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Abstract

We study Mursi-English-Amharic Dictionary. We draw the natural logarithm of the number of en-

tries, normalised, starting with a letter vs the natural logarithm of the rank of the letter, normalised.

We conclude that the Dictionary can be characterised by BP(4,βH = 0.02) i.e. a magnetisation

curve for the Bethe-Peierls approximation of the Ising model with four nearest neighbours with

βH = 0.02. β is 1
kBT where, T is temperature, H is external magnetic field and kB is the Boltzmann

constant.
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I. INTRODUCTION

Mursi people comes from Lower Omo valley of southwestern Ethiopia, Africa. They call

themselves Mun. Their language is known as the Mursi language. Words stock of this people

of small population though small is interesting. ”bi’” in this langauge means cow, ”bôrrôda”

means jump, ”burbur” means helicopter, ”boshu” means youngest child, ”buti’” means

limestone, ”bibi” means big, ”bha” means place, ” bha lalini” means cool place, ”bhacha”

means sharpen, ”bhêla” means divide, ”bhilai” means small cattle bells, ”bhogi” means poor,

”bhoi” means wide, ”bhure” means morning, ”chai” means the Suri people, ”chawa” means

satisfied, ”chinyi” means small, ”chita” means boil, ”cholla” means intenstines, ”daha”

means poor, ”dê” means compound, ”dus” means bush land, ”dhobi” means bark cloth,

”dhône” means one, ”dhum” means hill, ”dhuna” means to pierce, ”gaanô” means to know,

”galta” means a small hoe, ”ganyo” means my, ”gino” means to ask, ”guddi” means a

false banana, ”haanan” means five, ”haali” means later, ”hôli” means waterbuck, ”hôri”

means deep(of a river), ”huin” means thirst, ”hula” means when, ”hunai” means small

stream, ”ito” means to carry(on head), ”ja” means near, ”jala” means flowering tip of corn

stalk, ”kabari” means seed, ”kabi” means clan, ”kakka” means grand parent, ”kali” means

day, ”kasai” means sand, ”kilung” means old settlement site, ”kirre” means thread, ”kôha”

means to cultivate, ”koli” means a kind of bird, ”kôn” means one, ”kônkôna” means to turn

someone against another person, ”kori” means hat, ”kuli” means time, ”lai” means silent,

”lugo” means to build(a fence), ”ma” means water, ”mara” means dislike, ”môta” means

to soften, ”nai” means our, ”nunai” means fish roe, ” ông” means what, ”rabha” means

to make a small hut in a tree, ”rana” means to go to get something, ”rêggê” means pink,

”saan” means news, ”sakkal” means nine, ”sari” means to fence around a homestead, ”sissa”

means bees, ”su” means sun, ”sudor” means to build up the fire(under a pot), ”taka” means

to understand, ”tila” means food, ”tini” means young, ”tui” means cattle enclosure, ”usa”

means to eat, ”usha” means finished, ”wala” means flame, ”wana” means hurt, ”yugo”

means to speak, ”zel” means short stick, ”zibu” means medicine and so on.

In this article, we study magnetic field pattern behind this dictionary of the Mursi language,[1].

We have started considering magnetic field pattern in [2], in the languages we converse with.

We have studied there, a set of natural languages, [2] and have found existence of a mag-

netisation curve under each language. We have termed this phenomenon as graphical law.
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There among other languages, we have studied two languages Onge and Taraon which have

similar number of words as that of Mursi. Those were tentatively characterised by BW(c=0)

for the leading curve. Here we will see that the lnf
lnfmax

curve against lnk
lnklim

is also best fit by

BW(c=0).

Then, we moved on to investigate into, [3], dictionaries of five disciplines of knowledge

and found existence of a curve magnetisation under each discipline. This was followed by

finding of the graphical law behind the bengali language,[4] and the basque language[5].

This was pursued by finding of the graphical law behind the Romanian language, [6], five

more disciplines of knowledge, [7], Onsager core of Abor-Miri, Mising languages,[8], Onsager

Core of Romanised Bengali language,[9], the graphical law behind the Little Oxford English

Dictionary, [10], the Oxford Dictionary of Social Work and Social Care, [11], the Visayan-

English Dictionary, [12], and Garo to English School Dictionary, [13], respectively.

The planning of the paper is as follows. We give an introduction to the standard curves of

magnetisation of Ising model in the section II. In the section III, we describe analysis of the

entries of the Mursi language, [1]. Sections IV, V are Acknowledgement and Bibliography

respectively.

II. MAGNETISATION

A. Bragg-Williams approximation

Let us consider a coin. Let us toss it many times. Probability of getting head or, tale is

half i.e. we will get head and tale equal number of times. If we attach value one to head,

minus one to tale, the average value we obtain, after many tossing is zero. Instead let us

consider a one-sided loaded coin, say on the head side. The probability of getting head is

more than one half, getting tale is less than one-half. Average value, in this case, after many

tossing we obtain is non-zero, the precise number depends on the loading. The loaded coin

is like ferromagnet, the unloaded coin is like paramagnet, at zero external magnetic field.

Average value we obtain is like magnetisation, loading is like coupling among the spins of

the ferromagnetic units. Outcome of single coin toss is random, but average value we get

after long sequence of tossing is fixed. This is long-range order. But if we take a small

sequence of tossing, say, three consecutive tossing, the average value we obtain is not fixed,
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can be anything. There is no short-range order.

Let us consider a row of spins, one can imagine them as spears which can be vertically up

or, down. Assume there is a long-range order with probability to get a spin up is two third.

That would mean when we consider a long sequence of spins, two third of those are with

spin up. Moreover, assign with each up spin a value one and a down spin a value minus

one. Then total spin we obtain is one third. This value is referred to as the value of long-

range order parameter. Now consider a short-range order existing which is identical with

the long-range order. That would mean if we pick up any three consecutive spins, two will

be up, one down. Bragg-Williams approximation means short-range order is identical with

long-range order, applied to a lattice of spins, in general. Row of spins is a lattice of one

dimension.

Now let us imagine an arbitrary lattice, with each up spin assigned a value one and a down

spin a value minus one, with an unspecified long-range order parameter defined as above by

L = 1
N
Σiσi, where σi is i-th spin, N being total number of spins. L can vary from minus one

to one. N = N++N−, where N+ is the number of up spins, N− is the number of down spins.

L = 1
N
(N+ −N−). As a result, N+ = N

2
(1 + L) and N− = N

2
(1− L). Magnetisation or, net

magnetic moment , M is µΣiσi or, µ(N+ −N−) or, µNL, Mmax = µN . M
Mmax

= L. M
Mmax

is

referred to as reduced magnetisation. Moreover, the Ising Hamiltonian,[14], for the lattice of

spins, setting µ to one, is −ϵΣn.nσiσj −HΣiσi, where n.n refers to nearest neighbour pairs.

The difference △E of energy if we flip an up spin to down spin is, [15], 2ϵγσ̄ + 2H, where

γ is the number of nearest neighbours of a spin. According to Boltzmann principle, N−
N+

equals exp(− △E
kBT

), [16]. In the Bragg-Williams approximation,[17], σ̄ = L, considered in the

thermal average sense. Consequently,

ln
1 + L

1− L
= 2

γϵL+H

kBT
= 2

L+ H
γϵ

T
γϵ/kB

= 2
L+ c

T
Tc

(1)

where, c = H
γϵ

, Tc = γϵ/kB, [18].
T
Tc

is referred to as reduced temperature.

Plot of L vs T
Tc

or, reduced magentisation vs. reduced temperature is used as reference curve.

In the presence of magnetic field, c ̸= 0, the curve bulges outward. Bragg-Williams is a Mean

Field approximation. This approximation holds when number of neighbours interacting with

a site is very large, reducing the importance of local fluctuation or, local order, making the

long-range order or, average degree of freedom as the only degree of freedom of the lattice.

To have a feeling how this approximation leads to matching between experimental and Ising
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model prediction one can refer to FIG.12.12 of [15]. W. L. Bragg was a professor of Hans

Bethe. Rudlof Peierls was a friend of Hans Bethe. At the suggestion of W. L. Bragg, Rudlof

Peierls following Hans Bethe improved the approximation scheme, applying quasi-chemical

method.

B. Bethe-peierls approximation in presence of four nearest neighbours, in absence

of external magnetic field

In the approximation scheme which is improvement over the Bragg-Williams, [14],[15],[16],[17],[18],

due to Bethe-Peierls, [19], reduced magnetisation varies with reduced temperature, for γ

neighbours, in absence of external magnetic field, as

ln γ
γ−2

ln factor−1

factor
γ−1
γ −factor

1
γ

=
T

Tc

; factor =
M

Mmax
+ 1

1− M
Mmax

. (2)

ln γ
γ−2

for four nearest neighbours i.e. for γ = 4 is 0.693. For a snapshot of different

kind of magnetisation curves for magnetic materials the reader is urged to give a google

search ”reduced magnetisation vs reduced temperature curve”. In the following, we describe

datas generated from the equation(1) and the equation(2) in the table, I, and curves of

magnetisation plotted on the basis of those datas. BW stands for reduced temperature in

Bragg-Williams approximation, calculated from the equation(1). BP(4) represents reduced

temperature in the Bethe-Peierls approximation, for four nearest neighbours, computed

from the equation(2). The data set is used to plot fig.1. Empty spaces in the table, I, mean

corresponding point pairs were not used for plotting a line.

C. Bethe-peierls approximation in presence of four nearest neighbours, in pres-

ence of external magnetic field

In the Bethe-Peierls approximation scheme , [19], reduced magnetisation varies with reduced

temperature, for γ neighbours, in presence of external magnetic field, as

ln γ
γ−2

ln factor−1

e
2βH
γ factor

γ−1
γ −e

− 2βH
γ factor

1
γ

=
T

Tc

; factor =
M

Mmax
+ 1

1− M
Mmax

. (3)
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BW BW(c=0.01) BP(4,βH = 0) reduced magnetisation

0 0 0 1

0.435 0.439 0.563 0.978

0.439 0.443 0.568 0.977

0.491 0.495 0.624 0.961

0.501 0.507 0.630 0.957

0.514 0.519 0.648 0.952

0.559 0.566 0.654 0.931

0.566 0.573 0.7 0.927

0.584 0.590 0.7 0.917

0.601 0.607 0.722 0.907

0.607 0.613 0.729 0.903

0.653 0.661 0.770 0.869

0.659 0.668 0.773 0.865

0.669 0.676 0.784 0.856

0.679 0.688 0.792 0.847

0.701 0.710 0.807 0.828

0.723 0.731 0.828 0.805

0.732 0.743 0.832 0.796

0.756 0.766 0.845 0.772

0.779 0.788 0.864 0.740

0.838 0.853 0.911 0.651

0.850 0.861 0.911 0.628

0.870 0.885 0.923 0.592

0.883 0.895 0.928 0.564

0.899 0.918 0.527

0.904 0.926 0.941 0.513

0.946 0.968 0.965 0.400

0.967 0.998 0.965 0.300

0.987 1 0.200

0.997 1 0.100

1 1 1 0

TABLE I. Reduced magnetisation vs reduced temperature datas for Bragg-Williams approxima-

tion, in absence of and in presence of magnetic field, c = H
γϵ = 0.01, and Bethe-Peierls approxima-

tion in absence of magnetic field, for four nearest neighbours .

Derivation of this formula ala [19] is given in the appendix of [7].

ln γ
γ−2

for four nearest neighbours i.e. for γ = 4 is 0.693. For four neighbours,

0.693

ln factor−1

e
2βH
γ factor

γ−1
γ −e

− 2βH
γ factor

1
γ

=
T

Tc

; factor =
M

Mmax
+ 1

1− M
Mmax

. (4)

In the following, we describe datas in the table, II, generated from the equation(4) and

curves of magnetisation plotted on the basis of those datas. BP(m=0.03) stands for re-

duced temperature in Bethe-Peierls approximation, for four nearest neighbours, in presence

of a variable external magnetic field, H, such that βH = 0.06. calculated from the equa-

tion(4). BP(m=0.025) stands for reduced temperature in Bethe-Peierls approximation, for

four nearest neighbours, in presence of a variable external magnetic field, H, such that

βH = 0.05. calculated from the equation(4). BP(m=0.02) stands for reduced temperature
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FIG. 1. Reduced magnetisation vs reduced temperature curves for Bragg-Williams approximation,

in absence(dark) of and presence(inner in the top) of magnetic field, c = H
γϵ = 0.01, and Bethe-

Peierls approximation in absence of magnetic field, for four nearest neighbours (outer in the top).

in Bethe-Peierls approximation, for four nearest neighbours, in presence of a variable exter-

nal magnetic field, H, such that βH = 0.04. calculated from the equation(4). BP(m=0.01)

stands for reduced temperature in Bethe-Peierls approximation, for four nearest neighbours,

in presence of a variable external magnetic field, H, such that βH = 0.02. calculated from

the equation(4). BP(m=0.005) stands for reduced temperature in Bethe-Peierls approxima-

tion, for four nearest neighbours, in presence of a variable external magnetic field, H, such

that βH = 0.01. calculated from the equation(4). The data set is used to plot fig.2. Empty

spaces in the table, II, mean corresponding point pairs were not used for plotting a line.
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BP(m=0.03) BP(m=0.025) BP(m=0.02) BP(m=0.01) BP(m=0.005) reduced magnetisation

0 0 0 0 0 1

0.583 0.580 0.577 0.572 0.569 0.978

0.587 0.584 0.581 0.575 0.572 0.977

0.647 0.643 0.639 0.632 0.628 0.961

0.657 0.653 0.649 0.641 0.637 0.957

0.671 0.667 0.654 0.650 0.952

0.716 0.696 0.931

0.723 0.718 0.713 0.702 0.697 0.927

0.743 0.737 0.731 0.720 0.714 0.917

0.762 0.756 0.749 0.737 0.731 0.907

0.770 0.764 0.757 0.745 0.738 0.903

0.816 0.808 0.800 0.785 0.778 0.869

0.821 0.813 0.805 0.789 0.782 0.865

0.832 0.823 0.815 0.799 0.791 0.856

0.841 0.833 0.824 0.807 0.799 0.847

0.863 0.853 0.844 0.826 0.817 0.828

0.887 0.876 0.866 0.846 0.836 0.805

0.895 0.884 0.873 0.852 0.842 0.796

0.916 0.904 0.892 0.869 0.858 0.772

0.940 0.926 0.914 0.888 0.876 0.740

0.929 0.877 0.735

0.936 0.883 0.730

0.944 0.889 0.720

0.945 0.710

0.955 0.897 0.700

0.963 0.903 0.690

0.973 0.910 0.680

0.909 0.670

0.993 0.925 0.650

0.976 0.942 0.651

1.00 0.640

0.983 0.946 0.928 0.628

1.00 0.963 0.943 0.592

0.972 0.951 0.564

0.990 0.967 0.527

0.964 0.513

1.00 0.500

1.00 0.400

0.300

0.200

0.100

0

TABLE II. Bethe-Peierls approx. in presence of little external magnetic fields

D. Onsager solution

At a temperature T, below a certain temperature called phase transition temperature, Tc,

for the two dimensional Ising model in absence of external magnetic field i.e. for H equal to

zero, the exact, unapproximated, Onsager solution gives reduced magnetisation as a function

of reduced temperature as, [20], [21], [22], [19],

M

Mmax

= [1− (sinh
0.8813736

T
Tc

)−4]1/8.

Graphically, the Onsager solution appears as in fig.3.
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FIG. 2. Reduced magnetisation vs reduced temperature curves for Bethe-Peierls approximation in

presence of little external magnetic fields, for four nearest neighbours, with βH = 2m.
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FIG. 3. Reduced magnetisation vs reduced temperature curves for exact solution of two dimensional

Ising model, due to Onsager, in absence of external magnetic field
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A B Bh Ch D Dh E Ê G H I J K L M N Ng Ny O Ô R S Sh T U W Y Z

51 86 84 55 60 57 16 20 123 62 60 18 202 78 97 15 50 18 9 16 46 65 38 104 35 26 17 19

TABLE III. Entries of the Mursi-English-Amharic Dictionary: the first row represents letters of

the Mursi alphabet in the serial order, the second row is the respective number of entries.

FIG. 4. Vertical axis is number of entries of the Mursi-English-Amharic Dictionary,[1]. Horizontal

axis is the letters of the augmented English alphabet. Letters are represented by the sequence

number in the alphabet.

III. METHOD OF STUDY AND RESULTS

The Mursi language written in English alphabet is composed of twenty six letters. We count

all the entries in the dictionary, [1], one by one from the beginning to the end, starting with

different letters. The result is the table, III.

Highest number of entries, two hundred two, starts with the letter K followed by words

numbering one hundred twenty three beginning with G, one hundred four with the letter T

etc. To visualise we plot the number of entries against the respective letters of the augmented

English alphabet i.e. English alphabet with Bh, Ch, Dh, Ê, Ng, Ny, Ô, Sh included, in the

figure fig.4. For the purpose of exploring graphical law, we assort the letters according to

the number of words, in the descending order, denoted by f and the respective rank, [23],

denoted by k. k is a positive integer starting from one. Moreover, we attach a limiting rank,

klim, and a limiting number of words. The limiting rank is maximum rank plus one, here
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it is twenty six and the limiting number of words is one. As a result both lnf
lnfmax

and lnk
lnklim

varies from zero to one. Then we tabulate in the adjoining table, IV, and plot lnf
lnfmax

against

lnk
lnklim

in the figure fig.5.

We then ignore the letter with the highest number of words, tabulate in the adjoining

table, IV, and redo the plot, normalising the lnfs with next-to-maximum lnfnextmax, and

starting from k = 2 in the figure fig.6. Normalising the lnfs with next-to-next-to-maximum

lnfnextnextmax, we tabulate in the adjoining table, IV, and starting from k = 3 we draw in the

figure fig.7. Normalising the lnfs with next-to-next-to-next-to-maximum lnfnextnextnextmax

we record in the adjoining table, IV, and plot starting from k = 4 in the figure fig.8.

Normalising the lnfs with 4n-maximum lnf4n−max we record in the adjoining table, IV,

and plot starting from k = 5 in the figure fig.9. Normalising the lnfs with 5n-maximum

lnf5n−max we record in the adjoining table, IV, and plot starting from k = 6 in the figure

fig.10, with 6n-maximum lnf6n−max we record in the adjoining table, IV, and plot starting

from k = 7 in the figure fig.11. We end our graphical analysis with the figure fig.12, plotting

lnf7n−max against lnk
lnklim

.

11



k lnk lnk/lnklim f lnf lnf/lnfmax lnf/lnfnmax lnf/lnf2nmax lnf/lnf3nmax lnf/lnf4nmax lnf/lnf5nmax lnf/lnf6nmax lnf/lnf7nmax

1 0 0 202 5.308 1 Blank Blank Blank Blank Blank Blank Blank

2 0.69 0.212 123 4.812 0.907 1 Blank Blank Blank Blank Blank Blank

3 1.10 0.337 104 4.644 0.875 0.965 1 Blank Blank Blank Blank Blank

4 1.39 0.426 97 4.575 0.862 0.951 0.985 1 Blank Blank Blank Blank

5 1.61 0.494 86 4.454 0.839 0.926 0.959 0.974 1 Blank Blank Blank

6 1.79 0.549 84 4.431 0.835 0.921 0.954 0.969 0.995 1 Blank Blank

7 1.95 0.598 78 4.357 0.821 0.905 0.938 0.952 0.978 0.983 1 Blank

8 2.08 0.638 65 4.174 0.786 0.867 0.899 0.912 0.937 0.942 0.958 1

9 2.20 0.675 62 4.127 0.778 0.858 0.889 0.902 0.927 0.931 0.947 0.989

10 2.30 0.706 60 4.094 0.771 0.851 0.882 0.895 0.919 0.924 0.940 0.981

11 2.40 0.736 57 4.043 0.762 0.840 0.871 0.884 0.908 0.912 0.928 0.969

12 2.48 0.761 55 4.007 0.755 0.833 0.863 0.876 0.900 0.904 0.920 0.960

13 2.56 0.785 51 3.932 0.741 0.817 0.847 0.859 0.883 0.887 0.902 0.942

14 2.64 0.810 50 3.912 0.737 0.813 0.842 0.855 0.878 0.883 0.898 0.937

15 2.71 0.831 46 3.829 0.721 0.796 0.825 0.837 0.860 0.864 0.879 0.917

16 2.77 0.850 38 3.638 0.685 0.756 0.783 0.795 0.817 0.821 0.835 0.872

17 2.83 0.868 35 3.555 0.670 0.739 0.766 0.777 0.798 0.802 0.816 0.852

18 2.89 0.887 26 3.258 0.614 0.677 0.702 0.712 0.731 0.735 0.748 0.781

19 2.94 0.902 20 2.996 0.564 0.623 0.645 0.655 0.673 0.676 0.688 0.718

20 3.00 0.920 19 2.944 0.555 0.612 0.634 0.643 0.661 0.664 0.676 0.705

21 3.04 0.933 18 2.890 0.544 0.601 0.622 0.632 0.649 0.652 0.663 0.692

22 3.09 0.948 17 2.833 0.534 0.589 0.610 0.619 0.636 0.639 0.650 0.679

23 3.14 0.963 16 2.773 0.522 0.576 0.597 0.606 0.623 0.626 0.636 0.664

24 3.18 0.975 15 2.708 0.510 0.563 0.583 0.592 0.608 0.611 0.622 0.649

25 3.22 0.988 9 2.197 0.414 0.457 0.473 0.480 0.493 0.496 0.504 0.526

26 3.26 1 1 0 0 0 0 0 0 0 0 0

TABLE IV. Entries of the Mursi-English-Amharic Dictionary: ranking, natural logarithm, normal-

isations
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FIG. 5. Vertical axis is lnf
lnfmax

and horizontal axis is lnk
lnklim

. The + points represent the entries

of the Mursi language with the fit curve being the Bragg-Williams curve in absence of external

magnetic field, BW(c=0). The uppermost curve is the Onsager solution.

FIG. 6. Vertical axis is lnf
lnfnext−max

and horizontal axis is lnk
lnklim

. The + points represent the

entries of the Mursi language with the fit curve being Bethe-Peierls curve in presence of four

nearest neighbours and in absence of external magnetic field BP(4, βH = 0). The uppermost

curve is the Onsager solution.
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FIG. 7. Vertical axis is lnf
lnfnn−max

and horizontal axis is lnk
lnklim

. The + points represent the entries

of the Mursi language with the fit curve being Bethe-Peierls curve in presence of four nearest

neighbours and little external magnetic field, m = 0.005 or, βH = 0.01. The uppermost curve is

the Onsager solution.

FIG. 8. Vertical axis is lnf
lnfnnn−max

and horizontal axis is lnk
lnklim

. The + points represent the

entries of the Mursi language with the fit curve being Bethe-Peierls curve in presence of four

nearest neighbours and little external magnetic field, m = 0.005 or, βH = 0.01. The uppermost

curve is the Onsager solution.
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FIG. 9. Vertical axis is lnf
lnfnnnn−max

and horizontal axis is lnk
lnklim

. The + points represent the

entries of the Mursi language with the fit curve being Bethe-Peierls curve in presence of four

nearest neighbours and little external magnetic field, m = 0.01 or, βH = 0.02. The uppermost

curve is the Onsager solution.

FIG. 10. Vertical axis is lnf
lnfnnnnn−max

and horizontal axis is lnk
lnklim

. The + points represent the

entries of the Mursi language with the fit curve being Bethe-Peierls curve in presence of four nearest

neighbours and little external magnetic field, m = 0.01 or, βH = 0.02. The uppermost curve is

the Onsager solution.
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FIG. 11. Vertical axis is lnf
lnfnnnnnn−max

and horizontal axis is lnk
lnklim

. The + points represent

the entries of the english language with the fit curve being Bethe-Peierls curve in presence of four

nearest neighbours and little magnetic field, m = 0.02 or, βH = 0.04. The uppermost curve is the

Onsager solution.

FIG. 12. Vertical axis is lnf
lnfnnnnnnn−max

and horizontal axis is lnk
lnklim

. The + points represent

the entries of the english language with the fit curve being Bethe-Peierls curve in presence of four

nearest neighbours and little magnetic field, m = 0.03 or, βH = 0.06. The uppermost curve is the

Onsager solution. The points of the Mursi language do not go over to Onsager’s solution i.e. the

Mursi language as viewed through this dictionary does not have Onsager core.
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1. conclusion

From the figures (fig.5-fig.12), we observe that behind the entries of the dictionary, [1], there

is a magnetisation curve, BP(4,βH = 0.02), in the Bethe-Peierls approximation with four

nearest neighbours, in presence of liitle magnetic field, βH = 0.02.

Moreover, the associated correspondance with the Ising model is,

lnf

lnf4n−maximum

←→ M

Mmax

,

and

lnk ←→ T.

k corresponds to temperature in an exponential scale, [24]. As temperature decreases, i.e.

lnk decreases, f increases. The letters which are recording higher entries compared to those

which have lesser entries are at lower temperature. As the Mursi language expands, the

letters which get enriched more and more, fall at lower and lower temperatures. This is a

manifestation of cooling effect as was first observed in [25] in another way.
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