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Abstract 

A theory of second order linear differential equations with variable coefficients 

is proposed in this work. The theory is shown to be useful to solve boundary 

value problems and Schrödinger eigenvalue problems in terms of elementary 

functions. 

1. Theory 

Consider the second order differential equation 

         0)()('' =+ ττ ycy                                                                                      (1) 

where prime means differentiation with respect to τ , and c  a free parameter. 

Under the nonlocal transformation [1] 

  dxxgdxgxuy )(),()()( γττ == l                                                                (2) 

the equation (1) turns into the second order differential equation with 

variable coefficients 
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One may notice that the equation (3) may be used to solve several problems 

of boundary value problems and Schrödinger eigenvalue problems in terms 

of elementary functions 

2. Applications 

2.1 Schrödinger eigenvalue problems 

2.1.1 Analysis of the inverse square root potential 

This paragraph is devoted to the study of the inverse square root potential under 

the position-dependent mass formalism. 
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To this end, let βxxg =)( . Then (3) reduces to  
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Applying 
2

1
=γ , (4) transforms into 
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Now substituting 
2

1
=l , and 

2

3
−=β  , into (5), leads to 
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The equation (6) is the Schrödinger equation for the potential 
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under the position-dependent mass 
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The equation (6) may be easily solved using the above nonlocal transformation 

in terms of elementary functions. 
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