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Abstract
The concept of matter-antimatter repulsion (MAR) [1] suggest that the evolution of the cosmos consists
of an ongoing process of phase separation of matter and antimatter leading to ever-growing clusters of 
each type. To illustrate this process we have devised a lattice model in which densities of the two 
species are located at the points of a cubic lattice. The results are presented in two videos that show the 
time-evolution of the model. Final states are reasonably comparable with galaxy distributions in the 
Universe.

The Model
Our model is defined on a cubic lattice, with periodic boundary conditions of N steps in each 
dimension. On the lattice points we define a matter and an antimatter density m and a, each normalized 
to unit average per lattice point. Interaction of two unit densities at a distance x is via a Coulomb-type 
potential V(x) of the form

V x =
±1

1x2 , (1)

with + and – signs associated with matter and antimatter, respectively (see Fig. 1).

Time evolution occurs in steps, and a further ingredient of the model is the restriction, that density 
shifts for a single time step are restricted to nearest-neighbor bonds. Furthermore, density shifts during 
a single step are proportional to the actual density at a lattice point an take place away from the point 
and exclusively to neighbors of higher potential for matter density. Antimatter moves exclusively to 
lower-potential neighbors. The shift rate is proportional to the potential difference. This behavior 
corresponds to a diffusive type of dynamics, without inertial behavior.

Furthermore, an additional nearest-neighbor term is added of the form

sA−B=d A−d Bd Ad B  ,  (2)

which describes the shift of density d (m or a) from point A to point B. This term opposes concentration
of masses an is considered a description of the fact, that concentration goes along with increased 
kinetic energy. The relative strength of this term as compared to the forced shift is a parameter of the 
model, which we call R, to indicate a resistance to straight gravitational contraction.

Time evolution takes place in steps which consist of several parts:

1. Calculation of the potential at lattice points
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2. Calculation of density shifts along nearest-neighbor lattice bonds which are the only allowed 
shift geometries

Fig 1. Potential function V (eq. 1) of a unit mass vs. distance [lattice spacings]

Potential Calculation

It may be possible to preform an exact calculation of the potential in analogy to Madelung's evaluation 
of lattice energies for ionic crystals [2]. However, we are not aware of such a treatment, nor have we 
spent any effort in finding one. Thus, the potential is calculated approximately. For a point in the initial 
cube, contributions from densities on points in this cube are calculated exactly. This is the lowest level 
0.  Level 1, which is restricted to lattices of even size on each cell axis, takes, in addition, exact 
evaluations from points in a surrounding half-shell, while level 2 includes points from a full first shell, 
see Fig. 2. Contributions from cubes of farther shells are accounted for in dipole approximation by 
dipoles positioned at the centers of cubes up to the seventh shell. Farther away shells as well as 
contributions from higher multipoles are omitted. These approximations break the exact periodicity of 
the potentials and lead to small spurious effects, most pronounced neat the faces of the cube.

Fig 2. Cell (filled) and ranges of exact potential evaluation for Level 1 (inner 'square') and Level 2 
(outer 'square')



Evaluation of the potential requires the largest calculation effort because the number of function 
evaluations grows with the square of the number of lattice points and hence with the sixth power of the 
lattice size. In addition, level 1 and level 2 require 8 and 27 times more calculation time, respectively, 
than level 0.

Density Shifts

As mentioned, time evolution is calculated in steps of finite size in which density is shifted by finite 
amounts along lattice bonds. A fraction (proportional to the potential difference) of a density at a point 
is moved along those bonds for which an energy loss results. This forced shift corresponds to a 
movement caused by Newtons force. However, as mentioned, the character is of diffusive nature as 
may be appropriate for densities as opposed to mass points.

At first, the shifts along all bonds of each species are calculated, then a step size is determined, which 
multiplies these shifts such that no negative density values result. Step sizes, i.e. time intervals, 
decrease with increasing density variations.

Numerical Calculations
Systematic calculations were performed with a cubic unit cell of 24 lattice spacings and a level 1 
approximation, which led to a calculation time of some three minutes for a single potential evaluation. 
For a typical run some 1000 such evaluations were taken.

Each run starts from a random distribution of matter and antimatter. For systematic studies this initial 
random distribution was always the same, in order to eliminate possible influences of variations of the 
initial state.

Clearly, this finite-size model will eventually end in a situation with two blobs, one with matter one 
with antimatter, in a space-centered arrangement. For reasons of computation time this situation could 
only be reached for small model sizes (<16), one blob being positioned on a face of the model, the 
other on the four non-adjacent edges. This special arrangement must originate in the approximations of 
the potential evaluation. For an exact evaluation one would expect the two blobs in arbitrary position 
with a mutual space-centered arrangement.

Characterization of Density Distributions

For direct, illustrative, representations of a run several representations are possible. A dotted 
representation (starry night) attributes to each lattice cell a number of dots (different colors for matter 
and antimatter), proportional to the density of each species in that cell. Further representations use 
contouring of the density by various criteria. A useful choice is to fix the contour level such that the 
corresponding surface includes a given fraction of the total mass. A further choice is to select a level, 
such that the contour surface includes a constant fraction of the volume [2]. This latter choice may 
include large regions of low density.

Density distributions are advantageously described by power spectra of the Fourier components,  of 
wave number k in the Brillouin zone. As an illustration Fig. 3 shows such power spectra at different 
times for a typical run. As a function of the absolute value of the k-vector the randomized starting 
configuration yields the typical quadratic behavior at small k-values. As time goes on, high-frequency 
components disappear and low-frequency components start to grow. For zero resistance parameter R 
the spectrum keeps (decreasing) higher frequency components, corresponding to sharp density peaks. 
With increasing R the higher frequency components become less important as compared to the ever 



more strong lowest-frequency components. This indicates an increasingly smooth shape of the density 
clusters. As expected there is no significant difference in behavior of matter- and antimatter densities.

However, the best illustration is a presentation of the development of matter- and anti-matter densities 
as a function of time. The starting configuration is a random distribution of each type of matter. We 
have produces two corresponding videos which differ by the method of representation of the density. 
The first video [3] chooses in each cell element a set of points, randomly distributed, the number of 
which is proportional to the corresponding densities. The color of the points differ for the two densities.
This representation may be compare with a view to a starry night sky. The second video [4] utilizes 
contour representations, with the two types of contours chosen such that they contain half the amount 
of total matter of each type. The separation process is nicely illustrated. The late, separated states can 
quite plausibly be compared to distributions of galaxies in the actual Universe. The regions of visible 
galaxies must be identified with the regions of either type of density, while the the other type fills 
regions that must be identified with void-regions in the observed Universe.

Fig 3. Power spectra of the density of a simulation run of a 48-lattice model. The parameter R has a 
value of 8%. On the x-axis the absolute values of k-vectors are given in units of the largest possible 
value. black: initial random state, blue: at time 149 (in arbitrary units), red: at time 1998, green: at time 
2999. The decay of the random distribution happens on a time scale much shorter than the build up of 
large-scale structures by a factor of the order of the cell size (48). As time goes on the small-k peak 
keeps growing to very high values (not shown).
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