
Representing Sets with Minimal Space:
Jamie’s Trit

James Dow Allen

August 16, 2020

Abstract

The theoretical minimum storage needed to represent a set of size
N drawn from a universe of size M is about N · (log2(M/N)+1.4472)
bits (assuming neither N nor M/N is very small). I review the tech-
nique of ‘quotienting’ which is used to approach this minimum, and
look at the actual memory costs achieved by practical designs. In-
stead of somehow implementing and exploiting 1.4472 bits of steering
information, most practical schemes use two bits (or more). In the
conclusion I mention a scheme to reduce the overhead cost from two
bits to a single trit.

1 Common Nomenclature of Hash Tables

This paper focuses on a single specific topic in combinatorics, but to motivate
the discussion we review the storage costs of memory-efficient hash tables. To
discuss very different hash table methods using a common terminology, we
will say that a hash table has KC cabinets; that each cabinet has B drawers;
and that each drawer has KB bins. The total number of bins is (B ·KB ·KC),
but in the example systems we discuss either KB = 1 or KC = 1 or both, so
we will define KT = KB ·KC and use KT for a multiplicity factor throughout.
To keep the discussion focused we ignore some issues (e.g. dynamic resizing)
that arise in practical hash table design.

A hash table will store some subset S of a universe U . We will suppose the
sizes of these sets are N = |S| and M = |U | and that these sizes are known
in advance. Each element u of the universe U is considered a ‘key’; the hash

1

table is presented with a ‘key’ and answers the question Is u (the key under
consideration) in the set S and if so, what is the associated ‘payload’ datum?
Although keys in many applications will be variable-length character strings,
we will assume that U = {0, 1, 2, 3, 4, ...,M − 1}; if M = 2m is a power of
two, the keys will then be fixed-length bit strings of length m.

Thus for our purpose, a key u is a whole number. We will assume it is
transformed into a ‘quotient’ q and ‘remainder’ r via the arithmetic

u′ = h(u) = q ·B + r (1)

where B is the number of drawers and h(u) is a reversible hash function,
e.g. h(u) = (u · 11669)%65537 which might be chosen when keys are 16-bit
integers. (Here ’% 65537’ denotes the remainder after division by 65537.
Some results h(u) won’t quite fit into 16 bits but this hardly matters, due
to the division by B which immediately follows.) There will be a way to
reconstruct the original key

u = h−1(q ·B + r) (2)

where h−1(u′) = (u′ · 40505)%65537 for the example hash above. Such re-
versible hash functions are plentiful and easily found, as shown in the cited
source code. While the ‘quotienting’ (partition of u into q and r) is essen-
tial to the entire paper, the hashing is inessential to our discussion, and the
reader is welcome to assume use of the trivial h(u) = u.

The total number of bins (possible table entries) in a hash table will be
(KT · B) where KT might be either the number (perhaps 20 to 50 or so) of
bins per drawer in a method like Tight Chained Hash Tables, or the number
of cabinets (perhaps 3 or 4) each with their own drawers as in a Cuckoo Hash
Table, or KT = 4 · 2 = 8 in a Cuckoo Hash design with 4 bins per drawer
and 2 cabinets. KT = 1 for Open-Address Hash Tables.

Since each stored element uses one bin, the number of stored elements in
the hash table is (N = L ·KT · B) where L is the ‘occupancy rate’ or ‘load
factor’. L = 0.80 is a typical value, but designers might prefer L < 0.75 to
maximize speed, or L > 0.85 to minimize storage cost.

We will find that the hash table will require a total of (N/L)·(log2(M/N)+
log2(L ·KT) + p+ s) bits to store the subset and its payloads. Here p is the
individual payload size in bits, and s is any other required overhead.

When tuning a method’s parameters you will need to estimate the occu-
pancy rate L, but for our purpose in this paper we assume different methods

2

have similar occupancy rates L and we can compare their memory perfor-
mances most simply with the assumption L = 1. Note that the open-address
method will work with occupancy as high as L = 1: it will just be extremely
clumsy and slow. We can also ignore the payload cost (p bits) since this
will be the same in different methods. With these simplifications, the cost
formula becomes quite simple: The net cost to store a quotient in a hash
table is (log2(M/N) + log2(KT) + s) bits per stored element. In the Cuckoo
Hash, KT is smallish but never less than 2, and s = 0. In Allen’s Tight Hash,
KT ≈ 30 and s ≈ 0.4 are typical parameters. In Cleary’s Compact Hash,
KT = 1 and s = 2. The two bits of overhead in Cleary’s scheme are called
the ‘virgin’ and ‘change’ bits and will be described below.

In Section 2 we derive the theoretical minimum storage cost. In Section
3 we mention five types of table, and show the memory cost in each case. In
Section 4 we mention some applications for hash tables and mention ways
to reduce the storage cost. Section 5 takes a look at efficient storage when
we don’t need fast look-up. Section 6 shows a way to reduce the steering
overhead from the two bits used in Section 5 to a single trit.

2 Theoretical Minimum Storage Cost

There are CM
N = M !

N !(M−N)!
ways to choose N elements from a universe of size

M , so the informational cost to depict an arbitrary N -sized subset (S) is
given in bits by log2(M !)− log2(N !)− log2((M −N)!). We will assume that
there is no payload to be stored.

Starting with Stirling’s approximation, ln(K!) ≈ (K + 0.5) · ln(K)−K +
0.919; we note that some terms will cancel and some will be too small to
matter; so log2(K!) ≈ K · log2(K) is good enough for our purpose. With this
we find that the storage cost per element is given in bits by

StorageCost

N
≈ log2(

M

N
)− (

M

N
− 1) · log2(1−

N

M
) (3)

When M ≈ 2N this shows a cost of approximately 2 bits per stored element
(i.e. 1 bit per element in the universe), which can be achieved with a simple
bit-map: allocate M bits and set the u’th bit to 1 if and only if u ∈ S.
When M < 2N it will be better to store the elements of U which are not
in S. (This won’t work if there is payload data that needs to be stored.)
But when M is larger than 2N the cost shown above rapidly approaches a

3

simple asymptote. Using the asymptote log2(1 − ε) → −1.4427 · ε (where
1.4427 ≈ log2(2.71828)) the equation above reduces to

StorageCost

N
≈ log2(

M

N
) + 1.4427 · (M −N

M
) < log2(

M

N
) + 1.4427 (4)

This upper bound is also an excellent approximation for typical values of M
and N . log2(M/N) is simply the cost to store the quotient q in an Open
Address scheme. 1.4427 bits (1 nat) can be called a ‘steering overhead’:
it can be viewed as information which steers an algorithm to recover the
remainder r. We’ve mentioned above that the elemental storage cost in
Cleary’s Compact Hash is log2(M/N) + 2; and we now see that this is nearly
optimal. In Cuckoo Hash the cost is log2(M/N)+log2(KT); the use ofKT ≥ 3
eliminates need for any steering overhead.

3 Types of Hash Tables

Simple List

When access speed is not important, a simple list of keys will suffice to store a
subset. To minimize memory we will want to store just the quotients instead
of the entire keys. This will require a side channel of ‘steering information’
which is discussed in detail in Section 5.

Open-Address Tables: Cleary’s Compact Hash

‘Open-addressing’ is the most popular and simplest hash table method: stor-
age for one entry is provided in each drawer. When inserting a new entry
for which the corresponding drawer is already otherwise occupied, nearby
drawers are probed in a prescribed sequence until a matching entry or an
empty drawer is found.

Normally ‘quotienting’ to reduce the cost of storing the key is unavailable
with this method, but Cleary was able to achieve quotienting in an open-
address scheme (Cleary Compact Hash tables) by providing two ‘steering
bits,’ in each drawer: a ‘virgin’ bit (set initially and cleared when some
inserted element has remainder r equal to that drawer’s index) and a ‘change’
bit (set when the element physically in a drawer has a different index from
its left-adjacent element).

4

This method requires that the code search a neighborhood about the
indexed entry in order to reconstruct the indexes; and sometimes already-
placed elements must be moved. This makes it difficult to construct a stable
tag, but Darragh-Cleary have a workaround (see below), using 4 or 5 extra
bits to construct such a tag.

All hash tables also require an ‘empty bit’ to distinguish drawers which
are physically empty, but this seldom actually costs memory. For example, if
the stored quotient can range from 0 ≤ q < 4090, 12 bits will be allocated for
quotients, and a left-over value (q = 4095) can be used as an empty indicator.
The designer would have to be very unlucky for both the number of possible
payloads and the number of possible quotients to be exact powers of two.
(In practice, the coder would probably store q + 1 as the quotient instead of
q, so that all zero-bits becomes the empty indicator.)

Chained-Address Tables: Allen’s Tight Hash

In chained-address schemes, no reprobing is done. Instead each drawer has
an associated list of bins; and that list will grow as needed to accommodate
all insertions whose keys map to that drawer. ‘Quotienting’ is automatic: the
drawer index doesn’t change. There are various implementations of chained-
address hash tables; we focus on one due to the author, very similar to a
method due to Valmari.

In Tight Hash, there are a fixed number of bins allocated to each drawer,
e.g. 24 bins in a main bin group, and 4 bins in each of two secondary
bin groups. When the bins in a drawer are exhausted, a bin group from
a neighboring drawer is used. Because of severe restrictions on the bin-
group linkages, only about 4 bits are spent on a ‘quasi-pointer’ for each
bin-group, for a net cost of less than 0.4 bits per bin. A typical KT might be
KT = 32 in Allen’s approach. The size in bits for (quotient + quasi-pointers)
is log2(M/N) + log2(KT) + 0.4.

Alternate-Address Tables (Cuckoo)

Cuckoo hash tables are sometimes classed as ‘Open Address’ but their princi-
ples are too different to condone that terminology. In the cuckoo system, two
or more cabinets are provided and different hashing functions h(u′)→ (q, r)
are provided for the different cabinets. (In my implementation I achieve this

5

by simply using different but nearly equal divisors: B1, B2, B3, I ensure
that these are all prime numbers but this is non-essential.)

Searching for a given key may need to examine each cabinet. A new entry
is inserted into whichever cabinet has an empty drawer at the appropriate
position. When no empty drawer is found, the new entry is inserted any-
way, dislodging whichever entry was already there. (Much like a cuckoo bird
commandeering another bird’s nest! For improved speed, 2 or more bins
may be provided in each drawer, but our focus is on memory cost.) The
dislodged entry will then be inserted elsewhere, perhaps doing another dis-
lodgement, and so on. There is no overhead. The size in bits for the quotient
is log2(M/N) + log2(KT).

Indexed Tables

If the key is m bits and you don’t want to bother with quotienting you can
still save, say, 8 bits in each table entry by using the 8 high-order bits of the
key to select one of 256 smallish hash tables (of any type). Only (m − 8)
key bits need be stored now. (This scheme breaks down if extended to give
individual tables with very low populations. In the extreme case you will
expend bits just to denote that some tables are completely empty!) Key
storage is reduced by log2(KT) bits; this is log2(256) = 8 in the example.
This technique is a “poor man’s quotienting.”

Hash Tree

In a digital search tree (‘trie’), a node may contain a list of pointers to its
children, along with any other needed payload. The trie can be organized
as a hash table; instead of storing pointers, we can use an implicit pointer
as a key to access another entry in the table. If that entry exists (i.e. it
is occupied and its quotient matches the quotient of the implicit pointer)
then the node is discovered with no bits wasted on a pointer! The only cost
here is the stored key, or rather its quotient. The key will comprise a tag
to denote the parent node uniquely, and a child index of log2 J bits where J
is the number of child pointers that can arise conceptually from the parent
node.

If nodes are never moved after initial insertion then the bin number,
denoted with log2(B + KT) bits, can be used for the tag. (This suffices
with Allen’s Tight Hash: nodes are sometimes relocated slightly but this is

6

detected on each search.) Nodes are relocated in Cleary’s Compact Hash;
the Darragh-Cleary Compact Hash Tree circumvents the problem by using
log2(B ·W) bits for the tag where B is the number of drawers and W is a
hoped-for upper bound on the number of elements that can be mapped to
the same drawer. (These elements are maintained in insertion order, so the
index 0 ≤ w < W is reconstructed in each search. Darragh-Cleary suggest
W = 16 but mention W = 32 as an alternative to make the chance of failure
almost infinitesimal.

Neither W nor J need be powers of two: The code will do arithmetic like
h(((w ·J) + j) ·B+ rparent)→ q′ ·B+ r′; treating these fields as using a fixed
whole number of bits is just for ease of exposition. Thus, W ≈ 25 is available
as a compromise between W = 16 and W = 32. Similarly, if J = 45 you
don’t really need to waste six bits to represent a child index: it will be the
final product L ·N ·W · J that matters.

For the Darragh-Cleary method, the net cost of a quotient in bits is
log2 J+4+2 bits, where 4 = log2W and 2 is for the Virgin and Change bits al-
ready mentioned. For Allen’s Tight Hash Tree, the cost is log2 J+log2(KT)+
0.4 which will be identical to the Darragh-Cleary cost when KT = 48; or one
bit less when KT = 24. A compact hash tree cannot be implemented with
Cuckoo Hash – there is no way to construct a stable tag.

4 Some Simple Applications of Hash Tables

Peg Solitaire

There are M = 233 possible positions in Peg Solitaire but, with a reversal
trick, only some 13 million (N) positions need be stored to depict all so-
lutions. This example is developed in the cited source code. 14 bits are
used for each quotient in the Tight Chained Hash (where KT = 37) and 11
bits for Cuckoo Hash (where KT = 4). These are in agreement with the
log2(

M
N

) + log2(KT) quotient cost shown above.
No payload bits need be allocated at all in this application. That a posi-

tion was encountered and placed in the table at all denotes that a successful
path to an end position exists. A brief loop through possible moves will
discover the successful move.

7

Checkers-position Caching

Suppose a checkers-playing program uses 75 bits to represent an arbitrary
checkers position, and wishes to store N (say, 500 million) positions in a
cache. The designer may want that cache to store as many positions as
possible; we may assume that the size (500 million) was chosen to use up
almost all available memory. Obviously this designer wants the cache to
use as few bits as possible for each position. Two bits may suffice for the
‘payload’ since it is probably enough to remember whether the position is
Won, Drawn or Lost. (In fact, with only three possibilities to distinguish,
the two bits of payload might be replaced with a single trit.)

Supposing KT ≈ L ≈ 1, then B ≈ N . Since 500 million is about 229, the
75-bit position code will be decomposed into a 29-bit remainder and a 46-bit
quotient. The total storage for each entry might be 50 bits: 46 bits for the
quotient, 2 bits for a payload, and 2 ‘steering’ bits needed, in effect, to help
us recover the key’s remainder (and hence the key).

In this example 92% (46 bits out of 50) of the table is spent on quotient
storage. A method first published by Zobrist will reduce this substantially.
Simply discard all but 21 bits of the quotient! This produces a false match
with probability 2−21, or 0.0000477%, when a second key maps to a drawer
which is already occupied, but reduces the total bits needed per element
from 50 to 25. The designer must decide whether he’d rather store 500
million positions with about 100 of them erroneous, or store only 250 million
positions, but with perfect reliability. (The 100 errors is calculated for L =
0.90, and would be even smaller for a more typical L = 0.80. If you can
tolerate 3300 errors, get 625 million positions in the same space by storing
just 16 quotient bits.)

Rubik’s Cube Solutions

Here’s another example where a very small payload suffices. To record the
solution to Rubik’s Cube from any starting position, a single trit per position
suffices: Record the remainder after division by 3 of the number of moves
needed to win. If the remainder is, for example, 1 (so that total number of
moves might be 31) then search the results of possible moves until arriving at
one with remainder 0. This move must be correct (it yields a remaining path
to solution with only 30). The 0 remainder cannot correspond to a 33-move
position because Rubik’s Cube moves are reversible. No position moved to

8

from the win-in-31 position can require more than 32 moves: a single-move
reversion to the win-in-31 is always available.

5 Storage as a simple list

Hash tables feature very fast look-up, but we sacrifice speed when pursuing
the absolute minimum storage cost. To record a set of size N for later
transmission, we can simply set B = N , reduce each element to its quotient
and drawer index and sort the quotients by their drawer index. If we are
lucky and each drawer has exactly one element, this yields an elemental cost
of log2(M/N) bits – no overhead. But in practice, some drawers will be
empty while some have two or more items, so this simple method doesn’t
quite work.

We can correct this defect by sending the list of drawer populations on
a separate channel. If, for example, the populations are (0, 2, 4, 0, 0, 1,
1, 0), the receiver can use this information to reconstruct that the first two
items whose quotients are transmitted were in the 2nd drawer, the next four
items were in the 3rd drawer, and so on. A simple way to represent a small
whole number (k) with few bits is a ‘Stone Age tally’ of k consecutive 1-bits
followed by a 0-bit as delimiter. For example (0, 2, 4, 0, 0, 1, 1, 0) becomes
(0 110 11110 0 0 10 10 0). In this encoding of drawer sizes there is one 1-bit
for each item and one 0-bit for each drawer. Since we’ve assumed number
of items and number of drawers are equal, this yields a total of two bits per
item. This is the same steering overhead we saw with Cleary’s Compact Hash
Table and indeed, although details are different, these bits can be mapped
to Cleary’s virgin and change bits.

There is no need to have N = B exactly in this approach. If N/B is
allowed to vary, the elemental cost will be Cost = log2(M/N)+ log2(N/B)+
1 + B/N . By varying N/B we will be trading off new bits in the required
quotient with the 0-bits used for each drawer in the size code, or vice versa.
Cost is minimized (at log2(M/N) + 1.91393 bits), when N/B = ln(2) =
0.69315. We approach this minimum closely, with Cost = log2(M/N) + 2,
when N/B = 1 or N/B = 0.5.

Of course the 1.91393 bits for steering overhead is not a theoretical min-
imum – it depends on the ‘Stone Age tally’ representation of populations
which, albeit elegant, is not quite optimal theoretically. But assumingN/B =
1, and that the resultant population codes follow a Poisson distribution, it

9

might seem we can do no better than 1.8825 bits: the Shannon entropy of
a Poisson variate with mean 1. Yet we know we should be able to approach
1.4427 bits. Before reading ahead, see if you can figure out what we’re miss-
ing. (Hint: If there are multiple ways to represent the same list, then that
redundancy denotes wasted information. An intuitive way to see this is that
the choice of which to use among multiple representations can be used as a
channel of extra information.)

6 Jamie’s Trit

I have reviewed several methods to provide steering overhead of about 2
bits. Cuckoo hash with four cabinets is a straightforward example. Cleary
Compact Hash tables use 2 bits of steering (but need another 4 bits to build
a stable tag). My own Tight Chained Hash needs, in effect, about 5 or 6 bits
for steering equivalent (but needs no extra bits for stable tagging). And the
simple list of elements with a side-channel of drawer populations in ‘Stone
Age tally’ format uses 2 bits of steering per element (or 1.91393 bits when
N/B = 0.69315).

However the information-theoretical optimum is known to be 1.4427 bits
(log2(e)). I have no idea how to manipulate a ‘nat,’ but manipulating a
‘trit’ isn’t too difficult. Trits are frequently used implicitly in computer
programming. For example, the checkers-playing example needs only a trit
({ Won, Drawn, Lost }) as its payload, and solitaire puzzles like Rubik’s
cube can also get by with just a trit as payload. Storing trits efficiently as
bits is easy: Pack five trits (t0, t1, t2, t3, t4) into an octet (b) of bits with the
arithmetic b = 34t4 + 33t3 + 32t2 + 3t1 + t0. (This spends 1.6000 bits per trit
compared with the theoretical 1.5850 bits.)

But how do we get the list representation overhead down from two bits to
a single trit? I found myself pondering this question from time to time. One
day it struck me that I was overlooking an important insight from information
theory. Test yourself before reading on!

In the set listing system just presented with N = B, 18.4% of drawers will
have a population of two, and another 8.0% will have a population of three or
more. A pair has two different orderings, and if we don’t take advantage of
the bit specifying the chosen ordering, we’ve just wasted a bit of information.
Recovering that bit from each bucket with a plural population will net us
0.264 bits on average. not quite enough it might seem to reduce the cost from

10

2 trits to a single trit, but recall that the ’Stone Age tally’ was chosen for
simplicity, not optimality. In fact, coding t as a trit on { Zero, One, Plurality
} (and then, if needed, recoding t − 1 recursively) conserves bits compared
with the ’Stone Age tally.’

Once I recalled the insight that otherwise wasted information should be
exploited, solution immediately struck me. Provide each drawer with a trit
denoting the number of elements which map to that drawer: { 0, 1, 2+ }.
Sort all the elements mapping to that drawer, except for the final one, into
ascending sequence of their quotients, always placing the largest quotient
into the penultimate position. For example, if there are five elements and
their quotients are (13, 17, 19, 23, 29) a valid ordering would be (13, 17,
23, 29, 19). When the ‘steering trit’ tells us there are 2 or more elements in
the list, a simple scan looking for the first order-reversal will locate the final
element in that list.

The method will seldom be practical, and the savings too minuscule to
bother with anyway, but it did seem neat to me since it ties directly to an im-
portant bound from information theory Cost ≈ log2(M/N) + log2(2.71828).
I decided to use my boyhood nickname and to call this “Jamie’s Trit.”

7 References

• Methods for Memory-Efficient Hash Tables
Allen, J.D. Source code for memory-efficient hash tables.
http://james.fabpedigree.com/jdas htab.tar.gz; 2020.

• Cleary Compact Hash
Cleary, J.G. Compact hash tables using bidirectional linear probing.
IEEE Trans. Computers C-33(9): 828-834; 1984.

• Compact Hash Tree
Darragh J.J., Cleary J.G., Witten, I.H. Bonsai: a Compact Representa-
tion of Trees. Software Practice and Experience 23(3): 277-291; March
1993.

• Very Tight Hash Table
Geldenhuys, J., Valmari, A. Nearly Memory-optimal Data Structure
itshape ACM Digital Library.

11

• Zobrist Hashing
Zobrist, A.L. A New Hashing Method with Application for Game Play-
ing
itshape Tech. Rep. 88, Comp.Sci. Dept., University of Wisconsin 1969.

12

