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Abstract

This work is based on the model published in viXra:1310.0189. Because the CMBR

follows the PLANCK's radiation rule more or less exactly, it should, because of the

indistinguishability of individual photons, apply to a whatever black emitter. Therefrom

arises the guess, that the existence of an upper cut-off frequency of the vacuum

could be the cause for the decrease in the upper frequency range. Since the lower-

frequent share of the curve correlates with the frequency response of an oscillating

circuit with the Q-factor 1/2, it is examined, whether it succeeds to approximate the

Planck curve by multiplication of the initial curve with the dynamic, time-dependent

frequency response of the above mentioned model. Reason of the time-dependence

is the expansion of the universe. Deutsche Version verfügbar in viXra "Ist der Verlauf

der Planckschen Strahlungsfunktion das Resultat der Existenz einer oberen

Grenzfrequenz des Vakuums".
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1. Fundamentals 
 
 
This article is based on a model I published in [1], the idea stems from Prof. Cornelius 

LANCZOS. It defines the expansion of the universe as a consequence of the existence of a 
metric wave-field. The time-function is based on the Hankel function, which consists of the 
sum of two Bessel functions (J0 and Y0) in turn. The particular qualities of the Bessel function 
lead to an increase of the wavelength, which is defined by the spacing between two zero-
transits. Thus, the model leads to a quantization of the universe into discrete line-elements 
with particular physical characteristics. An individual line-element can be described by the 
model of a loss-affected oscillatory circuit with shunt-resistor. A special quality of the model 
consists in the fact, that the Q-factor of this oscillatory circuit is equal to the phase-angle 2ω0t 
of the above-mentioned Bessel function. It applies Q0 = 2ω0t. The value ω0 corresponds to the 
PLANCK's frequency on this occasion. 

 
A special solution of the MAXWELL equations was found for the Hankel function with 

overlaid interference function, which describes the wave-propagation in the vacuum and co-
includes the expansion. This special solution owns an inherent propagation-velocity in 
reference to the empty space (subspace) which is almost zero to the current point of time. 
Main-idea of the model is, that this propagation-velocity adds up geometrically to the 
propagation-velocity of an overlaid wave, at which point the total-velocity always amounts to 
exactly c in reference to the subspace. Thus, the cosmologic red-shift exactly can be 
described. 

 
One conclusion from the model is the existence of an upper cut-off frequency of the 

vacuum, which could not be detected until now, because its value is about magnitudes greater 
than the technically feasible. Another conclusion of the model is the supposition that each 
photon is connected really or/and virtually with an origin at Q0 = 1/2 That is the frequency, at 
which the excessive energy after the shape of the metric wave-function has been coupled into 
the very same one, as an overlaid wave, where it can be observed until now as cosmic 
background-radiation. Furthermore could be determined, that the bandwidth in the lower 
frequency range exactly matches the one of an oscillatory circuit with the Q-factor 1/2, which 
equals the conditions to the point of time of the input coupling. Hence the intention of this 
article is, to determine, whether the PLANCK's graph can be approximated by application of 
the frequency response given  by the model, upon  the spectrum of an oscillatory circuit with 
the Q-factor ½, furthermore to compare the calculated radiation-temperature with the 
measured one. 

 
Since the cosmic background-radiation exactly follows the PLANCK's radiation-rule more or 

less, it should, because of the indistinguishability of individual photons, apply to a whatever 
black emitter. Therefrom arises the guess, that the existence of an upper cut-off frequency of 
the vacuum could be the cause for the decrease in the upper frequency range. In [1] already a 
simple attempt of an approximation has been taken up, at which point several values of the 
time-dependent frequency response A(ω)·cosφ have been multiplied with the source-
function, which led to a quite good match, as measured by the simple procedure.  

 
Another aim of this article is, to improve the proceeding any farther in order to make more 

precise statements. Attention should be paid to with the model that with some many 
exceptions (c µ0, ε0, κ0, k) most of the fundamental physical constants are time- and 
reference-frame-dependent (~). And there is a conductivity of the subspace κ0 different from 
zero. If you know these 5 values, you are able to calculate all other ones. The model is based 
on the PLANCK’s units (e.g. ω0) which can be obtained from the locally measured values. That 
points into one direction to the values of the universe as a whole (e.g. H0), into the opposite 
direction to the (constant) values of the so called subspace (e.g. r1 ). That is the medium the 
metric wave-field is propagating in. The proportionality factor is the phase angle of the 
temporal function Q0 = 2ω0t. 
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2. The WIEN displacement law and the source-function 
 
During the examination of the WIEN displacement law meets the eye, that the displacement 

happens exactly at the lower wing pass of the PLANCK's radiation-function, which coincides 
with the wing pass of an oscillatory circuit with the Q-factor 1/2 in this section. Quite often in 
publications the curve is shown in another manner. I prefer the duplicate logarithmic 
presentation, then the curve turns into a straight line. 

 
Considering the WIEN displacement law (902)

1
 more exactly, the factor x̃

 

= 2.821439372 
attracts attention particularly. With an oscillatory circuit of the Q-factor 1/2 rather the factor 
2√2 would be applicable for this, at which point the 2 stems from the source-frequency 2ω1. 
The expression √2 arises from the rotation of the coordinate-system about π/4.  

 
Now the validity of the WIEN displacement law in the time short after BB does not have 

been examined yet and neither PLANCK's radiation-rule nor the WIEN displacement law 
contain any information about the way, temperature varies, when it varies. In [1] I found the 
following relations for the calculation of temperature:  
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Expression εν is the vacuum coefficient of absorption. The calculation of Tk according to [1] 
turns out a value of 2.79146K, which is 0.06598K higher than the measured temperature of  
the CMBR (2.7250K).  
 

During an investigation in the Internet, I found a detailed deduction of the WIEN displace-
ment law [2]. The value of the proportionality-factor can be obtained by the identification of 
the maximum of PLANCK's radiation-rule as follows. We start from (382): 
 

  

dSk  =   
1

4π2
 

ℏω3

c2
 

1

e
ℏω

kT −1

 es  dω    PLANCK’s radiation rule ([1] 382) 

 

  

dSk  =   
1

4π2

k3
T

3

ℏ
2c2

 

ℏω

kT

 

 
 

 

 
 

3
1

e
ℏω

kT −1

 es  dω    
  

x =
ℏω

kT
   

  

dω =
kT

ℏ
dx  (1) 

 

  

dSk  =   
1

4π2

k4
T

4

ℏ
3c2

x3

ex −1
 es  dx     

d

dx
 

x3

ex −1
 =  0   (2) 

 

3  

x2

ex −1
−

x3ex

(ex −1)2
 =  

3x2(ex −1) − x3ex

(ex −1)2
 =  0      (3) 

 

3x2(ex −1) − x3ex  =  0     x3ex
 =  3x2(ex −1)   (4) 

 

ex(x − 3)  =  − 3      y = x − 3 x = 3+ y   (5) 

                                                
1
 Three-digit numerations always refer to [1] 
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yey +3 =  yeye3 =  − 3      yey =  − 3e−3     (6) 

 

x =  3+ lx(−3e−3)  =  2.821439372    x)xe(lx x =     (7) 

 
lx is LAMBERT's W-function (ProductLog [#]). Finally, after insertion into the middle expres-
sion of (1) WIEN’s displacement law turns out: 
 

ℏωmax  =  2.821439372 kT       WIEN’s displacement law    (8) 

 
On success in doing the same even for the source-function with Q = ½, obtaining the same 
result, we would be a step forward in answer to the question: Is the course of the Planck's 
radiation-function the result of the existence of an upper cut-off frequency of the vacuum? 
First of all however, we have to bring the output-function into a form, suitable for further 
processing. We start with (380) with the substitution: 
 
 

Pv =  

Ps

1+ v2Q2
v  =  

ω  

ωs

−
ωs

ω  
ωs =  2ω1 Ω  =  

ω  

ωs

 =  

1

2

ω  

ω1

 (9) 

 
The expression stems from electrotechnics describing the power dissipation Pv of an 
oscillatory circuit with the Q-factor Q and the frequency ω (see [3]), v is the detuning. The Q-
factor is known and amounts to Q = 1/2 at ωs = 2ω1. The right-hand expression results directly 
from the sampling-theorem. The cut-off frequency of the subspace ω1 is the value ω0 at Q =1. 
After substitution, we get the following expressions: 
 

v  =  Ω− Ω−1 v2 =  Ω2 + Ω−2 − 2           v2Q2 =  
1

4
Ω2 +

1

4
Ω−2 −

1

2
 (10) 

 

Pv =  

Ps

1
4
Ω2 + 1

4
Ω−2 + 1

2

⋅
4Ω2

4Ω2
  =   4Ps

Ω2

Ω4 + 2Ω2 +1
  =   4Ps 

Ω

1+ Ω2

 

 
 

 

 
 

2

  (11) 

 
You can find that expression more often in [1], among other things even with the group delay 
TGr however for a frequency ω1. For a frequency 2ω1 applies for TGr and the energy Wv: 
 

TGr =
dB(ω)

dω
 =  

1

ω1

 

Ω

1+ Ω2

 

 
 

 

 
 

2

  Wv =  
1

6
PsTGr  =  

2

3

Ps

ω1

 

Ω

1+ Ω2

 

 
 

 

 
 

2

  (12) 

 
The factor ¹⁄₆ comes from the splitting of energy onto 4 line-elements, as well as from the 
multiplication with the factor ²⁄₃ because of refraction during the in-coupling into the metric 
transport lattice. It oftenly occurs in thermodynamic relations, which doesn't astonish. Thus, 
total-energy of the CMBR during input coupling is equal to the product of power dissipation 
and group delay, that is the average time, the wave stays within the MLE, but only for what 
it’s worth. With the help of (11) we obtain: 
 

Pv =  4b  Ps  

Ω

1+ Ω2

 

 
 

 

 
 

2

    
  

Pv =  512b  ℏ1ω1

2
 

Ω

1+ Ω2

 

 
 

 

 
 

2

  (13) 

 
b is a factor, we want to determine later on. Let's equate it to one at first. We determined the 
value Ps with the help of (394) using the values of the point of time Q  = 1/2. Interestingly 
enough, the HUBBLE-parameter H0 at the time t0.5 is greater than ω1 and ω0. For an individual 
line-element applies: 
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ω0.5 =  
ω1

Q0.5

 =  
ω1

1
2

 =  2ω1              H0.5 =  
ω1

Q0.5
2

 =  
ω1

1
4

 =  4ω1  (14) 

 

  

Ps =  
ˆ ℏ i

4πt 0.5
2 Q0.5

4
 =  

ˆ ℏ i

2π
25

4t 0.5
2

 =  32ℏ1H0.5
2  =  128ℏ1ω1

2         
  

ˆ ℏ i

2π
= ℏ1 =

ℏ 0.5

2
    (15) 

 
Expression (13) is very well-suited for the description of the conditions at the signal-source. 
Here, the power makes more sense than the POYNTING-vector Sk. But for a comparison with 
(382) we just need an expression for Sk, quasi a sort of PLANCK's radiation-rule for technical 
signals with the bandwidth 2ω1/Q0.5 = 4ω1. Then, this would look like this approximately: 
 

dSk =   4bA  

Ω
1+ Ω2

 

 
 

 

 
 

2

 es  dΩ         (16) 

 
We determine the factor A by a comparison of coefficients (3). We assume, the WIEN 

displacement law (8) would apply and substitute as follows: 
 

  

A =  
1

4π2

k4
T
4

ℏ
3c2

     c = ω1Q
−1r1Q    (17) 

 
We put in 2√2 ω1 as initial-frequency into the expression k4

T
4 That’s advantageous, as we 

will already see. This frequency is not a metric indeed (ωx~Q–1), but an overlaid frequency 
(ω~Q–3/2). During red-shift of the source-signal, likewise not the factor 2.821439372 but the 
factor 2√2 becomes effective. Thus applies: 
 

  

k4
T
4  =  

(2 2)4

(2 2)4
ℏ1

4Q−4ω1
4Q−6  =  ℏ1

4ω1
4Q−10  Q−10 =

Q−8

Q2  
   (18) 

 

  

A   =  
1

4π2

ℏ1
4ω1

4Q−8

ℏ1
3Q−3ω1

2Q−2r1
2Q4

 =  
1

4π2

ℏ
4ω0

4

ℏ
3ω0

2r1
2Q4

 =  
1

π
ℏω0

2

4πR2
       (19) 

 

  

4A =  
4

π
ℏω0

2

4πr0
2Q2

 =  
4

π
ℏω0

2

4πR2
    R  for Q»1    (20) 

 

  

dS
k  

=   
4b

π
ℏω0

2

4πR2
 

Ω
1+ Ω2

 

 
 

 

 
 

2

 es  dΩ   R  for Q»1   (21) 

 
Indeed, that submits only the expression without consideration of red-shift. We determine the 
actual values to the point of time of input coupling, in that we apply the values for Q = 1/2 in 
turn. It applies: 
 

  

A   =  
1

4π2

ℏ1
4ω1

4Q−8

ℏ1
3Q−3ω1

2Q−2r1
2Q4

 =  
28−3−2+4

4π2

ℏ1
4ω1

4

ℏ1
3ω1

2r1
2

 =  
128

π
ℏω1

2

4πr1
2

    (22)         

 

  

4A =  
512

π
ℏ1ω1

2

4πr1
2

         
  

dSk =  
512b

π
ℏ1ω1

2

4πr1
2

Q−7
 

Ω
1+ Ω2

 

 
 

 

 
 

2

 es  dΩ  (23) 

 
b will be determined later on. It shows, the POYNTING-vector is equal to the quotient of a 
power Pk resp. Ps and the surface of a sphere with the radius R (world-radius), exactly as per 
definition. Omitting the surface, we would get the transmitting-power Pv directly. In the 
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above-mentioned expressions the parametric attenuation of 1Np/R, which occurs during 
propagation in space, is unaccounted for. This must be considered separately if necessary. 
 

Now we have framed the essential requirements and can dare the next step, the proof of the 
validity of the WIEN displacement law in strong gravitational-fields. The basic-idea was just, 
that the Planck's radiation-rule (382) should emerge as the result of the application of the 
metrics' cut-off frequency (302) to the function of power dissipation Pv of an oscillatory 
circuit with the Q-factor Q = 1/2 (13) We proceed on the lines of (2), in that we equate the first 
derivative of the bracketed expression (23) to zero. A substitution like in (1) is not necessary, 
because the expression is already correct. It applies: 
 

d

dΩ
Ω

1+ Ω2

 

 
 

 

 
 

2

=  
2Ω

(1+ Ω2)2
−

4Ω3

(1+ Ω2)3
 =  

2Ω  (1− Ω2)
(1+ Ω2)3

 =  0   (24) 

 
2Ω  (1− Ω2)  =  0      Ω1 = 0    Minimum            Ω2,3 = ±1   Maximum  (25) 

 
The first solution is trivial, the second and third is identical, if we tolerate negative 
frequencies (incoming and outgoing vector). Now, we must only find a substitution for Ω, 
with which (382) and (23) come to congruence in the lower range. This would be the 
displacement law for the source-signal then (22). Since the ascend of both functions has the 
same size in the lower range, there is theoretically an infinite number of superpositions, 
whereat only one of them is useful. Therefore, as another criterion, we introduce, that both 
maxima should be settled at the same frequency. The displacement law for the source-signal 
would be then as follows: 
 

ℏωmax  =  a kT         Displacement law source-signal   (26) 

 
at which point we still need to determine the factor a. As turns out, we still have to multiply 
even the output-function itself, with a certain factor b, in order to achieve a congruence. The 
4 we had already pulled out. We apply the value 2√2and 2.821439372 for a one after the 
other and determine b numerically with the help of the relation and the function FindRoot[#] 
using the substitution 2x = ay: 
 

a y

2( )3

e
a

y

2 −1
− 4b  

y

2

1+ (y

2
)2

 

 
 

 

 
 

2

 =  0   y =10–5 b → 2                      for  a = 2 2              

b → 2.009918917   for  a = 2.821439372
 (27) 

 
The maxima overlap accurately in both cases. The lower value a is equal to the factor in 
(903). Thus it seems, that with references, except for those to the origin of each wave with 
2ω1, multiplied with √2, which is caused by the rotation of the coordinate-system about π/4, 
rather the approximative solutions with the factor 2√2 apply. With lower frequencies, the 
factor 2.821439372 of the WIEN displacement law applies then again.     
 
But to the exact proof of the validity of the WIEN displacement law in the presence of strong 
gravitational-fields this ansatz is not enough. We must also show that the maximum of the 
PLANCK's radiation-function behaves exactly according to the WIEN displacement law, that 
means the approximation and the target-function must come accurately to the congruence. 
Since the difference between a factor 2√2 and 2.821439372 amounts to 0.5% after all, we 
will execute the examination with both values. Only the relations for b = 2√2 are depicted. 
Now, we can set about to write down the individual relations: 
 

ℏωmax  =  2 2 kT        Displacement law source-signal   (28) 

 

  

Ω =
1

2

ω  

ω1

 =  
1

2 2

ℏω
kT

k

 =  
x

a
 =  

y

2
    y  =  

ω  

ω1

       b = 2  (29) 
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Thus, we have found our source-function. In y it reads as follows: 
 

  

dS
k  

=   
16

π
ℏω0

2

4πR2
 

y

2

1+ (y

2
)2

 

 
 

 

 
 

2

 es  dy     R  for Q»1     (30) 

 
But we aren't interested in the absolute value but in the relative level only: 
 

dS1  
=  8  

y

2

1+ (y

2
)2

 

 
 

 

 
 

2

dy         (31) 

 
We want to mark the approximation with dS2. For the target-function dS3 we obtain: 
 

dS3  
=  

(2.821439
y

2
)3

e
2.821439

y

2 −1
 dy         (32) 

 
In figure 1 are presented the course of the source-function and the PLANCK's graph. 
 

 
 
 

Figure 1 
Planck's radiation-rule and source-function 

in the superposition (logarithmic, relative level) 

3. Solution and evaluation 
 
Of course, there is no shift-information y(Q) contained in these relations. Since the 
considered system is a minimum phase system, we now have to multiply the source-function 
dS1 with the product A(ω)·cosφ (frequency response). A(ω) is the amplitude response, the 
expression cosφ is for the active-share (real-part), because only this is being transferred. The 
result is our approximation dS2. The frequency response is merely applied to a single line-
element, which is traversed by the signal in the time r0/c Thereat r0 is equal to the PLANCK's 
length and identical to the wavelength of the above-mentioned metric wave-function. That 
means, we have to execute the multiplication with the frequency response as often as we like, 
unless the result (almost) no longer changes. 
 
But thereat as well the frequency of the source-function as the cut-off frequency (frequency 
response) decrease continuously. Therefore it's opportune, to take up the displacement 
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(frequency and amplitude) later on with the result dS2 (approximation), instead of shifting on 
and on the location of the source-function. For the proof of our hypothesis indeed this last 
shift is not of interest, so that we won't take up it in this place. 
 
There is another problem with the amplitude response A(ω) and with the phase-angle φ. Since 
the cut-off frequency ω0 = ƒ(Q, ω1) and the frequency ω are varying according to different 
functions, it causes difficulties to formulate a practicable algorithm. Thus we use the fact that 
there is no difference, whether we reduce the frequency of the input-function with constant 
cut-off frequency or if we shift upward the cut-off frequency with constant input-frequency. 
We choose this second way incl. the displacement of the approximation at the end of 
calculation. This all the more, since we would be concerned with two time-dependent 
quantities (input-frequency and cut-off frequency) otherwise. To the approximation applies: 
 

2
y

2
2 y 2

2

dS 8
1 ( )

2
y

28 22

1 (

2

y 21 ( )y1 (1 (1 (1 (
2

1 ( )
2

21 ( )y1 (
      A(y) cos (φ(y)) đy dy           (33) 

 
Expression (33) looks a little bit strange maybe. It’s about a so called product integral, i.e. 
you have to multiply instead of summate. Then, the letter đ isn’t the differential-, but the… 
let’s call it divisional-operator. I don’t want to amplify that, because we anyway have to 
convert expression (33) to continue. We use Q0 = 7.9518·1060 as the current value of the Q-
factor and the phase-angle of the metric wave-function1. It determines the upper limit of the 
multiplication resp. summation. Expression (33) possibly appears somewhat strange to the 
reader. Fortunately the frequency response can be depicted as e-function, so that the product 
changes into a sum. We simply have to integrate the exponent quite normally then. We obtain 
the frequency response inclusive phase-correction with the help of the complex transfer-
function (150) to: 
 

)(e  cos)(A ωΨ=ϕ⋅ω        Frequency response of a line-element (34) 

 

( ) 







Ω+

Ω
−Ω+

Ω+
Ω

−Ω+=ωΨ
22

2
2

1
arctancosln

1
1ln

2

1
)(      ([1] 302) 

 
As next, we substitute Ω by y with the help of (29): 
 

Ψ(ω) =  

1

2
ln  1+

y

2

1

ξ

 

 
 

 

 
 

2 

 
  

 

 
  −

( y

2
1
ξ)

2

1+ (y

2
1
ξ)

2
+ lncos arctan

y

2

1

ξ
−

y

2
1
ξ

1+ (y

2
1
ξ)

2

 

 
  

 

 
     (35) 

 
The value ω in the numerator of y figures the respective frequency of the cosmic background-
radiation, for which we just want to determine the amplitude. It is identical to the ω in 
PLANCK's  radiation-rule. Thereat it's  about an overlaid frequency, which is proportional to  
Q–3/2 in the approximation. Instead of the value ω1 in the denominator actually the PLANCK's 
frequency ω0 should be written with the frequency response. That is also the cut-off fre-
quency for the transfer from one line-element to another. But with Q = 1 the value ω0  is right 
equal to ω1, at which point ω0 varies with the time; ω1  on the other hand is strictly defined by 
quantities of subspace having an invariable value therefore. It applies ω0 = ω1/Q. The fre-
quency ω0 is exactly proportional to Q–1, which means that even y depends on time, being 
proportional to Q–1/2. 
 
Now we however want to freeze the value ω, at least up to the end of the calculation, which 
has the consequence, that we must divide y by a supplementary function ξ, which is 
proportional to Q1/2. It applies ξ = cQ1/2 and 
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1
 The equality of the Q-factor Q0 and the phase angle 2ω0t is a special property of this function 
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The factor c arises from the initial conditions at Q = 1/2 (resonance-frequency 2ω1, cut-off fre-
quency ω1) to c = 4: 
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ω  

ω0

 ~ 
2

– 3
2

2
1
2
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1

4
         ξ = 4 Q     Approximation  (37) 

 
Thus, together with the 2 of y/2, we acquire exactly the same factor 8 as in the source-
function (31). Then, the approximation dS2 calculates as follows: 
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For the determination of the integral, a value of 103 as upper limit suffices indeed. Over and 
above this, it changes very little. Therefore, I worked with an upper limit of 3·103 in the 
following representations. The integral only can be determined numerically, namely with the 
help of the function NIntegrate[ƒ(Q), Q, 1/2, 3×103

]. The quotient of y/2 and ξ expression 
(37) however describes the dependency y(Q) in the approximation only. There is an exact 
solution as well. According to [1] (209), (299) and (509) applies: 
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=

Q
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1

dQ
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 R         with  4 2222

0 )()( AB2BA1  ++−=ρ  (40) 

 

A =
J0(Q)J2(Q) + Y0(Q)Y2(Q)

J0
2(Q) + Y0

2(Q)
         B =

J2(Q)Y0(Q) − J0(Q)Y2(Q)

J0
2(Q) + Y0

2(Q)
  (41) 

 
The factor b arises from the demand, that the exact function ξ and its approximation should 
be of the same size with larger values of Q. The factor a we will determine later on in turn. 
The functions in (41) are Bessel functions. Problematic in (40) and (45) is the integral, which 
can be determined even only by numerical methods. In order to avoid the numerical calcula-
tion of an integral within the numerical calculation of another integral, it's opportune, to re-
place the integrand by an interpolation-function (BRQ1), and that inclusive the factor B. The 
value r1 cancels itself because of (39). We choose sampling points with logarithmic spacing: 
 

brq = {{0, 0}};   

For[x = −8; i = 0, x < 25, (++i), x += .1;  

 AppendTo[brq, {10^x, N[BRQP[10^x]/BGN/(2.5070314770581117*10^x) ]}]] 

BRQ0 = Interpolation[brq];         (42) 
BRQ1 = Function[If[# < 10^15, BRQ0[#], Sqrt[#]]]; 

 
The function BRQP is equal to the product of Q, root-expression and integral in the 
denominator of (45). The value BGN is equal to the initial value of the same product at 
Q = 1/2. You'll find the complete program in the appendix. The factor b arises to 2.5(0703). 
According to (211), (482) and (623) applies further: 
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∫∫ ρ
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ρ
−β=ξ γγ
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c is the complex propagation-velocity of the metric wave-field. As next, we want to take up a 
comparison of the two functions Q1/2 and BRQ1 (figure 2): 
 

 
 
Figure 2 
Function BRQ1 exactly and approximation 
 

On the basis of the demand, that the result of both functions must be identical with Q»1 we 
choose the factor a to √!. In this connection is to be remarked that the exact value is "3, 5# in 
fact. But since we finally will not find, in any case, an exact fit in the course of both 
functions, this small „cheating“ in the initial conditions should be allowed. The value √! 
namely leads to the result with the smallest difference, so that we obtain the following final 
relation for ξ:  
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
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
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ρ
−βπ=ξ ∫γ

Q

0
0

4– dQ
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2
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2
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   c =
3

2
2π = 3.756    (46) 

 
For " 5# a value of c = 4 would arise. The bracketed expression corresponds to the factor Q1/2 
in the approximation. The course of the integral function in (38) as well as of the dynamic 
cumulative frequency response Ages(ω) = e∫Ψ(ω)dQ you can see in figure 3 and 4. For your infor-
mation the amount of the complex frequency response |Xn(jω)| of subspace is plotted, that’s 
the medium, in which the metric wave field propagates (ΩU = Ω).  
 

n

1 1 1
X ( j ) 1

2 1 j 1 j

11 1
j )

1 1 1
111

j 1
1

j 1 jj 1 jj 1 jj 1 jj 1 j
     Complex spectral function      ([1] 459) 

 
That applies to EM−waves propagating simultaneously with the metric wave field but not to 
the metric wave field itself. They achieve the aperiodic borderline case at Q = ½. 
 

 

 
 
 
 
 
 
 
 
 

 

Figure 3 
Course of the Integrals Ψ(ω) in (38) for 
the approximation and exact function ξ 
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Figure 4 
Cumulative frequency response Ages(ω)  
and |Xn(jω)| of the metric wave field 
and subspace 
 

 
Thus, all requirements are filled and we 
are able to demonstrate the course of 
the approximation (38) in comparison 
with the target-function (32) and that as 
well for the approximation as for the 
exact function ξ. We use a logarithmic 
scale with the unit decibel [dB] and, 
because it’s about power per surface, 
with the factor 10.  

 
 
Figure 5 shows the shape of the approximation using the approximation (37) for the 

function ξ (c = 4). One can see, both curves doesn’t match exactly. The maximum frequency 
Ω⋔ is downshifted by 18.29% (0.81707). Die maximum deviation of the amplitude Δ A  is 
with +1.20 dB, between both maxima Δ A  with +0.4285 dB (+10%). That’s comparatively 
seen, not very much. Altogether the function resembles the shape, shown in [1] section 
4.6.4.2.3., obtained by multiplication of the source-function with only 4 choosed values of 
the frequency response. But there are disparities in the declining branch with higher 
frequencies. 
 

 
 
Figure 5 
PLANCK’s radiation-rule and approximation 
with approximation for the function ξ (relative level) 

 
 
Figure 6 presents the course of the approximation under application of the exact function ξ 
(46) for c = 3.756. With it, the best fit (without group delay correction) turns out (With  c = 4, 
there is only a minor difference to figure 5). But both functions don't overlap exactly neither 
in this place. Once again, the maximum frequency Ω⋔ is downshifted by 13.6 % (0.86385). 
The maximum deviation of amplitude Δ A  is about +1.29 dB, between both maxima Δ A  
with +0.7835 dB (+19.8%). 
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Figure 6 
PLANCK’s radiation-rule and approximation under 
application of the exact function ξ (relative level) 
 

The course of deviation (logarithm of the quotient of approximation and PLANCK’s 
radiation-rule) as a function of y is shown in figure 7. One sees, from ca. 10 ω1 on the relative 
deviation between both functions is strongly growing. But since the absolute level in this 
range is already microscopic (−50dB at the third zero), nobody will take notice of it. Even it 
seems rather to be about a small frequency shift, than about a deformation of the envelope.  
 
Maybe, the downshift of the approximation’s maximum could be a reason for the discre-
pancy between the CMBR-temperature calculated in 7.5.3. [1] to the measured COBE-value 
with the amount of +2.42086% (−2.36363% in the reciprocal case). Although, the form of the 
approximation-graph doesn't correspond to that of a black emitter and the value is too high. 
But during the COBE-experiment, they just have been ascertained, that the spectrum of the 
CMBR is exactly? black. Therefore, more forces are required in order to change the form in 
such a manner, that it equals that of a black emitter. In the next section we will see, which 
influences may come into consideration for that purpose.  
 
 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Figure 7 
Relative offset between    
approximation and radiation-
rule in dependency of the 
used function ξ 
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In figure 7 we can see that we yield an improvement if we use the exact function ξ. Never-
theless a certain left-over difference remains. If we take a look at the course in the 2nd
quadrant, we can see a „gap“ where an already known function, multiplied with the factor √2, 
could slot right in there. That’s the group delay TGr of the metric wave field of [1] section 
4.3.2. Caution! The variable Ω there is differently defined, namely as Ω = Ω1 = ω/ω1. Thus, 
let’s  convert the definition to the form used here: 
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     ([1] 152) 

 
As we can see in figure 7 (blue), the maximum is at ω1 and not at 2ω1. While group delay is 
equal to zero across nearly all decades, that’s not the case in the proximity of ω1 respectively 
ω0 nowadays. But a frequency-dependent group delay always causes a distortion of the 
envelope curve. Hitherto, we considered the frequency response A(ω) and the phase delay 
B(ω), but a group delay correction Θ(ω) is still missing. Rearranged for θ we obtain: 
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We can find the factor √2 in that we estimate the maximum deviation of +1.29393 dB. We 
have to experiment for a while to find the best match. The decimal power is important, if we 
want to calculate with dB. The course is depicted in figure 7. The group delay correction 
Θ(ω) on dS2 is applied only once:  
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The resulting functions with group delay correction for both ξ are shown in figure 8 and 9. 
 

 
 
Figure 8 
PLANCK’s radiation-rule and approximation 
with group delay correction with approxi- 
mation of the function ξ (relative level) 
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There is already a better fit of both graphs in figure 8, as we can see. Now the maximum 
Ω⋔ of the frequency is downshifted about 14.3% (0.85714). The maximum deviation of 
amplitude Δ A  is irrelevant because of the curve progression. The difference between both 
peaks Δ A  is with –0.74601dB (–15.8%). 
 

 
 
Figure 9 
PLANCK’s radiation-rule and approximation 
with group delay correction under application 
of the exact function ξ (relative level) 
 
The best result we have got for the case exact ξ with group delay correction (figure 9). Now 
the maximum Ω⋔ of frequency is downshifted about −8.831% (0.91169) only. That value is 
far in excess of the −2.36% deviation between measured and calculated CMBR-temperature. 
The maximum amplitude deviation Δ A  is at about +1.01 dB, between both maxima Δ A  at 
−0.38246 dB (−8.430% i.e. 0.9157).  
 

 
 
Figure 10 
PLANCK’s radiation-rule and approximation 
with group delay correction under application of 
the exact function ξ (relative level) high resolution 
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To the better clarity, the last case is depicted in figure 10 with higher resolution. You can find 
the exact results in table 1. Figure 11 shows a summary of the relative deviations of all 
solutions in comparison with the course of the absolute value of the complex frequency 
response |Xn(jω)| of subspace. 
 

 

Value 

 

Ω⋔ Δ Ω⋔ A  Δ A  Ω  Δ A  Ω  ΔA  

 [1] [%] [dB] [dB] [1] [dB] [1] [dB] 

Planck 1.00000 ± 0.00 1.52727 ±0.00000 −− −− −− −− 

Figure 5 0.81707 −18.29 1.95578 +0.42851 0.41943 +1.20007 −− −− 

Figure 6 0.86385 −13.61 2.28562 +0.75835 0.46495 +1.29393 5.43512 +1.25614 

Figure 8 0.85714 −14.28 0.78126 −0.74601 0.05906 +0.04271 −− −− 

Figure 9 0.91169 − 8.83 1.14481 −0.38246 1.90966 −0.98101 5.50581 +1.01438 

 
Table 1 

Extreme values of PLANCK’s radiation-function and 
approximation according to the function ξ used 

without and with group delay correction  

 

 
Figure 11 
Relative deviation between approximation and  
radiation-rule according to the function ξ used 
without and with group delay correction 
 
 
 

4. WIEN’s Displacement 
 
The solution as per figure 9 seems to best fit the observations, if it weren't for the unsightly 

dent. Let’s suppose, that the ±1dB are „healed up“ during the many billion years or have been 
„ironed out“ by other influences not considered here – at the end, we must carry out, as 
promised, a WIEN-displacement. Starting with the in-coupling frequency 2ω1, with the help  
of the expressions given in [1] section 2, we are able to calculate the temperature of the 
CMBR to compare it with the COBE-measuring:  

 
Values from [1] Q0 = 7.9518·1060, ℏ1 = 8.38572·1026Js, ω1 = 1.47506·10104s−1, ω0 = PLANCK’s frequency 
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Substituting the values specified above, we obtain in terms of figures a value of 2.79146K for 
the temperature Tk, exactly calculated (bracketed expression) even 2.79837K. But the meas-
ured value was 2.72548K ± 0.00057K. That yields a deviation of +0.06598K (+0.07289K) 
respectively +2.421% (2.675%). Now one could mean, that’s an acceptable result, the model 
is quite accurate – far wrong. Not for nothing great efforts are being made in order to 
determine ωK to decimal places as many as possible, since it’s about a flat curve progression 
there and that takes significant effects on other values. Therefore, from now on, we will 
calculate with the exact numbers. 
 
From ([1] 902) arises, that Q0 depends on Tk first of all, ℏ and ω0 can be determined and 
calculated with the help of measurements. And most of the other quantities are strongly 
affected by Q0. Obtaining a value of Q0 = 7.9518·1060 for the calculated 2.79837K we would 
get Q0 = 8,38287·1060 for 2.72548K. But Q0 even affects the value of the HUBBLE-parameter: 
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H0 would amount to 71.9843 kms−1Mpc−1 for the calculated temperature of 2.79837K and 
only 68.2829 kms−1Mpc−1 for 2.72548K. That’s quite a significant difference, which neither 
cannot be solved by number games with the values from table 1. Thus, there must be another 
reason of deviation. 
 
 
 

5. Possible reasons of deviation 
 
Next we want to discuss possible reasons, which may lead to the deviation. The simplest 

and mostly unpleasant one would be, that this model is wrong. But at least, the result, 
somewhat well, coincides the predictions, so that we cannot approve it with sufficient 
certainty. But then there must be another reason. Therefore, the most probable shall be 
discussed as next.  

 
Since the line-element is a minimum phase system, we computed the approximation 

function, by an iterative multiplication of the source-function with the just significant 
amplitude characteristic A(ω), as long as the result changes essentially. At the point the 
frequency of the signal-function has dropped far below the cut-off frequency, there is no 
more change to be observed. The factor cos φ emerges from the fact, that only the real-part is 
being transferred (φ = B(ω)). 

 
That’s the procedure with minimum phase systems in general. But according to [3] p. 340 it 

applies for stable minimum phase systems only! Because only with these, an explicit 
correlation exists between amplitude- and phase response curve, so that we can calculate with 
the amplitude response exclusively. At the line-element just after the input coupling (Q≈1), 
that is shortly after big bang however, it’s not about a stable system at all. Rather, it shows its 
largest dynamics to that point of time, so that our approach may lead to an inexact result, as 
we can see.  
 

If we want to get an exact result, we must also introduce a reference between amplitude 
and phase, quasi a phase-correction, because a phase-lag appears with unstable systems. At 
the observer the phase-lag manifests itself in the form, that the spectral shares with lower 
frequency are more redshifted, than the higher frequent ones. Indeed, the lower-frequent 
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shares aren’t older than the higher-frequent ones (we observe always the same point of time 
at the in-coupling with Q0 = 1/2), but they have covered a longer distance. And that 
automatically leads to a higher redshift. But how this longer way can be explained? The 
lower-frequent shares simply took a different route, than the higher-frequent ones (different 
angle of emission). Because the lower-frequent shares, taking the same way, already have 
passed us. That leads to a kind of achromatism at the observer, which is hard to be detected, 
since the radiation arrives from all directions at once. Even with the propagation-function 
(306) such a phase-lag occurred, characterized by the term Φ(ω). We considered that term 
and we also took a group delay correction. Hence, it cannot be that. 
 
Let’s go to talk about the high dynamics during the in-coupling process. Figure 12 shows the 
course of the energy flux-density vector div S0 of the metric wave field at that point of time. 
One sees, it’s positive in the range 0.52549 < Q < 1.5975. Thus, energy is radiated. The range 
is depicted even in figure 7. In the range below 0.52549 the field is been established, above 
1.5975 the effect of parametric attenuation for overlaid waves can be seen. 
 

 

 
 
Figure 12 
Course of the energy flux-density vector of 
the metric wave field as a function of Q 

 
 

Hence, with the in-coupling process it’s not about a sudden act with before → after, but it’s 
a dynamic process. Energy is absorbed and partially re-emitted, deferred by the group delay 
time. At the same time the CMBR is coupled in, according to the frequency at different 
moments. Concerning the partial re-emission the share of absorbed energy depends on the 
area ratio of both left-hand sections. The numerical integration yields a value of 2.24784 for 
the absorbed, as well as of 0.345719 for the re-emitted energy share. The calculation 
2.24784/(0.345719+2.24784) a value of 0.866700931 turns out in reference to Q. But we need 
the value in reference to the time t. Because t2

 ~ Q, we must resolve the substitution t2 on the 
x-axis in that we extract the root of the result. We obtain a value of 0.930967739. It 
corresponds, except for a deviation of 0.0118413026, to our vacuum coefficient of absorption 
εν = 0,9428090416.  

 
Thus, the deviation has something to do with the gray body [4]. Now, once we already 

considered εν indeed, but only as a constant and with the value at the time of in-coupling. But 
with the gray body εν depends on the frequency ω. If we want to consider that, we have to 
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calculate an εT(ω) respectively a correction term εK(ω) to multiply ([1] 902) with, since εν is 
already included there. In [4] the following is denoted for εT: » Thereby εT correlates with the
weighted averages of εν resp. ελ, which are equal:  

 
 
       from [4] « (50) 

 
 

But we don’t want to make it as quite as complicated. Therefore we assume, that the root of 
the area ratio should equal the average of εν, i.e. be equal to εT. It applies: εT = ενεK, with 
εν = ⅔ √2 = 0.942809 and εK = 0.987440402. Multiplying the calculated Tk = 2.79837K with εK, 
we obtain a value of 2.76322K, which is about +0.0377K above the measured one. But is it 
correct, to apply εK resp. εT simply as a factor to WIEN’s displacement law? The answer is no. 
It’s about a factor from PLANCK‘s radiation-rule. Applying εT to (1)…(7), it cancels out at the 
end. Herewith the inclination 2 at WIEN‘s displacement rule ( x̃ is the ratio slope/peak-line) 
also applies to the gray body. But even a constant of integration would be possible here. There 
are influences on the displacement indeed. But these depend on the shape of the envelope-
curve and, with it, on the function εν(ω), which we do not know. Therefore we must 
improvise, contriving a function, which well-complies the requirements. Then, at least, we 
can see, which influence a frequency-dependent εν has onto the shape of the curve and with it 
even onto the displacement itself.  
 

As a start the function before the in-coupling must have the value ενmax = ⅔ √2 = 0.942809. 
Furthermore it must vary somehow. We choose a simple change from one to another value. 
As inflection point we choose the moment of in-coupling with Q =1/2 resp. 2ω1. Then y = Ω 
applies. The 0.930967739 from the area ratio of div S0 are our ε̄T. We use the function as per 
(51). Therefrom a lower limit of ενmin = 0.920464 arises. With it ε̄T is a little bit smaller than 
the average, due to the function used. All that appears plausible on the whole, because the 
metric wave field mostly picks up energy before the in-coupling. Thus, it has a higher 
absorption coefficient as thereafter, when a share of energy is re-emitted. Even the offset of 
the zero-transition of divS0 of Q = 0.52549 is mapped very well. If you don’t like it, it’s only a 
model and an optimized example function. Whether it really happens in that manner, is 
another matter. 
 

 
 
Figure 13 
Vacuum coefficient of absorb- 
tion εν as a function of ω 
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Now we want to analyze the effect of εK on the envelope-curve. We believe in the „self-
healing powers“ of the solution of figure 9 using a clean PLANCK-curve. Since the effect on 
(51) is hardly to be seen in the graphics, we use an additional, exaggerated function εT5 to the 
better presentation. 
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That corresponds to an ε̄T5 = 0.69281. We obtain the following course with it: 
 

 
 
Figure 14 
Effect of the absorption coefficient εν 
onto the envelope-curve, high resolution 

 
One sees, the function (52) mostly affects the lower-frequent part of the envelope-curve. The 
maximum is up-shifted in frequency. But the inclination in the left part remains constant. 
That applies as I said to the example function only. Natural materials may distort the 
envelope-curve significantly even in this region. Then the regression line applies as a function 
of  ε̄T according to (50). Then it has the same inclination and even only, it’s more or less 
amplitude-shifted (constant of integration!). B.t.w. the regression line σT resp. the lower-
frequent slope is also the line, the WIEN displacement happens at. Here we can see the benefit 
of the duplicate logarithmic presentation, the curve becomes a line then. 
 
The regression line σT can be determined by trying out most suitably. It applies y = Ω too. In 
the duplicate logarithmic presentation the following functions arise: 
 

KT min( ) 10(2  + lg (2 ))T mi( ) 10(2  + lg (2 ))T minT miK
 [dB] Slope (54) 

 

KT min
ˆ ( ) 10(2  – lg lg )T mi
ˆ ( ) 10(2  – lg lg )T minT miK

ɶx
 

[dB] Maximum (55) 

 

εK max = 1.00000 
εK min  = 0.97630 

ε ε ε ε
ν ν νmin max max

= − −( )( )1 2
T
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K K K

2 2ln10 4.60517

T min min min( ) 2 10 2 e 2 e2 2l

T min min minK K KK K K
( ) 2 10 2 e 2 e2 2l

T min min minT min min miK K KK K KK K K

2 2ln10 4.605170 2 e 2 e2 2ln10 4.62 2ln10 4.6  Slope linearly (56) 

 
That only applies to the example function used here. The 2 on the right side stems from the 
definition of Ω according to (9). To the black body and with it, even to the PLANCK-curve 
applies εKmin = εT = εKmax = 1. With natural materials we must replace εKmin by ε̄T from (50). The 
course is shown in figure 15. Of course even a regression line for the maximum can be 
defined. With it (x̃), the circle closes to WIEN‘s displacement law. However expression (55) 
isn’t very accurate and the line may miss the maximum with smaller ενmin. But it applies 
exactly to the black body and to our example function. With natural materials even more than 
one maximum may occur. The more the envelope-curve differs from the ideal, the less 
reasonable is it, to speak of a radiation temperature.  
 
From (55) arises, that we, nevertheless can define a WIEN’s displacement law for the gray 
body, at least for the example function and when the curve-shape do not differ too far from 
that of a black body: 
 

K

max

min

1

k

max1

K min k

ℏ

ɶ
T

x
 (57) 

 
With natural materials εKmin replaced by ε̄T .
 
 

 
Figure 15 
Displacement lines σT and σT5 
as well as envelope-curves, low resolution 

 

As next we want to determine the frequency-shift ωK2/ωK1. We choose the exaggerated 
function (53), since we cannot see anything otherwise. We want to navigate in the lower-
frequent range, namely at ωK1 = 0.5∙10

−3
 ωmax. Therefore we can employ WIEN‘s radiation-

rule: 
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To the amplitude of dS2 applies (T1=T2=T ) : 
 

WIEN‘s displacement law 
for the gray body 
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By equating we obtain the following expression: 
 

    

K1 K 2

K K

( )3 3 3

K2 min K1 min K1
K1 K2k k k e  e

( )K1 K2
K1 K 2K1 K 2 ( )K1 K2( )( )3 3 33 3 3

K2 m 1 min K1K KK K

K1 Kk k k3 3 33 3 3 e  e3 3 33 3 3

K2 min K1 min K11 miK KK KK K
                

k k kk k k3 3 33 3 3 ( )3 3 33 3 3 K1 Kk k k3 3 33 3 3k k kk k k3 3 33 3 3
K1 K 2

3 3 3
K1 K 2K1 K 2

3 3 3
K1 K 2 ( )K1 K( )( )

ℏ ℏ ℏ

T T T  (60) 

 
–3

3

max K1 K1

2.821439372 2.821439 1.41072 10

k 2 10

–3102.821439372 2.821439 1.41072

k 2

10
3

max K1 K1k 2 10max

3k 2 10

ℏ

T
 (61) 

 

    

K 23

K1

K K K

1.4107210 1
3 3 3 0 3

K2 min K1 min K1 min K1 e e
K 2

210 3210 3 K 2
1

K 2
1

K 2
111.4107210

3 3 3 0 3

K2 min K1 min K1 min K1K K KK K K
    e e3 3 33 3 3

1 min K11 min K1K K KK K KK K K

210
3 3 33 3 3

1
3 3 33 3 33 3 3K13 3 3K1

1 mi

3 3 33 3 33 3 33 3 33 3 33 3 33 3 3K13 3 3K13 3 3K13 3 33 3 3
 (62) 

 

 

K

33
K2 min K1 K1 K1 0.97630 0.992037K2 min K1 K1 K11 K11 K1K2 mK2 mK2 mK2 mK2 mK

 0.97630 0.99203733
K2 min K1 K11 K1K2 mK2 mK2 mK2 m 1 K11 K11 K1K

 (63) 

 
With it the frequency of our example function shifts downward by +0,8027% at the base. The 
offset of the maximum is +0,4860% (Function FindMaximum[#]). Just for information, with 
the exaggerated function εT5 the base-shift is at +25,99%, at the maximum at +12,64%. Thus, 
in both cases a narrowing of the envelope-curve occurs, at which point the frequency shift at 
the base is nearly twice as large, as at the maximum. Because with the real values only 
fractions of a percent come into effect, it looks like the curve is black. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16 
Possible error sources by misinter- 
pretation of the curve-characteristic 

 
Subsequently it’s about errors in the interpretation of actual measured data only. The model 

itself is no issue and it’s irrelevant, whether any universal natural constants change over time 
or not and how. Figure 16 shows what may happen, if we misinterprete the curve-characte-
ristic, by a mistaken application of the black body mathematics to a gray curve. Curve #1 is 
the curve of a black body at the moment of in-coupling, curve #2 is the gray curve. The 
redshift z (displacement) takes place in the direction of arrow along the displacement line σT 
and σT5. You can perform it in a graphics program even manually in the following manner: At 
first duplicate the graph. Then scale it equably by shifting the corner point right above to the 
bottom left with pressed shift key, maintaining the contact with the displacement line left. 
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The result are the curves 3 and 4. Now, however the gray curve 3 can be „inflated“ in such 
a manner, that it almost fits the black curve 4, that’s curve 5 (green). This happens, when a 
too small redshift z is being assumed, a value, which we actually wanted to determine. One 
sees, it’s possible to wangle a nearly perfect covering of the maxima. The difference is, in 
practice, nearly undetectable with εT-values near 1. The result is, that a too small z and a too 
small radiation temperature Tk is calculated, and that by half the offset at the base. 

 
Presuming the calculated Tk-value in the amount of 2.79837K to be the gray temperature, 

under consideration of the interpretation error at the measured value of 2.72548K, the 
application of (57) a measured gray temperature of 2,79164K turns out. Then the calculated 
temperature is only +0.0067K above (+0.25%). Thus, in contrast to the hitherto +7.29%, the 
improvement wouldn’t be insignificant. Of course, I could have configured the example 
function even such, that I hit the measured value exactly. But that would not have been very 

 
In any case, the effects of a possible gray radiation-characteristic should be considered, 
especially then, when we want to measure extremely accurate. But then we can forget the 
declared accuracy of ± 0.00057K for the measured value resp. it applies only relatively and 
not absolutely. 
 

 

6. Summary 
 
In the course of this article, according to the model in [1], we succeeded in approximating 

the envelope-curve of PLANCK‘s radiation-rule as a function of a dynamic frequency response 
under application of a phase- and group-delay-correction with a residual deviation of ±1dB. 
Furthermore was shown, that the temperature calculated in [1] is in the proximity of the value 
measured by the COBE-satellite. By consideration of the gray characteristic of the CMBR, 
predicted by the model, could be shown, that and how the measured value is determined too 
low under misapplication of the black-body-mathematics to a gray radiation source. Under 
consideration of this issue the calculated CMBR-temperature would be only +0,0067K above 
the corrected, gray temperature. Whether the self-made gray radiation characteristic coincides 
with reality, remains unsettled. It’s about an example here, just showing the conditions with 
the gray body. Altogether no contradictions have been found between the model and reality. 
Furthermore was shown, why the BOLTZMANN-constant has the known value and not another 
one. The reason is the curve inclination at an oscillating circuit with the Q-factor ½.  

 
The results of the work on hand don't exclude the possibility, that the course of the 

PLANCK's radiation-rule could be the result of the existence of an upper cut-off frequency of 
the vacuum. Whether it’s so or not, in both cases the classic deduction [2] would not be 
overruled. Both deductions are compatible and complement each other.  

 
 
 

THE END 
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