Haga’s theorems in paper folding and related
theorems in Wasan geometry Part 2

HiroSHI OKUMURA
Maebashi Gunma 371-0123, Japan
e-mail: hokmr@yandex.com

Abstract. We generalize problems in Wasan geometry which involve no
folded figures but are related to Haga’s fold in origamics. Using the tangent
circles appeared in those problems with division by zero, we give a parametric
representation of the generalized Haga’s fold given in the first part of these two-
part papers.

Keywords. Haga’s fold, generalized Haga’s fold, division by zero, golden
mean, silver mean, Steiner chain, parametric representation, inverse of Haga’s

fold.

Mathematics Subject Classification (2010). 01A27, 51M04

1. INTRODUCTION

In the first part of these two-part papers, we have considered some geometric
properties of the generalized Haga’s fold [9]. Meanwhile there are several problems
in Wasan geometry, which do not involve folded figures but are closely related
Haga’s fold. In this second part we consider those problems in a general way. Using
tangent circles appeared in those problems, we give a parametric representation
of the generalized Haga’s fold with division by zero [7].

2. RELATED PROBLEMS IN WASAN GEOMETRY

In this section we consider several problems in Wasan geometry closely related to
Haga’s fold, though they are not involving folded figures. A general solution of
the problems is given in the next section. We start with two similar problems.
The following problem can be found in [1, 16, 20, 27, 29] (see Figure 1). A
generalization of the problem can be found in [14].
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Problem 2.1. Let ¢ be a circle of radius s with a rectangle ABC'D sharing its
center with &, where the side AB touches d and the side BC' intersect d in two
points. The inradius of the curvilinear triangle made by AB, BC' and 9§ is r and
the circle touching BC' at its midpoint and touching the minor arc of § cut by
BC also has radius r. Find s in terms of r.

The next sangaku problem can be found in [2] (see Figure 2).

Problem 2.2. Let § be a circle of radius s and let ABC be a right triangle with
right angle at A. The side C'A touches 9, and each of the sides AB and BC
intersects ¢ in two points. The inradius of the curvilinear triangle made by C'A,
AB and ¢ equals r. The maximal circle touching AB from the side opposite to
C and touching § internally, and the maximal circle touching BC' from the side
opposite to A and touching ¢ internally have radius r. Find r in terms of s.
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We show that the two problems are essentially the same. Let v be the incircle
of the curvilinear triangle made by AB, BC and 4 in Problem 2.1 (see Figure 3).
If we draw the line parallel to BC touching 6 and the reflection of «y in the line BC,
extend the side AB, and remove the segment BC' in the figure of Problems 2.1,
we get Figure 5. We can also get the same figure from Figure 2 in a similar way
(see Figure 4). Therefore the two problems are essentially the same. Problems
considering Figure 5 can also be found in [3], [4], [16, 20], [24], [25], [26], [28] and
[30]. We gave a generalization of Problem 2.1 in [14].

We state Problems 2.1 and 2.2 so that the body text gives enough information
without the figures. However the most informations of the problems in Wasan
geometry are given by the figures, thereby the body texts play only subsidiary
roles. The next sangaku problem is stated in such a way [2]:
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Problem 2.3. There are a large circle of radius s and two small circles of radius
r in a square as in Figure 6. Show s = 9r.

We show that the problem is incorrect by the next proposition.

Proposition 2.1. Assume that an external common tangent of two circles of
radii v and s touches the circles at points P and (). Then the two circles touch
externally if and only if |PQ| = 2+/rs. In this event, the internal common tangent
of the two circles passes through the midpoint of PQ).

We have s = 2/7s + v/2r + r by the proposition. Solving the equation for s,
we get s = (3 +vV2+2V2+ \/5) r &~ 8.11r. Therefore the problem is incorrect.

We guess that the two small circles were described as in Figure 5 in the original
problem, however Figure 6 was used by transcription error. A general case of
Problems 2.1 and 2.2 was considered by Toyoyoshi (see Figure 7):

Problem 2.4 ([17]). Let § be a circle of radius s with center C' passing through
B for a square ABC'D. Let 71, 72, « -+, 7» be congruent circles of radius r lying
inside of the curvilinear triangle made by DA, AB and ¢ and touching DA such
that v touches ¢, vy, and o touch, 7; (i = 3,4, -+ ,n) touches v;_; at the farthest
point on ~;_; from the center of v; 5, and =, touches AB. Show r in terms of s
and n.

3. GENERALIZED FIGURE

We consider the figure of Problems 2.4 in a general way. For perpendicular lines
k and [ intersecting in a point A, let d; and do be circles of radii s; and s
(0 < sy < s1), respectively, touching k and [ from the same side. Let 7 be a circle
of radius r touching 9, and d, externally and k at a point K. We denote the figure
consisting of ~, 01, do, k and [ by T. Identifying similar figures, 7 is uniquely
determined by s1/s2. It is also uniquely determined by the real number

AK
(1) n = u7
r
where 7 = 1 if §; and K lies on the same side of [ otherwise 7 = —1 (see Figures 8

and 9). Then we explicitly denote the circle v and the figure 7 by v(n) and T (n),
respectively, The value n equals the ratio of the distance from [ to the farthest
point on v from [ to the radius of 7. If ~ touches k£ at A, we consider that &y
degenerates to the point A and s = 0. The figure is denoted by 7 (1) (see Figure
10). We also consider the case in which v degenerates to a point K # A on k.
In this case we consider that 0; and ds coincide and touch k at K (see Figure
11). However there is no real number satisfying (1) in this case. Therefore we
introduce a new symbols 0, and denote the point circle K and the figure 7 by
v(0) and T(0), respectively. In T7(0), §; and & coincide and + is the reflection
of §; in [ (see Figure 12). Notice that §; and 0y coincide if and only if n = 0 or
n = 0.
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Figure 8: 7 =1 (1 < n). Figure 9: 7=—-1 (0 <n < 1).
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Figure 10: 7(1).  Figure 11: T (0). Figure 12: 7(0).

Our definition of 7 (n) implies 0 < n, and 1 < n or 0 < n < 1 according as
K and 4, lie on the same side of [ or not. If n/2 is a natural number, there are
circles v, Y2, - -+, Y2 of radius r lying inside of the curvilinear triangle made by
k, [ and 6; and touching k such that [ is the external common tangent of v; and
01, 71 and 7y touch, v; (i = 3,4,--- ,n/2) touches v;_; at the farthest point on
7Yi—1 from the center of v;_o, 7,2 = 7. This is the case considered by Toyoyoshi
stated as Problem 2.4. If we add the reflection of §; and ~; (i = 1,2,--- ,n/2)
in | and remove d; and [, the resulting figure is the configuration B(n) in [10].
Therefore 7T (n) is a generalization of B(n) in this sense. If n = 4, the circles v,
and s coincide (see Figure 36, where regard that §; = 9, k and [ are the lines AB
and DA, respectively, and 7—v(4) in the figure). The relation between s; and r
in (i) in the next theorem gives a solution of Problem 2.4.

Theorem 3.1. The following statements are true for T (n).

() Ifn #0, /31 = (Vi + Dy/F and /55 = [V — 1.

(i) [AK]| = /5.

(iii) 2¢/r = /51 + /52 if 0 <n < 1, and 2¢/r = /51 — /52 if 1 <n.

Proof. By Proposition 2.1 we have s; = 7|AK| + 2\/s17 = (n — 1)r + 2,/s17,
which yields /57 = (v/n + 1)y/r. If n > 1, we have sy = 7|AK| — 2\/755 by
the same proposition, which yields s, = (y/n — 1)*. If 0 < n < 1, we have
sy = T|AK| + 2,/rsy, which also yields sy = (y/n — 1)%*r. Therefore we have
V52 = [v/n—1]y/r in any case. The part (ii) follows from (i), since |AK| = |[n—1|r.
Eliminating n from the two equations in (i) we get (iii). O



HirosHI OKUMURA 5

01
d2

Y

k A K k L1
Figure 13: 7 (n), n = 8. Figure 14: T7(9).

If n = 8, then §; and §5 intersect and the maximal circle touching d; and
from inside of them has radius r, which is obtained by translating 5 parallel to [
through distance 47 (see Figure 13). Let L; be the point of tangency of J; and k.
If n =9, then s; = 4sy = 167 by Theorem 3.1(i) and K is the midpoint of AL,
(see Figure 14). Problems considering this case with the circle d; can be found in
(18, 19], [22, 23] and [24]. However the circle do seems to be ignored for 7 (n) in
most cases except this case in Wasan geometry.
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Figure 15: T(n), (0 <n < 1). Figure 16: T(n), (1 < n).

1

Let E; be the point of intersection of k£ and the internal common tangent of 9;
and ~y for T, if §; and ~ are proper circles (see Figures 15 and 16). Notice that E;
is the midpoint of the segment K L;. If v = v(0), then K = L; = Ly. Therefore
we can consider that the point E; coincides with L; in this case. Hence we define
E, = Ey = L, for T(0) (see Figure 17). Similarly we define Ey = Ly = A for T (1)
(see Figure 18).
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Figure 17: T7(0). Figure 18: T(1).

Theorem 3.2. If n # 0, then T = T(n) if and only if the following relation
holds:

(2) |AE;| = Vn|E;Li| for i=1,2.

Proof. Let n # 0. We assume 7 = T (n). Then (2) holds if n = 0 since E; = A.
Also (2) holds if n = 1. Let n # 0,1. Since E; is the midpoint of the segment
LK, |E\Ly| = \/sir = (v/n+1)r and |EyLs| = \/sar = |/n — 1|r by Proposition
2.1 and Theorem 3.1(i). On the other hand,

|AE,| = 81 — |B1Li] = (Vn+ 1) — (Vn+ 1)r = vn(v/n+ D)r = /n|E L.

Therefore we get (2) fori = 1. If 0 < n < 1, the internal common tangent of v and
09 is obtained by rotating [ about the center of d5 so that the point of intersection
of the image of [ and k moves from A to K (see Figure 15). Therefore Fy lies
between A and K in this case. Also F5 lies between A and K in the case 1 < n.
Therefore in any case, we get

Lo K
%: In —1|r —\/sor = [n — 1|r — |v/n — 1|r = V/n|v/n — 1]r.

Hence we also get (2) for i = 2. Therefore 7 = T (n) implies (2).

Conversely we assume (2) and 7 = 7 (m) for a real number m. If |E;L;| =0,
then |AE;| = 0 by (2), i.e., Ly = E; = A, a contradiction. Hence |E;L,| # 0.
With this fact and |AE,| = \/m|E; L;| as proved just above, we get /n|E1L;| =
vVm|EiLy|. Therefore m =n, i.e., T = T(n).

|AB,| = |AK]| -

g

4. ANOTHER TOUCHING CIRCLE

There are two circles touching the circles §; and d, externally and k in general for
the figure 7. However we have considered only one circle in the previous section.
In this section we consider the figure together with the remaining touching circle.
Let v; = v(n;) (i = 1,2) be the circle of radius r; such that 0 < ro < r; touching 0,
and 0y externally and £ from the same side as d;. We denote the figure consisting
of v;, 0;, k and [ by U.

Theorem 4.1. The following relations hold for U :

1 T2

3 = = _Z
() = na 1
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Proof. Since 0 < n; < 1 and 1 < ny, /51 and /sy equal (/11 + 1)\/ﬂ

(V/n2+1)y/r and (1 —/n1)/m1 = (/n2 —1),/T2, respectively by Theorem 3.1(

Solving the two equations for n; and ny, we get ny = ro/ry and ny = ri/rs.

\

K Ep, A En Ly Exn K Eo Ly

Figure 19: U(n) (n = 16).

We now explicitly denote the figure U by U(n) if 79 = y(n), or equivalently

N

).
O

1 = y(n™1), which coincides with 7(n) U T (n™!) for a real number n > 1 (see
Figure 19). We also denote the figure 7(0) U7 (0) by U(0) (see Figure 20). Notice
that n = 0 or 1 < n by the definition for Z(n). The point of tangency of 7; and
k is denoted by K;. Let t;; be the internal common tangent of the proper circles
7 and d;. The point of intersection of ¢;; and k is denoted by E;;. We also define
Ey; = Ly for U(0) (see Figure 20), and E;» = A for U(1) (see Figure 21). The

next theorem follows from Theorem 3.2.

Y1=72
Y(0)=n1
8 01
Ky leE]_l:Elg L1:L2:7('2 A:K1:K2 E11=FEs Ly
. =Lo=FE12=FE»
Figure 20: U(0). Figure 21: U(1).

Theorem 4.2. Ifn # 0, the following statements are equivalent.

OU=um). (i) M%ﬁ" —\ExL. (i) |ABy| = Wl—\/ﬁ“

Theorem 4.3. The following relations hold for U(n).

(i) [AK: | = |Aliz|- -
(i) ﬁ:@ and\/ﬁzw.
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(i) /51 = /71 + v/72 and /53 = /i1 — /T3,

Proof. The part (i) follows from Theorem 3.1(ii). The part (ii) holds by Theorem
3.1(iii). The part (iii) follows from (ii). By Theorem 4.2, we have |AEy;| =
|EviLi|//n = JT18i/\/n = J/nrss;/\/n = /T28; = |Fa2L;|. The rest of (iv) is

proved similarly. U

Theorem 4.4. The radical axis of the circles v, and ~- passes through the point
A and the farthest point on 6; from k for the figure U.

Proof. We use a rectangular coordinate system with origin A such that B has
coordinates (s,0). Then the circles v; and 72 are expressed by the equations
a = (z+[AK])? + (y —m)* —rf and ¢ = (z — [AK|))* + (y — m2)* — 73,
respectively. This implies ¢; — ¢; = 2,/5152(22 — y) by Theorem 3.1(ii) and
Theorem 4.3(i). Therefore the radical has an equation y = 2x. U

5. SPECIAL CASES, GOLDEN MEAN AND SILVER MEAN

In this section we consider special cases for the figure U (n), and show unexpected
facts that the golden mean and the silver mean appear when certain circles of
U(n) touch.

5.1. Golden mean. Two quantities are said to be in the golden mean or in the
golden ratio if the ratio of those quantities equals 1 : ¢, where ¢ = (1 +/5)/2.
The next theorem shows that the golden mean appears if the circles v; and 7,
touch for U(n) (see Figure 22). Let I; be the farthest point on +; from k.

7

K, En A Ly EnK, En Eu K i
Figure 22: U(¢?).
Theorem 5.1. The following statements are equivalent for U(n).

(i) The circles v1 and o touch. (i) /n = ¢.
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(v) The line ty; (resp. to;) passes through the point I (resp. Ih).
(vi) There is a similar transformation f such that f(v1) = 01 and f(d2) = 2.

Proof. The statement (i) is equivalent to |K; K| = 2,/rirs by Proposition 2.1,
while | K1 Ks| = 2,/r1S3+2,/r252. Therefore (i) is equivalent to 2,/r1So+2,/r282 =
2,/r1r2. While by Theorem 4.3(iii) and ry = 71 /n, we have

2\/T182+2y/7’282 —2\/7‘17”2 :2(\/_—¢)(\/ﬁ+¢_1)7"2
Therefore (i) and (ii) are equivalent. The equivalence of (ii), (iii) and (iv) follows
from Theorem 4.2.

We prove the equivalence of (ii) and (v). Let 7' be the point of tangency of
72 and 6;. Let 20 = ZTFEy A. Then (v) is equivalent to tan26 = tan £, Ey A.

While tan @ = ry/|Eq Ko| = 1r9/+/T251 = \/T2/s1 by Proposition 2.1. Therefore
2\/7"281 . 2(\/54- 1)

4 tan 20 = = :

(4) o S$1 — To n+2v/n

While by Proposition 2.1, Theorem 4.3(iii) and r; = nry, we also have
2r, 2rq 2n

|K1L1| — |E21L1| - 2«/7’151 — /7251 - 2n—|—\/ﬁ— 1

tan l[lEglA =

Therefore

2(n — ¢*)(n — 677
(n+2yn)(2n+n—1)
The last equation shows that (ii) is equivalent to that the line t;; passes through
the point I; for ¢ = 2, since 1 < n. The case ¢ = 1 is proved similarly. The
equivalence of (ii) and the rest of (v) are proved in a similar way. The part (vi)
is equivalent to (ii) since

tan20 —tan Z1E1A = —

s1 12 (n—¢°)(n— ¢_2)‘

T So n(yv/n—1)32
U

We assume (i). Then ¢1; and tyy are parallel, since (v) holds. While |[AFE;| —
|K1E22‘ = (m— |AK1’) - (’AKl‘ + S9 + M) = O, i.e., |AE11‘ = |K1E22‘ by
Theorem 3.1(ii) and Theorem 4.3(iii). Therefore if H; is the point of intersection
of the lines t; and [, then H,I, EsF1; is a parallelogram. Similarly [y HoEos Fy
is a parallelogram. Since s;/r; = ry/se is equivalent to sy/ry = r1/sq, there is
a similar transformation g such that g(s;) = re and g(r;) = sq since (vi) holds.
Therefore the internal common tangent of §; and 7, and the internal common
tangent of v, and d, are symmetric about the perpendicular from their point of
intersection to k. The internal common tangent of v, and v, passes through the
point A by Proposition 2.1 and Theorem 4.3(i).

5.2. Silver mean. Two quantities are said to be in the silver mean or the silver
ratio if the ratio of those quantities equals 1 : p, where p = 1+ /2. Let J; be the
farthest point on d; from k. The next theorem shows that the silver mean appears
when the circles d; and dy touch (see Figure 23).
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li
! 5
E12A L2 1 L1 k
Figure 23: U(p?).

Theorem 5.2. The following statements are equivalent for U(n).
(i) The circles 01 and dy touch. (i) /51 = py/52.
(iii) v/n = p. (iv) |AEy;| = p|EgiLs].
(v) |[AEy| = p Y Evi Ly (vi) The points Ey1 and Esg coincide.
(vii) The line t;; (resp. ti2) passes through the point Jo (resp. Jy).
(viii) There is a similar transformation f such that f(v1) = 01 and f(y2) = da.

Proof. The statement (i) is equivalent to that Jy is the incircle of the curvilinear
triangle made by d1, k and [, which is equivalent to |L1A| = 2,/5155 + s = $;.
While by Theorem 4.3(iii) and 7y = r1/n, we have

2v/s152 4 52— s1.= (pV/s2 — V1) (p s+ V1) = 2(Vn = p)(Vn+ p ).
Therefore (i), (ii), (iii) are equivalent. The equivalence of (iii) (iv) and (v) follows
from Theorem 4.2. Since |AEy| = |ALg| + |LoEy| = so + /7252 and |AE| =
|AL1| — |L1E11| = 81 — /7151, WeE get

|AEy»| — [ABu| = (Vi — p)(Vn + p~)ra.

Hence (iii) and (vi) are equivalent. We prove the equivalence of (iii) and (vii).
Let T be the point of tangency of v, and 0; and 20 = ZTEy; A. Then (4) holds.
While we have

2 2 2 —1)2
tan ZJEQIA = 52 = 52 = (\/ﬁ ) .
|L2K2|+|K2E21| 2\/7"282—’—\/7‘281 3\/5—1
Therefore

—2(n—p*)(n—p~?)
VnBy/n—1)(vn+2)
Therefore (iii) is equivalent to that t;; passes through the farthest point on d, from
k for ¢+ = 2, since 1 < n. The case ¢ = 1 can be proved similarly. The equivalence

tan 20 — tan JE,A =
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of (iii) and the rest of (vii) is proved in a similar way. The equivalence of (iii) and
(viii)follows from

s1 s (n+D(n—p)/n+p)

T T2 n

4

For the figure U(p?), the equivalence of (iii) and (viii) shows that ¢;; and ta
are symmetric about the perpendicular to k at the point Ej; = Eas. Also Theorem

4.1 and Theorem 4.3(iii) shows \/s; = /71 ++/r2 = \/71(1 +1/p) = \/2r1. Hence

we have s; = 2ry. This also implies s, = 215 by (viii).

5.3. Steiner chain. We consider the case in which there is a circle touching ~;
and 9; externally for U(n) (see Figure 24). In this case 71, d1, 72, d2 form a Steiner
chain touching this circle and k. It was known that if C; (1 = 1,2,3,4) form a
Steiner chain and v; is the curvature of C;, then v +wv3 = v9 + v, holds [21]. While

1 1 1 1 (+Dmn-2+V3)n—(2-V3)

rL Ty S 89 (n—1)2r

by Theorem 4.3(iii) and r; = nry. Therefore we get n = 24 +/3 in this case. Let ¢
and e be the circle touching 7; and ¢§; and its radius. Considering another Steiner
chain touching € and k£ symmetric about the perpendicular from the center of ¢
to k, we see that the distance from the center of € to k equals 3e. Since 7, €, ¥
and k also form a Steiner chain touching ¢; and d,, we have

1 1 1 1 1
-—= =4+ — = — 4+ —.
e 1 79 S1 59

o~

13
e @ P~

A
Figure 24: U(2 ++/3).

6. THE CASE n = 0,0 WITH DIVISION BY ZERO

From now on we assume that the symbol 0 has value 0, i.e., 0 = 0 as a number,
though 0 and 0 are different as symbols. From now on we also assume the definition
of the division by zero in [7]:

(5) 0 for any real number n.

0

Notice that reduction for fractions of zero denominator can not be done with this
definition, i.e., ¢ = 0 implies

ac a
PR
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in general. For the left side always equals 0/0 = 0 # a/b by (5).
We consider Theorem 3.2 in the case n = 0. By the definition of the value of
0, (2) does not hold if n = 0, since |E;L;| = 0 and |AE;| # 0 for T(0). But if we
state the relation in the following form, it still holds in the case n = 0 since both
sides equal 0:
|ALE;|

6
) -
Conversely, if (6) holds for n = 0, then we get |E;L;| = 0, i.e., E; = L;. Hence we
get T =T(0).

If U = U(0), then n; = 0, ny = 0 and r, = 0. Hence Theorem 4.1 holds in

this case. Theorem 4.2 also holds in the case n = 0, since U = U(0) is equivalent

7. PARAMETRIC REPRESENTATION OF THE GENERALIZED HAGA’S FOLD

We now consider Haga’s fold considered in [9, 13]. Let ABC'D be a square. For a
point E on the line DA, let m be the perpendicular bisector of the segment C'E.
The figure consisting of ABC'D and the reflection of ABC'D in the line m is called
the figure made by the generalized Haga’s fold determined by E or simply called
the figure determined by E and denoted by H(E). We call m the crease line of
H(FE). In this figure the reflections of A B and D in m are not so important
and we do not refer to them in most cases. Identifying similar figures, H(FE) is
determined uniquely by the square ABC'D and the point E. Ordinary Haga'’s fold
is obtained if E lies between D and A (see Figures 27 and 28). Let ¢ be the circle of
radius s = |AB| and center C'. In this section we give a parametric representation
of H(FE) using circles touching the line AB and the circle § externally.

7.1. Parametric representation. Let T" be the point of tangency of § and the
remaining tangent of § from E for H(E). Let -y be the circle touching ¢ externally
at T and the line AB. Then v —— H(E) is a bijection from the set of the circles
touching § externally and the line AB from the same side as ¢ to the set of the
figures determined by F, where we consider that the point B is a member of the
former set as a point circle, which corresponds to the figure made by E in the
case & = B (see Figure 30).

For two points P and ) on the line AB, P < () denotes that @ has the

same direction as AB, and P < () denotes P < Q or P = (). Let K be the point
of tangency of v and the line AB and let r be the radius of v. We define

(7) . O'(T‘Aiﬂ + 7")7

where 0 = 1 if T lies inside of ABC'D or on the perimeter of ABC'D otherwise
c=—1land 7 =1if A < K otherwise 7 = —1. If £ = B, the points K and T
coincide with D (see Figure 30). In this case we use the symbol 0, and consider
n = 0. We now explicitly denote the circle v by v(n). The point circle B is also
denoted by vy (6) Now any circle touching ¢ externally and the line DA can be
expressed by v(n) for a real number n together with 0, and we also explicitly

denote the figure H(FE) by H(n)"™.

13 (0) is denoted by H(co) in [9]
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7.2. Seven cases. We consider the value of n for H(n) as a function of the point

E., which moves on the line AB with moving direction same as to 1@ . In this
case T' moves on § counterclockwise. Let M be the midpoint of AB, and let F' be
the point of intersection of the line DA and the reflection of the line C'D in m if
they meet. We consider the following seven cases:

1. E < A (see Figure 25). 2. £ = A (see Figure 26).
3. A< E < M (see Figure 27). 4. E = M (see Figure 28).
5. M < E < B (see Figure 29). 6. £ = B (see Figure 30).

7. B < E (see Figure 31).
Assume E < A (see Figure 25). Then 0 = 7 = —1. Hence we have

 —(—|AK|+7) |BK\_|AB|_7=_zﬁ—s—r__<\/§_1)2
- .

(8) n=

r r T

While s < r, i.e., 0 < y/s/r < 1. Therefore we get —1 < n < 0 and n increases
and approaches to 0 when E approaches to A. If E = A, then n = 0 (see Figure
26).

K A E M B A=K E=M B
Figure 27: 0 <n <1, A< E < M. Figure 28: H(1), E = M.

If E= M, we get n =1 by Theorem 3.2 (see Figure 28). Therefore |AK| =0,
ie., K = A in this case. Also we get s = 4r by Theorem 4.3(iii). Assume
A<E <M. Then 0 =1 and 7 = —1 (see Figure 27). Hence

_3—2\/§+q~_( s 1)2
. .

n= =
r ’
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While s/4 < r < s, ie, 1 < y/s/r < 2. Therefore we get 0 < n < 1 and n
increases and approaches to 1 when E approaches to M.

If M < E < B (see Figure 29), then 0 = 7 = 1. Hence
_|AK|+r _|AB| - |BK|tr _s—2/srdr (\/3 1>2
r r '

T T

While r < s/4, ie., 2 < \/% Therefore 1 < n, and n increase without limit
when E approaches to B, since r approaches to 0. If £ = B, r = 0 and H(F)
is denoted by H(0) (see Figure 30). While the denominator of the right side of
(7) equals 0, where recall the definition (5). Therefore the right side of (7) equals
0, which ensures consistency of our definition 0 # 0 as symbols but 0 = 0 as
numbers. Also recall the remark after (5), i.e., (s — 2y/s7 +7)/r # (\/s/7 — 1)?
in this case.

b ¢
| m |
)
0
AK M B A=F E:T:K:BW( )
Figure 29: 1 <n, M < E < B. Figure 30: # (0), E = B.

Figure 31: —1<n <0, B < E.

Assume B < E (see Figure 31). Then 0 = —1 and 7 = 1. Hence

_ —(AK|+r) _ —|AB|~|BK|—r _ —s—z\/g—r__(\/gﬂf
r r '

r r

While 0 < r. Therefore n decreases without limit when E approaches to B, since
r approaches to 0. Contrarily n increases and approaches to —1 when E moves
away from B, since r increases without limit. Therefore n < —1 in this case.

We summarize the results in Table 1. The positively sloped arrows mean that
n is a monotonically increasing function of £ when F moves on the line AB with
moving direction same as to AB.
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case | FE<A | E=A|A<E<B|FE=B| E<B
n | —1<n<0 0 0<n 0 n<—1
/ / /
Table 1.

Table 1 shows that n # —1 for H(n), while the remaining tangent of the circle
0 parallel to DA is not a member of the set of circles touching the line DA and ¢
externally. Therefore the fact suggests us to describe the tangent by v(—1).

7.3. The case m passing through inside of ABC'D. We consider the case in
which the line m passes through inside of ABC'D. In this case we can really fold
the square ABC' D with the real crease line m (see Figures from 25 to 31). Firstly
we consider the case E < A. Let I be the point on the line D A such that I < A and
|AI| = v/25. Then m passes through A if and only if E = I (see Figure 32). In this
case |AK| = |IK|+|Al| = |BK|—|AB| holds. Hence we get /rs++/2s = 2,/r5—s,
which implies /s/r = 3 — 2v/2, i.e., n = —4(3 — 2v/2) = —0.6862--- by (8).
Therefore m does not pass through inside of ABCD if E < I, and passes through
inside of ABCD if I < E < A, which is equivalent to —4(3 — 2v/2) < n < 0.

Figure 33: H(—4).

If A< E < B, m passes through inside of ABCD (see Figures from 26 to
30). Therefore m passes through inside of ABC'D if 0 < n. We consider the case
B < E. Let J be the reflection of A in BC' (see Figure 33). It is obvious that m
passes through B if £ = J and n = —4 in this case. Therefore m passes through
inside of ABCD if and only if n < —4. Hence we get the next theorem.
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Theorem 7.1. For the figure H(E), the line m passes through A (resp. B) if
and only if E = I (resp. E = J), which is equivalent to n = —4(3 — 2v/2) (resp.
n = —4). Also m passes through inside of ABCD if and only if I < E < J, which
is equivalent to —4(3 — 2v/2) < n orn < —4.

8. INVERSE OF GENERALIZED HAGA’S FOLD

Let H(E;) = H(n;) (i = 1,2) for a point E; on the line DA and a real number
n;. Then H(E;) and H(F,) are said to be inverses to each other if and only if
ny = 1/ny, which is equivalent to nyny = 1 or {ny,ny} = {0,0} by (5). In this
section we consider two figures H(E;) and H(E,) which are inverses to each other.

t11

to1

TR)=729) N
d2 o1
A L Fn by B=L; "
Figure 34: H(Fy1) = H(n™') and H(Ey) = H(n) for 1 < n.

y(nh)=yy

We show that any pair of figures made by generalized Haga’s fold inverses to
each other are derived from the figure U(n) considered in section 4, where recall
that n = 0 or 1 < n for U(n). Let us define the square ABCD for U(n) so that
B = Ly, C is the center of the circle §;, D is the point of tangency of 4; and the
line [. Then H(E1;) = H(n™') and H(Ey) = H(n) if n # 0 (see Figure 34). If
n =0, we get H(Fy;) = H(0) and H(FEs) = H(0) (see Figures 20, 26 and 30).
Assume n # 0. If we consider the square ABC'D for U(n) such that B = Ly, C'is
the center of dy, D is the point of tangency of d, and [, then H(E2) = H(—n"1)
and H(Es) = H(—n) (see Figure 35).

Since t1; is the radical axis of 7; and 4y, it passes through the radical center
of 71, 72 and ;. Similarly t9; passes through the radical center of ~;, v and d;.
Therefore the point of intersection of ¢1; and t9; passes through the radical center
of the three circles, i.e., it lies on the line passing through A and the midpoint of
CD by Theorem 4.4. Similarly the point of intersection of ¢;5 and 55 meet in a
point on the same line.
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too

03
o1

¥(n)="2

C
DEzz k L,

Figure 35: H(FE13) = H(—n"') and H(Eq) = H(—n) for 1 < n.

Theorem 8.1. The following statements are equivalent for H(E,) and H(Es).
(i) The figures H(E1) and H(E>) are inverses to each other.

(ii) The points Fy and Ey are symmetric about the perpendicular bisector of AB.
(iii) £y and Ey coincide with the midpoint of AB, or Ey # Fy and the crease lines
of H(Ey) and H(Es) meet in a point on the perpendicular bisector of AB.

Proof. Theorem 4.3(iv) shows that the points Fy; and Es; are symmetric about the
perpendicular bisector of AL; for the figure Y. Hence (i) implies (ii). Assume (ii)
holds. If H(E') is the inverse of H(E}), then F; and E’ are symmetric about the
perpendicular bisector of AB as just proved. Hence Fy = F’ i.e., H(Ey) = H(FE').
Hence (i) holds. Therefore (i) and (ii) are equivalent. If E; and Es coincide with
the midpoint of AB, then (ii) and (iii) are obviously equivalent. Let us assume
E1 # E5. We use a rectangular coordinate system such that the points A and B
have coordinates (—s/2,0) and (s/2,0), respectively. Let (e;, 0) be the coordinates
of E;. Then the line m; has an equation (—2e¢; + s)x + 2sy + (e — 5s%/4) = 0.
Therefore the two lines meet in the point of coordinates

<61 +ey —2(e; + eg) +4ejes/s + 55)

2 8

Hence (ii) and (iii) are equivalent. O

9. HAGA’S THEOREMS

In this section we consider Haga’s theorems in origamics [6]. Firstly we consider
special cases for the figures H(n) in the case A < F < B, which were often
considered in Wasan geometry and are closely related to Haga’s theorems. Recall
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that ' is the point of intersection of the line DA and the reflection of the line
CD in m if they meet. If F is the midpoint of AB, F divides DA in the ratio
1 : 2 internally [9, Theorem 3.1] (see Figure 28). The fact is called Haga’s first
theorem [6]. While Theorem 3.2 shows that this happens if n = 1. Therefore the
figure of Haga’s first theorem is obtained from #H(1). We get s = 4r by Theorem
3.1(i) in this case. A problem considering this relation for #(1) can be found in
[5].

If F'is the midpoint of DA, F divides AB in the ratio 2 : 1 internally [9,
Theorem 3.1] (see Figure 36). The fact is called Haga’s third theorem [6]. While
Theorem 3.2 shows that this happens if n = 4. Hence the figure of Haga’s third
theorem can be obtained from #(4). Therefore the circle touching v = v(4), AB
and DA from inside of ABC'D is congruent to . Let do be this circle and let K
be the point of tangency of v and AB. Since E is the midpoint of the segment
BK by Proposition 2.1, F and K are the points of trisection of the side AB.
The remaining circle touching the line AB and § and 0 externally is v(1/4). The
relation (2) shows that K coincides with the point of intersection of AB and the
internal common tangent of (1/4) and J. It seems that the case n = 4 is most
frequently considered for H(n) in Wasan geometry as we have shown in section 2.

A K E B
Figure 36: H(4) with v(1/4).

We have generalized Haga’s theorems in [9], which we restate here in terms of
H(n). Notice that the theorem holds for #(0) and H(0) by (5).

Theorem 9.1. The following relations hold for H(n).
|AF|  _|BE|] 2

IDF| "|AE|  /In]

Proof. The first half of the equations is Theorem 3.1 of [9]. The last half of the
equations follows from Theorem 3.2. O

10. CONCLUSION

We argued the merit of considering circles in the geometry of origami in [11, 12].
In these two-part papers we have shown several examples to verify the validity
of our assertion. The circles we have considered are tangent circles except the
circumcircle of a triangle considered in the first part of the papers. In this sense
we may say that many parts of the geometry of origami belong to the geometry
of tangent circles. In particular, the incircle and the excircles of a right triangle
or circles touching two perpendicular lines play important roles in the geometry
of origami using a square piece of paper as shown in the both parts of the papers.
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