Conservation Of Displacement From Isotropic Symmetry

Eric Su
eric.su.mobile@gmail.com
https://sites.google.com/view/physics-news/home

(Dated: August 15, 2020)

Abstract

The length of a rod in motion may be different from the length of another identical rod at rest. The difference in length between two rods is independent of the direction of the motion of the moving rod. The isotropic symmetry demands that the difference in length is conserved in any direction. All moving rods are of identical length as long as the speed of motion is identical. The center of two rods in anti-parallel motion will coincide. The ends will also coincide. Such end-to-end match exists in all reference frames. The length of a rod is independent of reference frame and motion.

I. INTRODUCTION

The isotropic symmetry exists between two identical rods moving at the same speed but along two random radial directions. The length of both rods is identical if the speed of both rods is identical. The length of a rod in motion may be different from the length of an identical rod at rest. The difference in length is independent of the radial direction.

The isotropic symmetry becomes parity symmetry in one-dimensional space. Two identical rods in antiparallel motion will exhibit isotropic symmetry. The centers of each rod will form parity symmetry. As the rods moves toward each other, the centers of the rod will coincide. The ends of each rod will also coincide with the ends of the other rod if both rods are of identical length.

II. PROOF

A. Isotropic Symmetry

Two identical rods, $R O D_{1}$ and $R O D_{2}$, are stationary relative to a reference frame F_{3}. The rest frame of $R O D_{1}$ is F_{1}. The length of $R O D_{1}$ is L_{1}. The rest frame of $R O D_{2}$ is F_{2}. The length of $R O D_{2}$ is L_{2}.

Both $R O D_{1}$ and $R O D_{2}$ are stationary relative to F_{3}. Therefore,

$$
\begin{equation*}
L_{1}=L_{2} \tag{1}
\end{equation*}
$$

Let t_{3} be the time of F_{3}. At $t_{3}=0$, let $R O D_{1}$ be under acceleration A relative to F_{3} in a random radial direction from the origin of F_{3}. Let $R O D_{2}$ be under acceleration A relative to F_{3} in another radial direction from the origin of F_{3}. Each rod is aligned with its direction of motion. F_{1} becomes different from F_{2}.

Let L_{3} be the length of the third identical rod that is stationary relative to F_{3}. The isotropic symmetry in F_{3} demands that the difference between L_{1} and L_{3} is identical to the difference between L_{2} and L_{3}.

$$
\begin{equation*}
L_{1}-L_{3}=L_{2}-L_{3} \tag{2}
\end{equation*}
$$

Eleminate L_{3} from both sides,

$$
\begin{equation*}
L_{1}=L_{2} \tag{3}
\end{equation*}
$$

In F_{3}, the length of $R O D_{1}$ is identical to the length of $R O D_{2}$ at any time as long as both rods move at identical speed.

B. Parity Symmetry

Confine the motion of the rods to one dimension. The isotropic symmetry becomes parity symmetry.

Let 3 identical rods be stationary relative to F_{3}. The center of $R O D_{1}$ is located at R position. The center of $R O D_{2}$ is located at -R position. The center of $R O D_{3}$ is located at the origin. Let the length of rod be L_{1} for $R O D_{1}, L_{2}$ for $R O D_{2}, L_{3}$ for $R O D_{3}$.

$$
\begin{equation*}
L_{1}=L_{2}=L_{3} \tag{4}
\end{equation*}
$$

At $t_{3}=0$, put $R O D_{1}$ and $R O D_{2}$ into anti-parallel motion. Let $R O D_{1}$ be under acceleration A relative to F_{3} in -x direction. Let $R O D_{2}$ be under acceleration A relative to F_{3} in +x direction. Both rods move toward each other and will meet at the origin.

The centers of both rods move at the same speed and will reach the origin at the same time.

The parity symmetry demands that the difference in length between $R O D_{1}$ and $R O D_{3}$ as observed from F_{3} is identical to the difference in length between $R O D_{2}$ and $R O D_{3}$ as observed from F_{3}.

$$
\begin{equation*}
L_{1}-L_{3}=L_{2}-L_{3} \tag{5}
\end{equation*}
$$

Eliminate L_{3} from both sides,

$$
\begin{equation*}
L_{1}=L_{2} \tag{6}
\end{equation*}
$$

Both rods in motion are of identical length in F_{3}.
As the center of $R O D_{1}$ coincides with the center of $R O D_{2}$ in F_{3}, the ends of both rods also coincide. The end-to-end match on both rods exists due to the identical length, $L_{1}=L_{2}$ in F_{3}.

However, the end-to-end match exists in all reference frames if it exists in one reference frame. Therefore, $R O D_{1}$ and $R O D_{2}$ are of the identical length in all reference frames.

III. CONCLUSION

The length of an object is independent of its motion. The isotropic symmetry corresponds to the conservation of the length in all reference frames.

Lorentz transformation[1.2.3] incorrectly claims the length of a moving object depends on its speed. This has been proved to be false. Consequently, the theory of special relativity, which is based on Lorentz transformation, is also false.

Furthermore, any theory that violates the conservation of space displacement is invalid in physics.
[1] Lorentz, H. A.: De relatieve beweging van de aarde en den aether. Zittingsverlag Akad. v. Wet. 1, 74 (1892), English trans. The relative motion of the earth and the aether. In: Zeeman, P., Fokker, A. D. (eds.) Collected Papers. Nijho, The Hague (1937)
[2] B. J. Hunt (1988), The Origins of the FitzGerald Contrac-
tion, British Journal for the History of Science 21, 6176.
[3] H. R. Brown (2001), The origin of length contraction: 1. The FitzGeraldLorentz deformation hypothesis, American Journal of Physics 69, 1044 1054. E-prints: gr-qc/0104032; PITT-PHIL-SCI00000218.
[4] Eric Su: List of Publications, http://vixra.org/author/eric_su

