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David Hilbert derived a different metric for the same manifold described by Schwarzschild’s metric.
The geodesic in Hilbert’s manifold is a curve in Newton’s manifold with radial acceleration similar to
Newton’s gravity. The similarity exists only if time is excluded from Hilbert’s metric of Schwarzschild
manifold.

I. INTRODUCTION

In 1916, Karl Schwarzschild published a paper[1,2],
”ber das Gravitationsfeld eines Massenpunktes nach der
Einsteinschen Theorie” in response to Albert Einstein’s
paper[3], ”Erklrung Perihelbewegung des Merkur aus”.
The response presented an exact solution in comparison
with Einstein’s approximation solution. Schwarzschild
considered the exact solution far superior to Einstein’s
approximation by stating:
”It is always pleasant to have strict, simple form solu-

tions. It is more important that the calculation also gives
the unambiguous certainty of the solution, about which
Mr. Einstein’s treatment still left doubts, and which,
according to the way in which it appears below, could
hardly be proved by such an approximation procedure.”.
The solution is a metric for an isotropic manifold with

a static mass at the origin.

ds2 = (1−
α

R
)dt2 −

dR2

1− α
R

−R2(dθ2 + sin(θ)2dφ2) (1)

R = (r3 + α3)1/3 (2)

Schwarzschild’s metric describes how a massless point
should propagate through an empty space. With the
exact solution, the path coincides with the geodesic for a
manifold of isotropic symmetry. The straight geodesic in
Schwarzschild manifold is a curve in Minkowski manifold.
By using the same coordinate system in both manifolds,
the acceleration along the curve is found to be similar to
Newton’s gravity under certain conditions.
David Hilbert derived a different metric[4] based on

Schwarzschild’s metric. The time coordinate is removed
from the metric. To retain 4 dimensions for the manifold,
an unknown coordinate is added to the metric. Hilbert’s
metric is actually a generalized version of Schwarzschild’s
metric without the restriction that the metric becomes
Minkowski metric at the infinite radial distance.
However, the metric describes the geodesic for massless

point. The presence of extra mass destroys the isotropic
symmetry. Nevertheless, Hilbert’s metric still resembles
Newton’s gravity in the radial geodesic of a positive line
element under one condition: the line element is the
elapsed time.

II. PROOF

A. Hilbert’s Derivation

David Hilbert derived Schwarzschild’s metric from the
lagrangian K

√
g. The hypotheses on the gµν are the

following:
1. The interval is referred to a Gaussian coordinate

system - however g44 will still be left arbitrary; i.e. it is

g14 = 0 = g24 = 0 = g34 (3)

2. The gµν are independent of the time coordinate x4.
3. The gravitation gµν has central symmetry with re-

spect to the origin of the coordinates.
Hilbert avoided Schwarzschild’s fourth condition that

the metric becomes Minkowski metric at infinite distance.
By replacing dt with dl, Hilbert disagreed with

Schwarzschild that time is needed in the metric.

F (r)dr2 +G(r)(dθ2 + sin2θdφ2) +H(r)dl2 (4)

Hilbert stated: ”If we substitute r∗ for r and then drop
the symbol *, it results the expression”

M(r)dr2 + r2dθ2 + r2sin2θdφ2 +W (r)dl2 (5)

and remarked: ”To this end the known expressions Kµν ,
K, given in my first communication, shall be calculated
by comparing the differential equations of the geodesic
line with variation of the integral

∫

(M(
dr

dp
)2+r2(

dθ

dp
)2+r2sin2θ(

dφ

dp
)2+W (

dl

dp
)2)dp (6)

d2ws

dp2
+
∑

µν

{µν

s

}d2wµ

dp2
d2wν

dp2
= 0 (7)

From equations (6,7), Hilbert determined Kss as

K11 =
1

2

W ′′

W
+

1

4

W ′2

W 2
−

M ′

rM
−

1

4

M ′W ′

MW
(8)

K22 = −1−
1

2

rM ′

M2
+

1

M
+

1

2

rW ′

MW
(9)
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K33 = sin2θ(−1−
1

2

rM ′

M2
+

1

M
+

1

2

rW ′

MW
) (10)

K44 =
1

2

W ′′

M
−

1

4

M ′W ′

M2
+

1

4

W ′2

MW
+

W ′

rM
(11)

Calculated the Ricci scalar K and the determinant g.

K =
4

∑

s=1

gssKss (12)

g = grrgθθgφφgll (13)

for lagrangian K
√
g

= ((
r2W ′

√

MW
)′−2

rM ′
√

W

M
3

2

−2
√

MW +2

√

W

M
)sinθ (14)

and remarked: ”if we set”

M =
r

r −m
(15)

W = w2
r −m

r
(16)

”where henceforth m and w become the unknown func-
tions of r, we eventually obtain”

K
√
g = ((

r2W ′

√

MW
)′ − 2wm′)sinθ (17)

”the variation of the integral of K
√
g is equivalent to”

∫

wm′dr (18)

”and leads to the Lagrange equations”

m′ = 0 (19)

w′ = 0 (20)

By setting w = 1, Hilbert remarked: ”a choice that
evidently does not entail any essential restriction” and
derived the the interval in the form of

G(dr, dθ, dφ, dl) (21)

=
r

r −m
dr2 + r2dθ2 + r2sin2θdφ2

−

r −m

r
dl2 (22)

Hilbert was not satisfied with the singularity in this
interval. He remarked: ”Although in my opinion only
regular solutions of the fundamental equations of physics
immediately represent the reality, nevertheless just the
solutions with non regular points are an important math-
ematical tool for approximating characteristic regular so-
lutions.”

B. Generalized Hilbert Metric

It is not necessary to change the parameter from M to
m in equation (15). The lagrangian in equation (14) can
be formulated as

K
√
g = ((

r2W ′

√

MW
)′ + f(M)

√

W )sinθ (23)

with

f(M) = (−
rM ′

M
−M + 1)

2
√

M
(24)

and reduced to an equivalent lagrangian L as

L = f(M)
√

W (25)

The Lagrange equation for W is

f(M)
∂
√

W

∂W
= 0 (26)

The Lagrange equation for M is

√

W
∂f

∂M
=

d

dr
(
√

W
∂f

∂M ′
) (27)

From equations (24,26), with Ka as integration constant.

M =
r

r +Ka
(28)

From equations (24,27), with Kb as integration constant.

W =
Kb

M
(29)

The interval from equations (5,28,29) is

ds2 =
r

r +Ka
dr2 + r2(dθ2 + sin2θdφ2) +Kb

r +Ka

r
dl2

(30)
r is not the original radial coordinate but is renamed

from r∗. r is an unspecified function of radial coordinate
and should be renamed as x(r).

ds2 =
x

x+Ka
dx2 + x2(dθ2 + sin2θdφ2) +Kb

x+Ka

x
dl2

(31)
Hilbert remarked that the interval would resemble

Schwarzschild’s by identifying dl with dt. Hilbert had
provided a general solution while Schwarzschild provided
a special solution with x as a function of r.

x = (r3 + α3)1/3 (32)

However, Hilbert’s metric is actually different from
Schwarzschild’s metric. x is an undefined function of r,
the actual radial coordinate. dl is not the elapsed time.
Time is not needed in Hilbert’s metric.
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C. Equatorial Geodesics

Schwarzschild applied the rotational symmetry to his
metric by setting

φ =
π

2
(33)

and remarked: ”If one also restricts himself to the motion
in the equatorial plane (θ = 90o,dθ = 0)”.
With the geodesic confined in equatorial plane, equa-

tion (31) is simplified as

ds2 =
x

x+Ka
dx2 + x2dφ2 +Kb

x+Ka

x
dl2 (34)

Define L as

L =
x

x+Ka
(
dx

ds
)2 + x2(

dφ

ds
)2 +Kb

x+Ka

x
(
dl

ds
)2 = 1

(35)
L is a valid lagrangian according to ”Formulation And

Validation Of First Order Lagrangian”[5].
The Lagrange equation for x is

2x(
dφ

ds
)2 −Kb

Ka

x2
(
dl

ds
)2 (36)

=
Ka

(x+Ka)2
(
dx

ds
)2 +

2x

x+Ka

d2x

ds2
(37)

The Lagrange equation for φ is

x2
dφ

ds
= const. = Kφ (38)

The Lagrange equation for l is

Kb
x+Ka

x

dl

ds
= const. = Kl (39)

From equations (35,38,39), the lagrangian is

L =
x

x+Ka
(
dx

ds
)2 +Kφ

dφ

ds
+Kl

dl

ds
= 1 (40)

x+Ka

x
(1−

K2

φ

x2
) =

K2

l

Kb
+ (

dx

ds
)2 (41)

From equations (36,37,38,39), the Lagrange equation for
x is

(x+Ka)
2K2

φ

x3
−

Ka

x+Ka
(
K2

l

Kb
+ (

dx

ds
)2) = 2x

d2x

ds2
(42)

From equations (41,42), the radial acceleration is

d2x

ds2
= −

Ka

2x2
+

K2

φ

x4
(x+

3

2
Ka) (43)

D. Newton’s Gravity

For the metric to describe gravitation, the radial
geodesic must represent Newton’s gravity if such geodesic
exists under the condition:

d2φ

ds2
= 0 =

dφ

ds
= 0 = Kφ (44)

From equations (43,44), the radial acceleration is

d2x

ds2
= −

Ka

2x2
(45)

ds becomes the elapsed time. dx can be set to dr since
x(r) is an undefined function of r. The constant Ka can
be determined from the mass at the origin according to
Newton’s gravity.

a = −

GM

r2
(46)

From equations (39,41), with Kφ = 0 = dφ,

(
dx

ds
)2 =

Ka

x
+ 1−

K2

l

Kb
(47)

The radial speed from equation (47) can be identified
with the energy equation in Newtonian mechanics.

v2 =
2GM

r
+

2E

m
(48)

In Schwarzschild metric, dl is the elapsed time. From
equation (35), with dφ = 0,

x

x+Ka
(
dx

ds
)2 +Kb

x+Ka

x
(
dl

ds
)2 = 1 (49)

From equations (39,49), with dl as elapsed time,

(
dx

dl
)2 = (

x+Ka

x
)3(

Kb

Kl
)2 −Kb(

x+Ka

x
)2 (50)

Differentiate with respect to l for the acceleration.

d2x

dl2
= −

Ka

2x2
(3(

x+Ka

x
)2(

Kb

Kl
)2 − 2Kb

x+Ka

x
) (51)

The acceleration is similar to Newton gravity only if
Ka

x approaches 0.

d2x

dl2
= −

Ka

2x2
(3(

Kb

Kl
)2 − 2Kb) (52)

Therefore, dl is not a good choice for the elapsed time.
ds is a better choice.
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E. Null Geodesics

For null geodesic, ds = 0. From equation (34), with
dφ = 0 for the radial geodesic.

x

x+Ka
(dx)2 +Kb

x+Ka

x
(dl)2 = 0 (53)

(
dx

dl
)2 = −Kb(1 +

Ka

x
)2 (54)

Differentiate with respect to l to get radial acceleration.

d2x

dl2
= Kb(1 +

Ka

x
)
Ka

x2
(55)

The acceleration is similar to Newton gravity only if
Ka

x approaches zero.
The acceleration with affine parameter, dn, as the

elapsed time can be obtained from equations (39,53),

x

x+Ka
(
dx

dn
)2 +

x

x+Ka

K2

l

Kb
= 0 (56)

(
dx

dn
)2 = −

K2

l

Kb
(57)

d2x

dn2
= 0 (58)

If null geodesic does represent the path of light, the
speed of light from equation (58) would remain constant
under the gravity from the mass at the origin. Einstein
had apparently chosen the wrong elapsed time.

F. Kepler’s Law

Another important test of Newton’s gravity is Kepler’s
third law which measures the gravity at a great distance.
From equation (38), with ds as the elapsed time,

dφ

ds
=

Kφ

x2
(59)

From equations (38,39), with dl as the elapsed time,

dφ

dl
=

x+Ka

x3
Kb

Kφ

Kl
(60)

The metric fails to describe Kepler’s third law with any
possible choice of the elapsed time.

III. CONCLUSION

Neither Hilbert’s metric nor Schwarzschild’s metric
represents Newton’s gravity. The manifold is not com-
patible with Kepler’s law for any possible circular orbit.
The acceleration is similar to Newton’s gravity only in
the radial geodesic with time coordinate excluded from
the metric.
The line element is proportional to the affine parameter

by a constant and is a good choice for the elapsed time
which is conserved in all reference frames[6,7,8].
Hilbert’s metric proves that the concept of space time

manifold is not feasible for the solar system. The time
coordinate is not needed. As Hilbert had stated, the
metric does not describe physical system but remains as
an interesting mathematical tool.
Furthermore, the metric requires all mass to be at the

origin. The presence of any mass outside the origin will
destroy the isotropic symmetry which the metric is based
on. The metric is not suitable for the solar system.
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