eq
N

)
(C.5)

Since the entropy S for an Einstein solid is symmetrical under the interchange
of N and q, for N � q, we have from (C.1):

Ω ∼=
(
eN

q

)q
(C.6)

As a result when N increases/decreases by ∆N > 0, I becomes:

I ∼= q ln

(
e(N ±∆N)

q

)
=

= q

(
ln
e

q
+ lnN ± ∆N

N

)
⇒

I ∼=
(
q ln

eN

q
± q

N
∆N

)
(C.7)

D Calculation of the average number of QHO’s.

We will only examine the case of N � q. From reference [8], we have:

Q(α,β) =

∞∑
N=0

eαNZN (α, β) (3.127)

β =
1

kT
α =

µ

kT
(3.128)

N̄ =

(
∂ lnQ

∂α

)
β

(3.129)

Setting: TE = hf/k (D.1) we define: µ′ ≡ µ/hf (D.2) and
T ′ ≡ T/TE (D.3). The chemical potential of an ES in the case of N � q, is
given by (A.14) and (A.15).
Z1 is the partition function of 1 quantum harmonic oscillator, neglecting the
ground state energy, and is given by:

Z1 = 1/(1− e− 1
T ′ ) (D.4)
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Considering the oscillators as distinguishable: ZN = ZN1 . From (D.2), (D.3)
and (D.4), (3.127) becomes:

Q(α,β) =

∞∑
N=0

e((n/(1−e(1/T
′))
/(1− e(−1/T ′))n =

= 1/(1− (e(1/(1−e1/T
′
))/(1− e−1/T ′)))

And (3.129) becomes:

N̄ =
∂ lnQ

∂T ′
/
∂α

∂T ′
(D.5)

Figure 2. Equation (D.5). The average number of oscillators < N >≡ N̄ , as
a function of T ′. In the case of T ′ = 0.6, we find N̄ ≈ 8. In the case of
T ′ = 0.06, we find N̄ ≈ 3.46942 · 107.
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Where in the calculations and figures, Wolfram Mathematica has been used.

E Calculation of the average energy in the grand
canonical ensemble.

µ = −T
(
∂S

∂N

)
U,V

= −kT ln
(

1 +
q

N

)
(A.13)

1

T
=

(
∂S

∂U

)
V,N

= ln

(
1 +

N

q

)
(A.12)

We only consider the case of high temperatures, i.e. q � N. (E.1)

From (A.13) and (E.1) we have:

µ = kT ln (
N

q
) (E.2)
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From (A.12) and (E.1) we have:

T =
q

N
(E.3)

The canonical partition function for one oscillator, neglecting the ground state
energy is:

Z1 =
1

1− e−1
T

(D.4)

ZN = ZN1 (E.4)

α =
µ

kT
⇒ eα =

N

q
=

1

T
(3.128)

The grand partition function Q is:

Q(α,β) =

∞∑
N=0

eαNZN (α, β) (3.127)

⇒ Q =
1

1− ( 1
T )( 1

1−e−
1
T

)
(E.5)

From (3.129), we have for the average energy < E1 > of one oscillator:

< E1 >= −∂ lnQ

∂T
/
∂β

∂T
(E.6)

Figure 3. Equation (E.6). The average energy for of one oscillator
< E1 >≡ Ē1, as a function of T .
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We see from the plot in the Mathematica file, that the average energy for one
oscillator is linearly depending on T and particularly that it is the angle
bisector. For N oscillators we multiply by N . It is:

Ē = NThf = N
q

N
hf = qhf. (E.7)
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This agrees with result for the internal energy of the ES in the microcanonical
ensemble, neglecting the ground state energy of each oscillator. This means
that we can transfer the ES after it has interacted (grand canonical ensemble)
to isolation (microcanonical ensemble). The number of energy quanta (Values
in AP) remains practically the same in these two ensembles, in the high
temperature limit.

References.

[1] Reif, F.: Fundamentals of Statistical and Thermal Physics, McGraw - Hill
Book Company, (1965), pg. 227.

[2] Lemons, Don: A Student’s guide to Entropy, Cambridge University Press,
(2014), pg. 154 - 155.

[3] Katz, Amnon: Principles of Statistical Mechanics, W. H. Freeman and
Company , (1967), pg. 40.

[4] Schroeder, Daniel, V.: An Introduction to Thermal Physics,
Addison-Wesley, (2000), pg. 64, Eq. (2.21).

[5] Hall, Nordby: An Primer of Jungian Psychology, A Mentor Book - New
American Library, (1973), pg. 91.

[6] Katz, Amnon: Principles of Statistical Mechanics, W. H. Freeman and
Company , (1967), Chapter 2.

[7] Anagnostopoulos, K.: Computational Physics, National Technical
University of Athens, (2014), pg. 478, Eq. (12.7). Proof of (12.7) in pg.
480-482.

[8] Bellac, M.: Equilibrium and non-Equilibrium Statistical
Thermodynamics, Cambridge University Press, (2004), pg. 148.

[9] Bellac, M.: Equilibrium and non-Equilibrium Statistical
Thermodynamics, Cambridge University Press, (2004), pg. 148, Eq. (3.129).

[10] Schroeder, Daniel, V.: An Introduction to Thermal Physics,
Addison-Wesley, (2000), pg. 55, Eq. (2.9).

[11] Katz, Amnon: Principles of Statistical Mechanics, W. H. Freeman and
Company , (1967), pg. 84.

[12] Anagnostopoulos, K.: Computational Physics, National Technical
University of Athens, (2014), pg. 482, Eq. (12.28).

[13] Mungan, Carl.: Chemical potential of one-dimensional simple harmonic
oscillators, IOP Publishing - European Journal of Physics, (2009), Eq. (7).

[14] Hall, Calvin.: A Primer of Jungian psychology, Mentor Books, (1973),
pg. 72.

11


	Contents
	Abstract.
	Introduction.
	Discussion of the findings.
	Appendices.
	Calculation of the Chemical Potential of a large ES.
	Information content.
	The dependence of the missing information I, on N.
	Calculation of the average number of QHO's.
	Calculation of the average energy in the grand canonical ensemble.

	References.


