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1. Introduction

In the first part of these two-part papers, we have considered some geometric
properties of the generalized Haga’s fold [9]. Meanwhile there are several problems
in Wasan geometry, which do not involve folded figures but are closely related
Haga’s fold. In this second part we consider those problems in a general way. Using
tangent circles appeared in those problems, we give a parametric representation
of the generalized Haga’s fold with division by zero [7].

2. Related problems in Wasan geometry

In this section we consider several problems in Wasan geometry closely related to
Haga’s fold, though they are not involving folded figures. A general solution of
the problems is given in the next section. We start with two similar problems.
The following problem can be found in [1, 16, 20, 27, 29] (see Figure 1). A
generalization of the problem can be found in [14].
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2 Haga’s theorems in paper folding and related theorems in Wasan geometry Part 2

Problem 2.1. Let δ be a circle of radius s with a rectangle ABCD sharing its
center with δ, where the side AB touches δ and the side BC intersect δ in two
points. The inradius of the curvilinear triangle made by AB, BC and δ is r and
the circle touching BC at its midpoint and touching the minor arc of δ cut by
BC also has radius r. Find s in terms of r.

The next sangaku problem can be found in [2] (see Figure 2).

Problem 2.2. Let δ be a circle of radius s and let ABC be a right triangle with
right angle at A. The side CA touches δ, and each of the sides AB and BC
intersects δ in two points. The inradius of the curvilinear triangle made by CA,
AB and δ equals r. The maximal circle touching AB from the side opposite to
C and touching δ internally, and the maximal circle touching BC from the side
opposite to A and touching δ internally have radius r. Find r in terms of s.
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We show that the two problems are essentially the same. Let γ be the incircle
of the curvilinear triangle made by AB, BC and δ in Problem 2.1 (see Figure 3).
If we draw the line parallel to BC touching δ and the reflection of γ in the line BC,
extend the side AB, and remove the segment BC in the figure of Problems 2.1,
we get Figure 5. We can also get the same figure from Figure 2 in a similar way
(see Figure 4). Therefore the two problems are essentially the same. Problems
considering Figure 5 can also be found in [3], [4], [16, 20], [24], [25], [26], [28] and
[30]. We gave a generalization of Problem 2.1 in [14].

We state Problems 2.1 and 2.2 so that the body text gives enough information
without the figures. However the most informations of the problems in Wasan
geometry are given by the figures, thereby the body texts play only subsidiary
roles. The next sangaku problem is stated in such a way [2]:
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Problem 2.3. There are a large circle of radius s and two small circles of radius
r in a square as in Figure 6. Show s = 9r.

We show that the problem is incorrect by the next proposition.

Proposition 2.1. Assume that an external common tangent of two circles of
radii r and s touches the circles at points P and Q. Then the two circles touch
externally if and only if |PQ| = 2

√
rs. In this event, the internal common tangent

of the two circles passes through the midpoint of PQ.

We have s = 2
√
rs+

√
2r + r by the proposition. Solving the equation for s,

we get s =
(
3 +

√
2 + 2

√
2 +

√
2
)
r ≈ 8.11r. Therefore the problem is incorrect.

We guess that the two small circles were described as in Figure 5 in the original
problem, however Figure 6 was used by transcription error. A general case of
Problems 2.1 and 2.2 was considered by Toyoyoshi (see Figure 7):

Problem 2.4 ([17]). Let δ be a circle of radius s with center C passing through
B for a square ABCD. Let γ1, γ2, · · · , γn be congruent circles of radius r lying
inside of the curvilinear triangle made by DA, AB and δ and touching DA such
that γ1 touches δ, γ1 and γ2 touch, γi (i = 3, 4, · · · , n) touches γi−1 at the farthest
point on γi−1 from the center of γi−2, and γn touches AB. Show r in terms of s
and n.

3. Generalized figure

We consider the figure of Problems 2.4 in a general way. For perpendicular lines
k and l intersecting in a point A, let δ1 and δ2 be circles of radii s1 and s2
(0 ≤ s2 ≤ s1), respectively, touching k and l from the same side. Let γ be a circle
of radius r touching δ1 and δ2 externally and k at a point K. We denote the figure
consisting of γ, δ1, δ2, k and l by T . Identifying similar figures, T is uniquely
determined by s1/s2. It is also uniquely determined by the real number

(1) n =
τ |AK|+ r

r
,

where τ = 1 if δ1 and K lies on the same side of l otherwise τ = −1 (see Figures 8
and 9). Then we explicitly denote the circle γ and the figure T by γ(n) and T (n),
respectively, The value n equals the ratio of the distance from l to the farthest
point on γ from l to the radius of γ. If γ touches k at A, we consider that δ2
degenerates to the point A and s2 = 0. The figure is denoted by T (1) (see Figure
10). We also consider the case in which γ degenerates to a point K 6= A on k.
In this case we consider that δ1 and δ2 coincide and touch k at K (see Figure
11). However there is no real number satisfying (1) in this case. Therefore we
introduce a new symbols 0, and denote the point circle K and the figure T by
γ(0) and T (0), respectively. In T (0), δ1 and δ2 coincide and γ is the reflection
of δ1 in l (see Figure 12). Notice that δ1 and δ2 coincide if and only if n = 0 or
n = 0.



4 Haga’s theorems in paper folding and related theorems in Wasan geometry Part 2

A K

δ1

δ2

l

k

γ

Figure 8: τ = 1 (1 < n).
AK

δ1
δ2

l

k

γ

Figure 9: τ = −1 (0 < n < 1).
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Our definition of T (n) implies 0 ≤ n, and 1 < n or 0 < n < 1 according as
K and δ1 lie on the same side of l or not. If n/2 is a natural number, there are
circles γ1, γ2, · · · , γn/2 of radius r lying inside of the curvilinear triangle made by
k, l and δ1 and touching k such that l is the external common tangent of γ1 and
δ1, γ1 and γ2 touch, γi (i = 3, 4, · · · , n/2) touches γi−1 at the farthest point on
γi−1 from the center of γi−2, γn/2 = γ. This is the case considered by Toyoyoshi
stated as Problem 2.4. If we add the reflection of δ1 and γi (i = 1, 2, · · · , n/2)
in l and remove δ2 and l, the resulting figure is the configuration B(n) in [10].
Therefore T (n) is a generalization of B(n) in this sense. If n = 4, the circles γ1
and δ2 coincide (see Figure 36, where regard that δ1 = δ, k and l are the lines AB
and DA, respectively, and γ=γ(4) in the figure). The relation between s1 and r
in (i) in the next theorem gives a solution of Problem 2.4.

Theorem 3.1. The following statements are true for T (n).
(i) If n 6= 0,

√
s1 = (

√
n+ 1)

√
r and

√
s2 = |

√
n− 1|

√
r.

(ii) |AK| = √
s1s2.

(iii) 2
√
r =

√
s1 +

√
s2 if 0 ≤ n ≤ 1, and 2

√
r =

√
s1 −

√
s2 if 1 < n.

Proof. By Proposition 2.1 we have s1 = τ |AK| + 2
√
s1r = (n − 1)r + 2

√
s1r,

which yields
√
s1 = (

√
n + 1)

√
r. If n > 1, we have s2 = τ |AK| − 2

√
rs2 by

the same proposition, which yields s2 = (
√
n − 1)2r. If 0 ≤ n ≤ 1, we have

s2 = τ |AK| + 2
√
rs2, which also yields s2 = (

√
n − 1)2r. Therefore we have√

s2 = |
√
n−1|

√
r in any case. The part (ii) follows from (i), since |AK| = |n−1|r.

Eliminating n from the two equations in (i) we get (iii). □
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If n = 8, then δ1 and δ2 intersect and the maximal circle touching δ1 and δ2
from inside of them has radius r, which is obtained by translating γ3 parallel to l
through distance 4r (see Figure 13). Let Li be the point of tangency of δi and k.
If n = 9, then s1 = 4s2 = 16r by Theorem 3.1(i) and K is the midpoint of AL1

(see Figure 14). Problems considering this case with the circle δ2 can be found in
[18, 19], [22, 23] and [24]. However the circle δ2 seems to be ignored for T (n) in
most cases except this case in Wasan geometry.
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Figure 15: T (n), (0 < n < 1).
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Figure 16: T (n), (1 < n).

Let Ei be the point of intersection of k and the internal common tangent of δi
and γ for T , if δi and γ are proper circles (see Figures 15 and 16). Notice that Ei

is the midpoint of the segment KLi. If γ = γ(0), then K = L1 = L2. Therefore
we can consider that the point Ei coincides with Li in this case. Hence we define
E1 = E2 = L1 for T (0) (see Figure 17). Similarly we define E2 = L2 = A for T (1)
(see Figure 18).
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Theorem 3.2. If n 6= 0, then T = T (n) if and only if the following relation
holds:

(2) |AEi| =
√
n|EiLi| for i = 1, 2.

Proof. Let n 6= 0. We assume T = T (n). Then (2) holds if n = 0 since Ei = A.
Also (2) holds if n = 1. Let n 6= 0, 1. Since Ei is the midpoint of the segment
LiK, |E1L1| =

√
s1r = (

√
n+1)r and |E2L2| =

√
s2r = |

√
n− 1|r by Proposition

2.1 and Theorem 3.1(i). On the other hand,

|AE1| = s1 − |E1L1| = (
√
n+ 1)2r − (

√
n+ 1)r =

√
n(
√
n+ 1)r =

√
n|E1L1|.

Therefore we get (2) for i = 1. If 0 < n < 1, the internal common tangent of γ and
δ2 is obtained by rotating l about the center of δ2 so that the point of intersection
of the image of l and k moves from A to K (see Figure 15). Therefore E2 lies
between A and K in this case. Also E2 lies between A and K in the case 1 < n.
Therefore in any case, we get

|AE2| = |AK| − |L2K|
2

= |n− 1|r−
√
s2r = |n− 1|r− |

√
n− 1|r =

√
n|
√
n− 1|r.

Hence we also get (2) for i = 2. Therefore T = T (n) implies (2).

Conversely we assume (2) and T = T (m) for a real number m. If |E1L1| = 0,
then |AE1| = 0 by (2), i.e., L1 = E1 = A, a contradiction. Hence |E1L1| 6= 0.
With this fact and |AE1| =

√
m|E1L1| as proved just above, we get

√
n|E1L1| =√

m|E1L1|. Therefore m = n, i.e., T = T (n).

□

4. Another touching circle

There are two circles touching the circles δ1 and δ2 externally and k in general for
the figure T . However we have considered only one circle in the previous section.
In this section we consider the figure together with the remaining touching circle.
Let γi = γ(ni) (i = 1, 2) be the circle of radius ri such that 0 < r2 ≤ r1 touching δ1
and δ2 externally and k from the same side as δ1. We denote the figure consisting
of γi, δi, k and l by U .

Theorem 4.1. The following relations hold for U :

(3) n1 =
1

n2

=
r2
r1
.
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Proof. Since 0 ≤ n1 ≤ 1 and 1 ≤ n2,
√
s1 and

√
s2 equal (

√
n1 + 1)

√
r1 =

(
√
n2+1)

√
r2 and (1−√

n1)
√
r1 = (

√
n2−1)

√
r2, respectively by Theorem 3.1(i).

Solving the two equations for n1 and n2, we get n1 = r2/r1 and n2 = r1/r2. □

l

A

δ2

δ1

γ(n−1)=γ1
γ2=γ(n)

K1 K2E12 E11 E22 E21 L1L2

k

Figure 19: U(n) (n = 16).

We now explicitly denote the figure U by U(n) if γ2 = γ(n), or equivalently
γ1 = γ(n−1), which coincides with T (n) ∪ T (n−1) for a real number n ≥ 1 (see
Figure 19). We also denote the figure T (0)∪T (0) by U(0) (see Figure 20). Notice
that n = 0 or 1 ≤ n by the definition for U(n). The point of tangency of γi and
k is denoted by Ki. Let tij be the internal common tangent of the proper circles
γi and δj. The point of intersection of tij and k is denoted by Eij. We also define
E2i = L1 for U(0) (see Figure 20), and Ei2 = A for U(1) (see Figure 21). The
next theorem follows from Theorem 3.2.
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K1
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Figure 20: U(0).
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Figure 21: U(1).

Theorem 4.2. If n 6= 0, the following statements are equivalent.

(i) U = U(n). (ii)
|AE2i|√

n
= |E2iLi|. (iii) |AE1i| =

|E1iLi|√
n

.

Theorem 4.3. The following relations hold for U(n).
(i) |AK1| = |AK2|.

(ii)
√
r1 =

√
s1 +

√
s2

2
and

√
r2 =

√
s1 −

√
s2

2
.
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(iii)
√
s1 =

√
r1 +

√
r2 and

√
s2 =

√
r1 −

√
r2.

(iv) |AE1i| = |E2iLi| and |AE2i| = |E1iLi|.

Proof. The part (i) follows from Theorem 3.1(ii). The part (ii) holds by Theorem
3.1(iii). The part (iii) follows from (ii). By Theorem 4.2, we have |AE1i| =
|E1iLi|/

√
n =

√
r1si/

√
n =

√
nr2si/

√
n =

√
r2si = |E2iLi|. The rest of (iv) is

proved similarly. □
Theorem 4.4. The radical axis of the circles γ1 and γ2 passes through the point
A and the farthest point on δi from k for the figure U .

Proof. We use a rectangular coordinate system with origin A such that B has
coordinates (s, 0). Then the circles γ1 and γ2 are expressed by the equations
c1 = (x + |AK1|))2 + (y − r1)

2 − r21 and c2 = (x − |AK2|))2 + (y − r2)
2 − r22,

respectively. This implies c1 − c2 = 2
√
s1s2(2x − y) by Theorem 3.1(ii) and

Theorem 4.3(i). Therefore the radical has an equation y = 2x. □

5. Special cases, golden mean and silver mean

In this section we consider special cases for the figure U(n), and show unexpected
facts that the golden mean and the silver mean appear when certain circles of
U(n) touch.

5.1. Golden mean. Two quantities are said to be in the golden mean or in the
golden ratio if the ratio of those quantities equals 1 : ϕ, where ϕ = (1 +

√
5)/2.

The next theorem shows that the golden mean appears if the circles γ1 and γ2
touch for U(n) (see Figure 22). Let Ii be the farthest point on γi from k.

L1AE12 E11 E21

θ
K1 K2

l
t22

t21

L2 E22 k

δ1δ2

γ1

γ2

T

t11t12

I1

I2

H1

H2

Figure 22: U(ϕ2).

Theorem 5.1. The following statements are equivalent for U(n).
(i) The circles γ1 and γ2 touch. (ii)

√
n = ϕ.

(iii) |AE2i| = ϕ|E2iLi|. (iv) |AE1i| = ϕ−1|E1iLi|.
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(v) The line t1i (resp. t2i) passes through the point I2 (resp. I1).
(vi) There is a similar transformation f such that f(γ1) = δ1 and f(δ2) = γ2.

Proof. The statement (i) is equivalent to |K1K2| = 2
√
r1r2 by Proposition 2.1,

while |K1K2| = 2
√
r1s2+2

√
r2s2. Therefore (i) is equivalent to 2

√
r1s2+2

√
r2s2 =

2
√
r1r2. While by Theorem 4.3(iii) and r2 = r1/n, we have

2
√
r1s2 + 2

√
r2s2 − 2

√
r1r2 = 2(

√
n− ϕ)(

√
n+ ϕ−1)r2.

Therefore (i) and (ii) are equivalent. The equivalence of (ii), (iii) and (iv) follows
from Theorem 4.2.

We prove the equivalence of (ii) and (v). Let T be the point of tangency of
γ2 and δ1. Let 2θ = ∠TE21A. Then (v) is equivalent to tan 2θ = tan∠I1E21A.

While tan θ = r2/|E21K2| = r2/
√
r2s1 =

√
r2/s1 by Proposition 2.1. Therefore

(4) tan 2θ =
2
√
r2s1

s1 − r2
=

2(
√
n+ 1)

n+ 2
√
n

.

While by Proposition 2.1, Theorem 4.3(iii) and r1 = nr2, we also have

tan∠I1E21A =
2r1

|K1L1| − |E21L1|
=

2r1
2
√
r1s1 −

√
r2s1

=
2n

2n+
√
n− 1

.

Therefore

tan 2θ − tan∠I1E1A = − 2(n− ϕ2)(n− ϕ−2)

(n+ 2
√
n)(2n+

√
n− 1)

.

The last equation shows that (ii) is equivalent to that the line ti1 passes through
the point I1 for i = 2, since 1 < n. The case i = 1 is proved similarly. The
equivalence of (ii) and the rest of (v) are proved in a similar way. The part (vi)
is equivalent to (ii) since

s1
r1

− r2
s2

=
(n− ϕ2)(n− ϕ−2)

n(
√
n− 1)2

.

□

We assume (i). Then t11 and t22 are parallel, since (v) holds. While |AE11| −
|K1E22| = (

√
r1s1 − |AK1|)− (|AK1|+ s2 +

√
r2s2) = 0, i.e., |AE11| = |K1E22| by

Theorem 3.1(ii) and Theorem 4.3(iii). Therefore if Hi is the point of intersection
of the lines tii and l, then H1I1E22E11 is a parallelogram. Similarly I2H2E22E11

is a parallelogram. Since s1/r1 = r2/s2 is equivalent to s1/r2 = r1/s2, there is
a similar transformation g such that g(s1) = r2 and g(r1) = s2 since (vi) holds.
Therefore the internal common tangent of δ1 and γ2 and the internal common
tangent of γ1 and δ2 are symmetric about the perpendicular from their point of
intersection to k. The internal common tangent of γ1 and γ2 passes through the
point A by Proposition 2.1 and Theorem 4.3(i).

5.2. Silver mean. Two quantities are said to be in the silver mean or the silver
ratio if the ratio of those quantities equals 1 : ρ, where ρ = 1+

√
2. Let Ji be the

farthest point on δi from k. The next theorem shows that the silver mean appears
when the circles δ1 and δ2 touch (see Figure 23).
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k
A

δ1

δ2

l

t11 t12 t22

t21

γ1

γ2
L1L2E12

E11=E22

E21
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Figure 23: U(ρ2).

Theorem 5.2. The following statements are equivalent for U(n).
(i) The circles δ1 and δ2 touch. (ii)

√
s1 = ρ

√
s2.

(iii)
√
n = ρ. (iv) |AE2i| = ρ|E2iLi|.

(v) |AE1i| = ρ−1|E1iLi|. (vi) The points E11 and E22 coincide.
(vii) The line ti1 (resp. ti2) passes through the point J2 (resp. J1).
(viii) There is a similar transformation f such that f(γ1) = δ1 and f(γ2) = δ2.

Proof. The statement (i) is equivalent to that δ2 is the incircle of the curvilinear
triangle made by δ1, k and l, which is equivalent to |L1A| = 2

√
s1s2 + s2 = s1.

While by Theorem 4.3(iii) and r2 = r1/n, we have

2
√
s1s2 + s2 − s1 = (ρ

√
s2 −

√
s1)(ρ

−1√s2 +
√
s1) = 2(

√
n− ρ)(

√
n+ ρ−1)r2.

Therefore (i), (ii), (iii) are equivalent. The equivalence of (iii) (iv) and (v) follows
from Theorem 4.2. Since |AE22| = |AL2| + |L2E22| = s2 +

√
r2s2 and |AE11| =

|AL1| − |L1E11| = s1 −
√
r1s1, we get

|AE22| − |AE11| = (
√
n− ρ)(

√
n+ ρ−1)r2.

Hence (iii) and (vi) are equivalent. We prove the equivalence of (iii) and (vii).
Let T be the point of tangency of γ2 and δ1 and 2θ = ∠TE21A. Then (4) holds.
While we have

tan∠JE21A =
2s2

|L2K2|+ |K2E21|
=

2s2
2
√
r2s2 +

√
r2s1

=
2(
√
n− 1)2

3
√
n− 1

.

Therefore

tan 2θ − tan JE1A =
−2(n− ρ2)(n− ρ−2)√
n(3

√
n− 1)(

√
n+ 2)

.

Therefore (iii) is equivalent to that ti1 passes through the farthest point on δ2 from
k for i = 2, since 1 < n. The case i = 1 can be proved similarly. The equivalence
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of (iii) and the rest of (vii) is proved in a similar way. The equivalence of (iii) and
(viii)follows from

s1
r1

− s2
r2

= −(n+ 1)(
√
n− ρ)(

√
n+ ρ−1)

n
.

□

For the figure U(ρ2), the equivalence of (iii) and (viii) shows that t11 and t22
are symmetric about the perpendicular to k at the point E11 = E22. Also Theorem
4.1 and Theorem 4.3(iii) shows

√
s1 =

√
r1 +

√
r2 =

√
r1(1 + 1/ρ) =

√
2r1. Hence

we have s1 = 2r1. This also implies s2 = 2r2 by (viii).

5.3. Steiner chain. We consider the case in which there is a circle touching γi
and δi externally for U(n) (see Figure 24). In this case γ1, δ1, γ2, δ2 form a Steiner
chain touching this circle and k. It was known that if Ci (i = 1, 2, 3, 4) form a
Steiner chain and vi is the curvature of Ci, then v1+v3 = v2+v4 holds [21]. While

1

r1
+

1

r2
− 1

s1
− 1

s2
=

(n+ 1)(n− (2 +
√
3))(n− (2−

√
3))

(n− 1)2r1

by Theorem 4.3(iii) and r1 = nr2. Therefore we get n = 2+
√
3 in this case. Let ε

and e be the circle touching γi and δi and its radius. Considering another Steiner
chain touching ε and k symmetric about the perpendicular from the center of ε
to k, we see that the distance from the center of ε to k equals 3e. Since γ1, ε, γ2
and k also form a Steiner chain touching δ1 and δ2, we have

1

e
=

1

r1
+

1

r2
=

1

s1
+

1

s2
.

A

l

δ2
γ1

γ2
δ1

k

ε

Figure 24: U(2 +
√
3).

6. The case n = 0, 0 with division by zero

From now on we assume that the symbol 0 has value 0, i.e., 0 = 0 as a number,
though 0 and 0 are different as symbols. From now on we also assume the definition
of the division by zero in [7]:

(5)
n

0
= 0 for any real number n.

Notice that reduction for fractions of zero denominator can not be done with this
definition, i.e., c = 0 implies

ac

bc
6= a

b
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in general. For the left side always equals 0/0 = 0 6= a/b by (5).

We consider Theorem 3.2 in the case n = 0. By the definition of the value of
0, (2) does not hold if n = 0, since |EiLi| = 0 and |AEi| 6= 0 for T (0). But if we
state the relation in the following form, it still holds in the case n = 0 since both
sides equal 0:

(6)
|AEi|√

n
= |EiLi| for i = 1, 2.

Conversely, if (6) holds for n = 0, then we get |EiLi| = 0, i.e., Ei = Li. Hence we
get T = T (0).

If U = U(0), then n1 = 0, n2 = 0 and r2 = 0. Hence Theorem 4.1 holds in
this case. Theorem 4.2 also holds in the case n = 0, since U = U(0) is equivalent
to |E2iLi| = |AE1i| = 0.

7. Parametric representation of the generalized Haga’s fold

We now consider Haga’s fold considered in [9, 13]. Let ABCD be a square. For a
point E on the line DA, let m be the perpendicular bisector of the segment CE.
The figure consisting of ABCD and the reflection of ABCD in the line m is called
the figure made by the generalized Haga’s fold determined by E or simply called
the figure determined by E and denoted by H(E). We call m the crease line of
H(E). In this figure the reflections of A B and D in m are not so important
and we do not refer to them in most cases. Identifying similar figures, H(E) is
determined uniquely by the square ABCD and the point E. Ordinary Haga’s fold
is obtained if E lies betweenD and A (see Figures 27 and 28). Let δ be the circle of
radius s = |AB| and center C. In this section we give a parametric representation
of H(E) using circles touching the line AB and the circle δ externally.

7.1. Parametric representation. Let T be the point of tangency of δ and the
remaining tangent of δ from E for H(E). Let γ be the circle touching δ externally
at T and the line AB. Then γ 7−→ H(E) is a bijection from the set of the circles
touching δ externally and the line AB from the same side as δ to the set of the
figures determined by E, where we consider that the point B is a member of the
former set as a point circle, which corresponds to the figure made by E in the
case E = B (see Figure 30).

For two points P and Q on the line AB, P < Q denotes that
−→
PQ has the

same direction as
−→
AB, and P ≤ Q denotes P < Q or P = Q. Let K be the point

of tangency of γ and the line AB and let r be the radius of γ. We define

(7) n =
σ(τ |AK|+ r)

r
,

where σ = 1 if T lies inside of ABCD or on the perimeter of ABCD otherwise
σ = −1 and τ = 1 if A ≤ K otherwise τ = −1. If E = B, the points K and T
coincide with D (see Figure 30). In this case we use the symbol 0, and consider
n = 0. We now explicitly denote the circle γ by γ(n). The point circle B is also
denoted by γ

(
0
)
. Now any circle touching δ externally and the line DA can be

expressed by γ(n) for a real number n together with 0, and we also explicitly
denote the figure H(E) by H(n)*1.

*1H
(
0
)
is denoted by H(∞) in [9]
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7.2. Seven cases. We consider the value of n for H(n) as a function of the point

E, which moves on the line AB with moving direction same as to
−→
AB. In this

case T moves on δ counterclockwise. Let M be the midpoint of AB, and let F be
the point of intersection of the line DA and the reflection of the line CD in m if
they meet. We consider the following seven cases:

1. E < A (see Figure 25). 2. E = A (see Figure 26).
3. A < E < M (see Figure 27). 4. E = M (see Figure 28).
5. M < E < B (see Figure 29). 6. E = B (see Figure 30).
7. B < E (see Figure 31).

Assume E < A (see Figure 25). Then σ = τ = −1. Hence we have

(8) n =
−(−|AK|+ r)

r
=

|BK| − |AB| − r

r
=

2
√
sr − s− r

r
= −

(√
s

r
− 1

)2

.

While s < r, i.e., 0 <
√

s/r < 1. Therefore we get −1 < n < 0 and n increases
and approaches to 0 when E approaches to A. If E = A, then n = 0 (see Figure
26).

A B

C
D

F

EK

γ(n)

δ

T

m

Figure 25: −1 < n < 0, E < A.

A=E B

CD=T=F

m
γ(0) δ

K

Figure 26: H(0), E = A.

A EK

δ

B

CD

F

T

γ(n)

M

m

Figure 27: 0 < n < 1, A < E < M .

A=K B

CD

δ

T

F

E=M

γ(1)

m

Figure 28: H(1), E = M .

If E = M , we get n = 1 by Theorem 3.2 (see Figure 28). Therefore |AK| = 0,
i.e., K = A in this case. Also we get s = 4r by Theorem 4.3(iii). Assume
A < E < M . Then σ = 1 and τ = −1 (see Figure 27). Hence

n =
−|AK|+ r

r
=

|AB| − |BK|+ r

r
=

s− 2
√
sr + r

r
=

(√
s

r
− 1

)2

.
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While s/4 < r < s, i.e., 1 <
√

s/r < 2. Therefore we get 0 < n < 1 and n
increases and approaches to 1 when E approaches to M .

If M < E < B (see Figure 29), then σ = τ = 1. Hence

n =
|AK|+ r

r
=

|AB| − |BK|+ r

r
=

s− 2
√
sr + r

r
=

(√
s

r
− 1

)2

.

While r < s/4, i.e., 2 <
√

s/r. Therefore 1 < n, and n increase without limit
when E approaches to B, since r approaches to 0. If E = B, r = 0 and H(E)
is denoted by H(0) (see Figure 30). While the denominator of the right side of
(7) equals 0, where recall the definition (5). Therefore the right side of (7) equals
0, which ensures consistency of our definition 0 6= 0 as symbols but 0 = 0 as
numbers. Also recall the remark after (5), i.e., (s − 2

√
sr + r)/r 6= (

√
s/r − 1)2

in this case.

γ(n)

A B

CD

F

δ

m

E

T

MK

Figure 29: 1 < n, M < E < B.

A=F E=T=K=B

CD

m

δ

γ(0)

Figure 30: H
(
0
)
, E = B.

A B

CD

δ

γ(n)
T

m

E K

Figure 31: −1 < n < 0, B < E.

Assume B < E (see Figure 31). Then σ = −1 and τ = 1. Hence

n =
−(|AK|+ r)

r
=

−|AB| − |BK| − r

r
=

−s− 2
√
sr − r

r
= −

(√
s

r
+ 1

)2

.

While 0 < r. Therefore n decreases without limit when E approaches to B, since
r approaches to 0. Contrarily n increases and approaches to −1 when E moves
away from B, since r increases without limit. Therefore n < −1 in this case.

We summarize the results in Table 1. The positively sloped arrows mean that
n is a monotonically increasing function of E when E moves on the line AB with

moving direction same as to
−→
AB.
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case E<A E=A A<E<B E=B E<B
n −1<n<0 0 0<n 0 n<−1

↗ ↗ ↗
Table 1.

Table 1 shows that n 6= −1 for H(n), while the remaining tangent of the circle
δ parallel to DA is not a member of the set of circles touching the line DA and δ
externally. Therefore the fact suggests us to describe the tangent by γ(−1).

7.3. The case m passing through inside of ABCD. We consider the case in
which the line m passes through inside of ABCD. In this case we can really fold
the square ABCD with the real crease line m (see Figures from 25 to 31). Firstly
we consider the case E < A. Let I be the point on the lineDA such that I < A and
|AI| =

√
2s. Thenm passes through A if and only if E = I (see Figure 32). In this

case |AK| = |IK|+|AI| = |BK|−|AB| holds. Hence we get
√
rs+

√
2s = 2

√
rs−s,

which implies
√

s/r = 3 − 2
√
2, i.e., n = −4(3 − 2

√
2) = −0.6862 · · · by (8).

Therefore m does not pass through inside of ABCD if E ≤ I, and passes through
inside of ABCD if I < E < A, which is equivalent to −4(3− 2

√
2) < n < 0.

T

A B

CD

K E=I

δ

γ(−4(3− 2
√
2))

m

Figure 32: H(−4(3− 2
√
2)).

A B

D

δ

T

γ(−4)
m

C

J=E K

Figure 33: H(−4).

If A ≤ E ≤ B, m passes through inside of ABCD (see Figures from 26 to
30). Therefore m passes through inside of ABCD if 0 ≤ n. We consider the case
B < E. Let J be the reflection of A in BC (see Figure 33). It is obvious that m
passes through B if E = J and n = −4 in this case. Therefore m passes through
inside of ABCD if and only if n < −4. Hence we get the next theorem.
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Theorem 7.1. For the figure H(E), the line m passes through A (resp. B) if
and only if E = I (resp. E = J), which is equivalent to n = −4(3− 2

√
2) (resp.

n = −4). Also m passes through inside of ABCD if and only if I < E < J , which
is equivalent to −4(3− 2

√
2) < n or n < −4.

8. Inverse of generalized Haga’s fold

Let H(Ei) = H(ni) (i = 1, 2) for a point Ei on the line DA and a real number
ni. Then H(E1) and H(E2) are said to be inverses to each other if and only if
n1 = 1/n2, which is equivalent to n1n2 = 1 or {n1, n2} = {0, 0} by (5). In this
section we consider two figures H(E1) and H(E2) which are inverses to each other.

A B=L1L2

CD

δ1

E11 E21

t11

t21

δ2

γ(n)=γ2
γ(n−1)=γ1

k

l

Figure 34: H(E11) = H(n−1) and H(E21) = H(n) for 1 < n.

We show that any pair of figures made by generalized Haga’s fold inverses to
each other are derived from the figure U(n) considered in section 4, where recall
that n = 0 or 1 ≤ n for U(n). Let us define the square ABCD for U(n) so that
B = L1, C is the center of the circle δ1, D is the point of tangency of δ1 and the
line l. Then H(E11) = H(n−1) and H(E21) = H(n) if n 6= 0 (see Figure 34). If
n = 0, we get H(E11) = H(0) and H(E21) = H(0) (see Figures 20, 26 and 30).
Assume n 6= 0. If we consider the square ABCD for U(n) such that B = L2, C is
the center of δ2, D is the point of tangency of δ2 and l, then H(E12) = H(−n−1)
and H(E22) = H(−n) (see Figure 35).

Since t11 is the radical axis of γ1 and δ1, it passes through the radical center
of γ1, γ2 and δ1. Similarly t21 passes through the radical center of γ1, γ2 and δ1.
Therefore the point of intersection of t11 and t21 passes through the radical center
of the three circles, i.e., it lies on the line passing through A and the midpoint of
CD by Theorem 4.4. Similarly the point of intersection of t12 and t22 meet in a
point on the same line.
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A B
L2

CD
γ(n−1)=γ1

γ(n)=γ2
δ1

δ2

t12

E12 E22 k

l

t22

L1

Figure 35: H(E12) = H(−n−1) and H(E22) = H(−n) for 1 < n.

Theorem 8.1. The following statements are equivalent for H(E1) and H(E2).
(i) The figures H(E1) and H(E2) are inverses to each other.
(ii) The points E1 and E2 are symmetric about the perpendicular bisector of AB.
(iii) E1 and E2 coincide with the midpoint of AB, or E1 6= E2 and the crease lines
of H(E1) and H(E2) meet in a point on the perpendicular bisector of AB.

Proof. Theorem 4.3(iv) shows that the points E1i and E2i are symmetric about the
perpendicular bisector of ALi for the figure U . Hence (i) implies (ii). Assume (ii)
holds. If H(E ′) is the inverse of H(E1), then E1 and E ′ are symmetric about the
perpendicular bisector of AB as just proved. Hence E2 = E ′, i.e., H(E2) = H(E ′).
Hence (i) holds. Therefore (i) and (ii) are equivalent. If E1 and E2 coincide with
the midpoint of AB, then (ii) and (iii) are obviously equivalent. Let us assume
E1 6= E2. We use a rectangular coordinate system such that the points A and B
have coordinates (−s/2, 0) and (s/2, 0), respectively. Let (ei, 0) be the coordinates
of Ei. Then the line mi has an equation (−2ei + s)x + 2sy + (e2i − 5s2/4) = 0.
Therefore the two lines meet in the point of coordinates(

e1 + e2
2

,
−2(e1 + e2) + 4e1e2/s+ 5s

8

)
.

Hence (ii) and (iii) are equivalent. □

9. Haga’s theorems

In this section we consider Haga’s theorems in origamics [6]. Firstly we consider
special cases for the figures H(n) in the case A < E < B, which were often
considered in Wasan geometry and are closely related to Haga’s theorems. Recall
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that F is the point of intersection of the line DA and the reflection of the line
CD in m if they meet. If E is the midpoint of AB, F divides DA in the ratio
1 : 2 internally [9, Theorem 3.1] (see Figure 28). The fact is called Haga’s first
theorem [6]. While Theorem 3.2 shows that this happens if n = 1. Therefore the
figure of Haga’s first theorem is obtained from H(1). We get s = 4r by Theorem
3.1(i) in this case. A problem considering this relation for H(1) can be found in
[5].

If F is the midpoint of DA, E divides AB in the ratio 2 : 1 internally [9,
Theorem 3.1] (see Figure 36). The fact is called Haga’s third theorem [6]. While
Theorem 3.2 shows that this happens if n = 4. Hence the figure of Haga’s third
theorem can be obtained from H(4). Therefore the circle touching γ = γ(4), AB
and DA from inside of ABCD is congruent to γ. Let δ2 be this circle and let K
be the point of tangency of γ and AB. Since E is the midpoint of the segment
BK by Proposition 2.1, E and K are the points of trisection of the side AB.
The remaining circle touching the line AB and δ and δ2 externally is γ(1/4). The
relation (2) shows that K coincides with the point of intersection of AB and the
internal common tangent of γ(1/4) and δ. It seems that the case n = 4 is most
frequently considered for H(n) in Wasan geometry as we have shown in section 2.

A B

CD

E

F

δ
γ(4)γ(1/4) δ2

K

Figure 36: H(4) with γ(1/4).

We have generalized Haga’s theorems in [9], which we restate here in terms of
H(n). Notice that the theorem holds for H(0) and H(0) by (5).

Theorem 9.1. The following relations hold for H(n).

|AF |
|DF |

= 2
|BE|
|AE|

=
2√
|n|

.

Proof. The first half of the equations is Theorem 3.1 of [9]. The last half of the
equations follows from Theorem 3.2. □

10. Conclusion

We argued the merit of considering circles in the geometry of origami in [11, 12].
In these two-part papers we have shown several examples to verify the validity
of our assertion. The circles we have considered are tangent circles except the
circumcircle of a triangle considered in the first part of the papers. In this sense
we may say that many parts of the geometry of origami belong to the geometry
of tangent circles. In particular, the incircle and the excircles of a right triangle
or circles touching two perpendicular lines play important roles in the geometry
of origami using a square piece of paper as shown in the both parts of the papers.
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