
Applying Neural Networks and Neuroevolution of Augmenting Topologies to
play Super Mario Bros

Vivek Verma

7 June 2020

1 Abstract

This paper describes the background and implementation
behind a project that uses Neroevolution of Augmenting
Topologies (NEAT) to play Super Mario Bros. It’s implemen-
tation is different from classic applications of NEAT since the
training process was heavily optimized using multithreading
and downsampling. As a result, the training process can be
run on underpowered CPUs without the help of an external
GPU. The neural network successfully completed level 1-1
of the game.

2 Background

Given a dataset with coordinate pairs (x, y), linear regression
can be applied to find the best fit line and extrapolate values
not within the dataset. Such a model can take the form of
equation 1.

ŷ = b0 + b1x (1)

In equation 1, the explanatory variable is of dimension 1. For
example, the explanatory variable of the model in equation 2
has dimension 3.

ŷ = b0 + b1x1 + b2x2 + b3x3 (2)

This can be generalized with the help of vectors and linear
algebra. Define a vector x that contains every input and 1 for
the constant term, and a vector b that contains every coeffi-
cient.

x =


1
x1
x2
. . .
xn

 (3)

b =


b0
b2
. . .
bn

 (4)

Linear regression with multiple variables, multiple regres-
sion, can be generalized as a dot product between x and b.

ŷ = b · x (5)

In matrix notation, this is a transpose of b times x

ŷ = bT x (6)

To predict categorical variables, a sigmoid function (Fig-1)
can be applied over the generalized multiple regression equa-
tion (6).

Figure 1: The Sigmoid Function

This results in the generalized logistic regression equa-
tion (7)

ŷ = σ(bT x) (7)

Categorical variables with more than two possible values can
be predicted with the use of multiple logistic regression mod-
els, however this project does not take advantage of this. In-
stead, the complexity of the model is increased by adding
multiple logistic regression layers to create a neural network.

Figure 2: Going from one logistic regression layer to another

1



Figure 3: Diagram of a Neural Network

The coefficients b are typically found using backpropa-
gation or gradient descent on a large dataset. However, this
project utilizes a genetic algorithm to evolve the coefficients
by maximizing a fitness function. Here, the fitness function is
the distance covered by each of the networks on a simulation.

The way neuroevolution works is by initializing a popula-
tion of random networks, then running each of them through
a simulation (in this case, Super Mario Bros), choosing the
top few networks from the population, and breeding a new
generation using mutations. This process is repeated until
the desirable network is achieved.

NEAT features two other optimizations: Augmenting
Topologies and Speciation. The word "Augmenting Topolo-
gies" implies that the structure of the neural network, or the
topology, evolves along with the coefficients.

Speciation is the set of processes by which NEAT creates,
maintains and uses several disjoint groups of similar genomes
for guiding reproduction.

3 Implementation

To create an interface between the game and the python code
running Neuroevolution, a Lua script was used that provided
16x13 grids that represent the game (Fig-4).

Figure 4: An example frame from the game and its com-
pressed version in the top left

The compression of the image to a 16x13 grid reduced
61,440 inputs to 208. This enables it to run on lower end
computers, but the training process would take a few weeks
without any further optimization.

This problem was solved through taking advantage of
multithreading. Using a python library called "multiprocess-
ing", multiple networks of a population could be run at once.

For the training process of this project, 4 networks were
run at once, to take advantage of the 4 threads on my laptop.

4 Results

After 2 weeks of training, the network was successfully able
to complete level 1-1.

Figure 5: Speciation over generations

Figure 6: Evolution of fitness over generations

5 Conclusion

The results of this project are quite successful. Although it
is unable to complete other levels, it is able to complete level
1-1. However, random movements within the game, like the
movement of enemies causes some inconsistencies in the re-
sults.

Video explanation can be found at https://youtu.
be/JcxhGDdjCZ8 and source code here https://
github.com/vivek3141/super-mario-neat

2

https://youtu.be/JcxhGDdjCZ8
https://youtu.be/JcxhGDdjCZ8
https://github.com/vivek3141/super-mario-neat
https://github.com/vivek3141/super-mario-neat

	Abstract
	Background
	Implementation
	Results
	Conclusion

