
ON THE MINIMUM OVERLAP PROBLEM

T. AGAMA

Abstract. In this note we study the minimum overlap problem. We obtain

the following crude inequality for the problem

M(n) < D(k)(1− o(1))
n

4

where D(k) > 1.

1. Introduction and problem statement

The minimum overlap problem was first posed by then then Hungarian mathe-
matician Paul Erdős. The problem is often stated in the following way:
Let A = {ai} and B = {bj} be any two complementary subsets, a splitting of
the set {1, 2 . . . , n} such that |A| = |B| = n

2 . Let Mk denotes the number of
solutions to the equation ai − bj = k, where −n ≤ k ≤ n. Let us denote by
M(n) := minA,BmaxkMk. Then the problem asks for an estimate for M(n) for suf-
ficiently large values of n. There has been significant progress in estimating from
below and above the quantity M(n). Erdős [1] managed to obtain the following
upper and lower bounds

M(n) < (1 + o(1))
n

2
and M(n) >

n

4
.

The lower bound was improved to (see [2])

M(n) > (1− 2−
1
2 )n

and latter to (see [2])

M(n) >

√
(4−

√
15)(n− 1)

the most recent of which is [2]

M(n) >

√
(4−

√
15)n.

The upper bound, to the contrary, developed quite steadily overtime in the after-
math of Erdős’s result (see [1])

M(n) < (1 + o(1))
2n

5
,

a result due to Motzkin, Ralston and Selfridge. The best known upper bound
concerning this problem is due to Haugland [3], given by

M(n) < (1 + o(1))0.38093n.
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In this note we obtain the following crude upper bound to the problem

Theorem 1.1. Let A = {ai} and B = {bj} be any two complementary subsets,
a splitting of the set {1, 2 . . . , n} such that |A| = |B| = n

2 . Let Mk denotes the
number of solutions to the equation ai − bj = k, where −n ≤ k ≤ n. Let us denote
by M(n) := minA,BmaxkMk, then for a fixed k we have the inequality

M(n) < D(k)(1− o(1))
n

4

where D(k) > 1.

2. Preliminary result

Theorem 2.1. Let {rj}nj=1 and {hj}nj=1 be any sequence of real numbers, and let

r and h be any real numbers satisfying
n∑

j=1

rj = r and
n∑

j=1

hj = h, and

(r2 + h2)1/2 =

n∑
j=1

(r2j + h2
j )1/2,

then

n∑
j=2

rjhj =

n∑
j=2

hj

( j∑
i=1

ri +

j−1∑
i=1

ri

)
− 2

n−1∑
j=1

rj

n−j∑
k=1

hj+k.

Proof. Consider a right angled triangle, say ∆ABC in a plane, with height h and
base r. Next, let us partition the height of the triangle into n parts, not necessarily
equal. Now, we link those partitions along the height to the hypotenuse, with the
aid of a parallel line. At the point of contact of each line to the hypotenuse, we
drop down a vertical line to the next line connecting the last point of the previous
partition, thereby forming another right-angled triangle, say ∆A1B1C1 with base
and height r1 and h1 respectively. We remark that this triangle is covered by the
triangle ∆ABC, with hypotenuse constituting a proportion of the hypotenuse of
triangle ∆ABC. We continue this process until we obtain n right-angled triangles
∆AjBjCj , each with base and height rj and hj for j = 1, 2, . . . n. This construction
satisfies

h =

n∑
j=1

hj and r =

n∑
j=1

rj

and

(r2 + h2)1/2 =

n∑
j=1

(r2j + h2
j )1/2.

Now, let us deform the original triangle ∆ABC by removing the smaller triangles
∆AjBjCj for j = 1, 2, . . . n. Essentially we are left with rectangles and squares
piled on each other with each end poking out a bit further than the one just above,
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and we observe that the total area of this portrait is given by the relation

A1 = r1h2 + (r1 + r2)h3 + · · · (r1 + r2 + · · ·+ rn−2)hn−1 + (r1 + r2 + · · ·+ rn−1)hn

= r1(h2 + h3 + · · ·hn) + r2(h3 + h4 + · · ·+ hn) + · · ·+ rn−2(hn−1 + hn) + rn−1hn

=

n−1∑
j=1

rj

n−j∑
k=1

hj+k.

On the other hand, we observe that the area of this portrait is the same as the
difference of the area of triangle ∆ABC and the sum of the areas of triangles
∆AjBjCj for j = 1, 2, . . . , n. That is

A1 =
1

2
rh− 1

2

n∑
j=1

rjhj .

This completes the first part of the argument. For the second part, along the
hypotenuse, let us construct small pieces of triangle, each of base and height (ri, hi)
(i = 1, 2 . . . , n) so that the trapezoid and the one triangle formed by partitioning
becomes rectangles and squares. We observe also that this construction satisfies
the relation

(r2 + h2)1/2 =

n∑
i=1

(r2i + h2
i )1/2,

Now, we compute the area of the triangle in two different ways. By direct strategy,
we have that the area of the triangle, denoted A, is given by

A = 1/2

( n∑
i=1

ri

)( n∑
i=1

hi

)
.

On the other hand, we compute the area of the triangle by computing the area of
each trapezium and the one remaining triangle and sum them together. That is,

A = hn/2

( n∑
i=1

ri +

n−1∑
i=1

ri

)
+ hn−1/2

( n−1∑
i=1

ri +

n−2∑
i=1

ri

)
+ · · ·+ 1/2r1h1.

By comparing the area of the second argument, and linking this to the first argu-
ment, the result follows immediately. �

Corollary 2.2. Let f : N −→ C, then we have the decomposition∑
n≤x−1

∑
j≤x−n

f(n)f(n + j) =
∑

2≤n≤x

f(n)
∑

m≤n−1

f(m).

Proof. Let us take f(j) = rj = hj in Theorem 2.1, then we denote by G the partial
sums

G =

n∑
j=1

f(j)
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and we notice that
n∑

j=1

√
(h2

j + r2j ) =

n∑
j=1

√
(f(j)2 + f(j)2

=

n∑
j=1

√
(f(j)2 + f(j)2

=
√

2

n∑
j=1

f(j).

Since
√

(G2 + G2) = G
√

2 =
√

2
n∑

j=1

f(j) our choice of sequence is valid and, there-

fore the decomposition is valid for any arithmetic function. �

Lemma 2.3. (Area method) Let f : N −→ C. If∑
n≤x

f(n)f(n + l0) > 0

then there exist some constant 1 > C(l0) > 0 such that∑
n≤x

f(n)f(n + l0) <
1

C(l0)x

∑
2≤n≤x

f(n)
∑

m≤n−1

f(m).

Proof. By Corollary 2.2, we obtain the identity by taking f(j) = rj = hj∑
n≤x−1

∑
j≤x−n

f(n)f(n + j) =
∑

2≤n≤x

f(n)
∑

m≤n−1

f(m).

Next we observe that∑
n≤x−1

∑
j≤x−n

f(n)f(n + j)�
∑
n≤x

∑
j≤x

f(n)f(n + j)

=
∑
n≤x

f(n)f(n + 1) +
∑
n≤x

f(n)f(n + 2)

+ · · ·
∑
n≤x

f(n)f(n + l0) + · · ·
∑
n≤x

f(n)f(n + x)

≥ |M(l0)|
∑
n≤x

f(n)f(n + l0)

+ |N (l0)|
∑
n≤x

f(n)f(n + l0)

+ · · ·+
∑
n≤x

f(n)f(n + l0) + · · ·+ |R(l0)|
∑
n≤x

f(n)f(n + l0)

=

(
|M(l0)|+ |N (l0)|+ · · ·+ 1

+ · · ·+ |R(l0)|
)∑

n≤x

f(n)f(n + l0)

≥ C(l0)x
∑
n<x

f(n)f(n + l0).
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where min{M(l0)|, |N (l0)| . . . , |R(l0)|} = C(l0). By inverting this inequality, the
result follows immediately. �

3. Main result

We begin this section by introducing an arithmetic function on particular sets
of integers.

Definition 3.1. Let A = {ai} and B = {bj} be any two complementary subsets,
a splitting of the set {1, 2 . . . , n} such that |A| = |B| = n

2 . Then we consider the
following arithmetic function

∨(ci) =

{
1 if c ∈ A ∪B

0 otherwise.

Lemma 3.2. Let A = {ai} and B = {bj} be any two complementary subsets, a
splitting of the set {1, 2 . . . , n} such that |A| = |B| = n

2 , then we have∑
1≤i≤n

∨(ai) =
n

2

and ∑
1≤j≤n

∨(bj) =
n

2
.

Proof. This is an easy consequence of the size of |A ∪ B| = n and the size of each
complementary subset. �

Theorem 3.3. Let A = {ai} and B = {bj} be any two complementary subsets,
a splitting of the set {1, 2 . . . , n} such that |A| = |B| = n

2 . Let Mk denotes the
number of solutions to the equation ai − bj = k, where −n ≤ k ≤ n. Let us denote
by M(n) := minA,BmaxkMk, then for a fixed k we have the inequality

M(n) < D(k)(1− o(1))
n

4

where D(k) > 1.

Proof. Let k be fixed with −n ≤ k ≤ n, then the underlying problem is to estimate
the correlation ∑

1≤i≤n

∨(ai) ∨ (ai + k).

Applying the area method, there exist some constant 1 > R(k) > 0 such that∑
1≤i≤n

∨(ai) ∨ (ai + k) <
1

R(k)2n

∑
2≤i≤n

∨(ai)
∑

s≤i−1

∨(as).
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Applying partial summations on the right-hand side of the inequality, we have the
following ∑

2≤i≤n

∨(ai)
∑

s≤i−1

∨(as) ≤
∑

1≤i≤n

(i− 1) ∨ (ai)

=
∑

1≤i≤n

i ∨ (ai)−
∑

1≤i≤n

∨(ai)

= n
∑

1≤i≤n

∨(ai)−
n∫

i=1

∑
1≤i≤k

∨(ai)dk −
n

2

≤ n2

2
− n

2
.

It follows that ∑
1≤i≤n

∨(ai) ∨ (ai + k) <
1

R(k)2n

(
n2

2
− n

2

)
and the claim upper bound follows, where 0 < R(k) < 1. �

1.
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