Proof of Goldbach's conjecture

Jaejin Lim
Abstract : I prove Goldbach's conjecture, 'Every even integer greater than 2 can be expressed as the sum of two primes.'. And I used "Generalization of mathematical induction".

Let's suppose there are 'p'(prime),
' q '(twin prime, the first twin prime is q 1 and the second twin prime is q2) and
' a '(odd number not prime).

First, I prove "Every even integer greater than 4 can be expressed as the sum of prime and twin prime".

$$
\text { About } \mathrm{P}(\mathrm{n})(2 \mathrm{n}=\mathrm{p}+\mathrm{q})
$$

When n is 3 ,

$$
6=3+3 \text { is true. }
$$

When n is k , suppose $2 \mathrm{k}=\mathrm{p}+\mathrm{q}$ is true.
[1] When q is q1

$$
\begin{gathered}
2 \mathrm{k}=\mathrm{p}+\mathrm{q} 1 \\
2 \mathrm{k}+2=\mathrm{p}+(\mathrm{q} 1+2) \\
2 \mathrm{k}+2=\mathrm{p}+\mathrm{q} 2
\end{gathered}
$$

So, [1] is true
[2] When q is q2 (when q can't be q1)

$$
\begin{aligned}
2 \mathrm{k} & =\mathrm{p}+\mathrm{q} 2 \\
\text { can be } & \text { expressed in } \\
2 \mathrm{k} & =\mathrm{a}+\mathrm{q} 1 \\
2 \mathrm{k}+2 & =\mathrm{a}+(\mathrm{q} 1+2) \\
2 \mathrm{k}+2 & =\mathrm{a}+\mathrm{q} 2
\end{aligned}
$$

And when n is $\mathrm{k}+1$, suppose $2 \mathrm{k}+2=\mathrm{p}+\mathrm{q}$ is true.
Then it can be $2 \mathrm{k}+2=\mathrm{p}+\mathrm{q} 1$

$$
2 k+4=p+(q 1+2)
$$

$$
2 \mathrm{k}+4=\mathrm{p}+\mathrm{q} 2
$$

So, [2] is true.

> Adding [1] and [2],
> $2 \mathrm{n}=\mathrm{p}+\mathrm{q}(\mathrm{n} \geqq 3)$ is true.

And because $\mathrm{p}+\mathrm{q} \subset \mathrm{p}+\mathrm{p}$ is true, $2 n=p+p(n \geqq 3)$ is also true.
$+$ $4=2+2$ is true.

Thus, Goldbach's conjecture is ture.

