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Abstract

We study the Little Oxford English Dictionary. We draw the natural logarithm of the number of

entries and headwords normalised, respectively, starting with a letter vs the natural logarithm of

the rank of the letter, normalised as well as unnormalised. We observe that the plots of the entries

and the headwords are almost the same. We find that the entries and the headwords underlie a

magnetisation curve of a Spin-Glass in presence of little external magnetic field.
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I. INTRODUCTION

English is the most spoken language, used as lingua-franca by many all over the world, en-

riching the language as well as getting enriched by the language. Interactions of the English

langauge with other languages of Europe is an interesting subject of its own. Apparently,

above half of the vocabulary has come from latin. We have studied two languages from Eu-

rope recently. One is Romanian. Another is Basque. Both exibits almost the same features

in our analysis. Romanian is known to be a Romance language, off-shoot of spoken latin.

Basque, from our analysis, appears to be a Romance language, in all practicality. What

about the English language from our perspective? To go into that topic, we have started

with the Little Oxford English Dictionary, [1]. There are all types of entries or, entries

or, generalised words and headwords. We count all the entries letter by letter, followed by

enumeration of headwords letter by letter.

In the preliminary study, [2], the present author has gone into probing the word (and

verb,adverb,adjective) contents along the letters in a language. The letters were arranged

in ascending order of their ranks from the rank one. The letter with the highest number of

words starting with, was taken as of rank one. For a natural language, a dictionary from it

to English, was a natural choice for that type of study. The author has found that behind

each language which was subjected to investigation, there is a curve of magnetisation. From

that the author has conjectured that behind any written natural language there are curves of

magnetisation, for words, verbs, adverbs and adjectives respectively. A prelimimnary study

of Webster’s English dictionary was also undertaken. The graphical law was found to exist

in the contemporary chinese usages, [2], also.

Moreover, we looked into, [3], dictionaries of five disciplines of knowledge and found existence

of a curve magnetisation under each discipline. This was followed by finding of graphical

law behind the bengali language,[4], the basque language[5]. This was pursued by finding

of graphical law behind Romanian, [6], five more disciplines of knowledge, [7], Onsager core

of Abor-Miri, Mising languages,[8] and Onsager Core of Romanised Bengali language,[9]

respectively.

We describe how a graphical law is hidden within in the Little Oxford English Dictionary,

in this article. We organise the paper as follows. We explain our method of study in the

section IV after giving an introduction to magnetisation and the the standard curves of
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magnetisation of Ising model in the sections II and III respectively. In the ensuing section,

section V, we narrate our graphical results. We describe how natural logarithm of number

of generalised words or, all entries arranged in descending order, normalised by different

normalisers when plotted against the respective rank are fit with lines of magnetisations.

Then we conclude about the existence of the graphical law. The same thing is carried

on for the headwords. The section VI is Discussion. In that section we try to find out

relationship of the English language, on the basis of the Little Oxford English Dictionary,

with other languages on the basis of underlying magnetisation curves. We end up through

acknowledgement section VII and bibliography.

II. MAGNETISATION

The two dimensional Ising model,[10], in absence of external magnetic field, is prototype

of an Ising model. In case of square lattice of planar spins, one spin interacts with four

other nearest neighbour spins i.e. on an average to another one spin. Below a certain

ambient temperature, denoted as Tc, the two dimensional array of spins reduces to a planar

magnet with magnetic moment per site varying as a function of T
Tc
. This function was

inferred, [11], by Lars Onsager way back in 1948, [12] and thoroughly deduced thereafter by

C.N.Yang[13]. This function we are referring to as Onsager solution. Moreover, systems, [14],

showing behaviour like Onsager solution is rare to come across. Graphically, the Onsager

solution appears as in fig.1. In the Bragg-Williams and Bethe-Peierls approximations for

an Ising model in any dimension, in (absence)presence of external magnetic fields, reduced

magnetisation as a function of reduced temperature, below the phase transition temperature,

Tc, vary as in the figures 2-4. The Bragg-Williams and Bethe-Peierls approximations are

motivated below.

A. Bragg-Williams approximation

Let us consider a coin. Let us toss it many times. Probability of getting head or, tale is

half i.e. we will get head and tale equal number of times. If we attach value one to head,

minus one to tale, the average value we obtain, after many tossing is zero. Instead let us

consider a one-sided loaded coin, say on the head side. The probability of getting head is
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more than one half, getting tale is less than one-half. Average value, in this case, after many

tossing we obtain is non-zero, the precise number depends on the loading. The loaded coin

is like ferromagnet, the unloaded coin is like paramagnet, at zero external magnetic field.

Average value we obtain is like magnetisation, loading is like coupling among the spins of

the ferromagnetic units. Outcome of single coin toss is random, but average value we get

after long sequence of tossing is fixed. This is long-range order. But if we take a small

sequence of tossing, say, three consecutive tossing, the average value we obtain is not fixed,

can be anything. There is no short-range order.

Let us consider a row of spins, one can imagine them as spears which can be vertically up

or, down. Assume there is a long-range order with probability to get a spin up is two third.

That would mean when we consider a long sequence of spins, two third of those are with

spin up. Moreover, assign with each up spin a value one and a down spin a value minus

one. Then total spin we obtain is one third. This value is referred to as the value of long-

range order parameter. Now consider a short-range order existing which is identical with

the long-range order. That would mean if we pick up any three consecutive spins, two will

be up, one down. Bragg-Williams approximation means short-range order is identical with

long-range order, applied to a lattice of spins, in general. Row of spins is a lattice of one

dimension.

Now let us imagine an arbitrary lattice, with each up spin assigned a value one and a down

spin a value minus one, with an unspecified long-range order parameter defined as above by

L = 1
N
Σiσi, where σi is i-th spin, N being total number of spins. L can vary from minus one

to one. N = N++N−, where N+ is the number of up spins, N− is the number of down spins.

L = 1
N
(N+ −N−). As a result, N+ = N

2
(1 + L) and N− = N

2
(1− L). Magnetisation or, net

magnetic moment , M is µΣiσi or, µ(N+ −N−) or, µNL, Mmax = µN . M
Mmax

= L. M
Mmax

is

referred to as reduced magnetisation. Moreover, the Ising Hamiltonian,[10], for the lattice of

spins, setting µ to one, is −ϵΣn.nσiσj −HΣiσi, where n.n refers to nearest neighbour pairs.

The difference △E of energy if we flip an up spin to down spin is, [15], 2ϵγσ̄ + 2H, where

γ is the number of nearest neighbours of a spin. According to Boltzmann principle, N−
N+

equals exp(− △E
kBT

), [16]. In the Bragg-Williams approximation,[17], σ̄ = L, considered in the

thermal average sense. Consequently,

ln
1 + L

1− L
= 2

γϵL+H

kBT
= 2

L+ H
γϵ

T
γϵ/kB

= 2
L+ c

T
Tc

(1)
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where, c = H
γϵ

, Tc = γϵ/kB, [18].
T
Tc

is referred to as reduced temperature.

Plot of L vs T
Tc

or, reduced magentisation vs. reduced temperature is used as reference curve.

In the presence of magnetic field, c ̸= 0, the curve bulges outward. Bragg-Williams is a Mean

Field approximation. This approximation holds when number of neighbours interacting with

a site is very large, reducing the importance of local fluctuation or, local order, making the

long-range order or, average degree of freedom as the only degree of freedom of the lattice.

To have a feeling how this approximation leads to matching between experimental and Ising

model prediction one can refer to FIG.12.12 of [15]. W. L. Bragg was a professor of Hans

Bethe. Rudlof Peierls was a friend of Hans Bethe. At the suggestion of W. L. Bragg, Rudlof

Peierls following Hans Bethe improved the approximation scheme, applying quasi-chemical

method.

B. Bethe-peierls approximation in presence of four nearest neighbours, in absence

of external magnetic field

In the approximation scheme which is improvement over the Bragg-Williams, [10],[15],[16],[17],[18],

due to Bethe-Peierls, [19], reduced magnetisation varies with reduced temperature, for γ

neighbours, in absence of external magnetic field, as

ln γ
γ−2

ln factor−1

factor
γ−1
γ −factor

1
γ

=
T

Tc

; factor =
M

Mmax
+ 1

1− M
Mmax

. (2)

ln γ
γ−2

for four nearest neighbours i.e. for γ = 4 is 0.693. For a snapshot of different

kind of magnetisation curves for magnetic materials the reader is urged to give a google

search ”reduced magnetisation vs reduced temperature curve”. In the following, we describe

datas generated from the equation(1) and the equation(2) in the table, I, and curves of

magnetisation plotted on the basis of those datas. BW stands for reduced temperature in

Bragg-Williams approximation, calculated from the equation(1). BP(4) represents reduced

temperature in the Bethe-Peierls approximation, for four nearest neighbours, computed

from the equation(2). The data set is used to plot fig.2. Empty spaces in the table, I, mean

corresponding point pairs were not used for plotting a line.
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BW BW(c=0.01) BP(4,βH = 0) reduced magnetisation

0 0 0 1

0.435 0.439 0.563 0.978

0.439 0.443 0.568 0.977

0.491 0.495 0.624 0.961

0.501 0.507 0.630 0.957

0.514 0.519 0.648 0.952

0.559 0.566 0.654 0.931

0.566 0.573 0.7 0.927

0.584 0.590 0.7 0.917

0.601 0.607 0.722 0.907

0.607 0.613 0.729 0.903

0.653 0.661 0.770 0.869

0.659 0.668 0.773 0.865

0.669 0.676 0.784 0.856

0.679 0.688 0.792 0.847

0.701 0.710 0.807 0.828

0.723 0.731 0.828 0.805

0.732 0.743 0.832 0.796

0.756 0.766 0.845 0.772

0.779 0.788 0.864 0.740

0.838 0.853 0.911 0.651

0.850 0.861 0.911 0.628

0.870 0.885 0.923 0.592

0.883 0.895 0.928 0.564

0.899 0.918 0.527

0.904 0.926 0.941 0.513

0.946 0.968 0.965 0.400

0.967 0.998 0.965 0.300

0.987 1 0.200

0.997 1 0.100

1 1 1 0

TABLE I. Reduced magnetisation vs reduced temperature datas for Bragg-Williams approxima-

tion, in absence of and in presence of magnetic field, c = H
γϵ = 0.01, and Bethe-Peierls approxima-

tion in absence of magnetic field, for four nearest neighbours .

C. Bethe-peierls approximation in presence of four nearest neighbours, in pres-

ence of external magnetic field

In the Bethe-Peierls approximation scheme , [19], reduced magnetisation varies with reduced

temperature, for γ neighbours, in presence of external magnetic field, as

ln γ
γ−2

ln factor−1

e
2βH
γ factor

γ−1
γ −e

− 2βH
γ factor

1
γ

=
T

Tc

; factor =
M

Mmax
+ 1

1− M
Mmax

. (3)

Derivation of this formula ala [19] is given in the appendix of [7].

ln γ
γ−2

for four nearest neighbours i.e. for γ = 4 is 0.693. For four neighbours,

0.693

ln factor−1

e
2βH
γ factor

γ−1
γ −e

− 2βH
γ factor

1
γ

=
T

Tc

; factor =
M

Mmax
+ 1

1− M
Mmax

. (4)
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In the following, we describe datas in the table, II, generated from the equation(4) and curves

of magnetisation plotted on the basis of those datas. BP(4, βH = 0.06) stands for reduced

temperature in Bethe-Peierls approximation, for four nearest neighbours, in presence of a

variable external magnetic field, H, such that βH = 0.06. calculated from the equation(4)’

BP(4, βH = 0.05) stands for reduced temperature in Bethe-Peierls approximation, for four

nearest neighbours, in presence of a variable external magnetic field, H, such that βH = 0.05.

calculated from the equation(4), BP(4, βH = 0.04) stands for reduced temperature in

Bethe-Peierls approximation, for four nearest neighbours, in presence of a variable external

magnetic field, H, such that βH = 0.04. calculated from the equation(4), BP(4, βH = 0.02)

stands for reduced temperature in Bethe-Peierls approximation, for four nearest neighbours,

in presence of a variable external magnetic field, H, such that βH = 0.02. calculated

from the equation(4), BP(4, βH = 0.01) stands for reduced temperature in Bethe-Peierls

approximation, for four nearest neighbours, in presence of a variable external magnetic field,

H, such that βH = 0.01. calculated from the equation(4), The data set is used to plot fig.3

and fig.4. Empty spaces in the table, II, mean corresponding point pairs were not used for

plotting a line.

D. Spin-Glass

In the case coupling between( among) the spins, not necessarily n.n, for the Ising model

is( are) random, we get Spin-Glass. When a lattice of spins randomly coupled and in an

external magnetic field, goes over to the Spin-Glass phase, magnetisation increases steeply

like 1
T−Tc

i.e. like the branch of rectangular hyperbola, upto the the phase transition temper-

ature, followed by very little increase,[20–22], in magnetisation, as the ambient temperature

continues to drop.

Theoretical study of Spin Glass started with the paper by Edwards, Anderson,[23]. They

were trying to explain two experimental results concerning continuous disordered freez-

ing(phase transition) and sharp cusp in static magnetic susceptibility. This was followed by

a paper by Sherrington, Kickpatrick, [24], who dealt with Ising model with interactions being

present among all neighbours. The interaction is random, follows Gaussian distribution and

does not distinguish one pair of neighbours from another pair of neighbours, irrespective of

the distance between two neighbours. In presence of external magnetic field, they predicted
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BP(4,βH = 0.1) BP(4,βH = 0.08) BP(4,βH = 0.06) BP(4,βH = 0.05) BP(4,βH = 0.04) BP(4,βH = 0.02) BP(4,βH = 0.01) reduced magnetisation

0 0 0 0 0 0 0 1

0.597 0.589 0.583 0.580 0.577 0.572 0.569 0.978

0.603 0.593 0.587 0.584 0.581 0.575 0.572 0.977

0.660 0.655 0.647 0.643 0.639 0.632 0.628 0.961

0.673 0.665 0.657 0.653 0.649 0.641 0.637 0.957

0.688 0.679 0.671 0.667 0.654 0.650 0.952

0.716 0.696 0.931

0.745 0.734 0.723 0.718 0.713 0.702 0.697 0.927

0.766 0.754 0.743 0.737 0.731 0.720 0.714 0.917

0.787 0.775 0.762 0.756 0.749 0.737 0.731 0.907

0.796 0.783 0.770 0.764 0.757 0.745 0.738 0.903

0.848 0.832 0.816 0.808 0.800 0.785 0.778 0.869

0.854 0.837 0.821 0.813 0.805 0.789 0.782 0.865

0.866 0.849 0.832 0.823 0.815 0.799 0.791 0.856

0.878 0.859 0.841 0.833 0.824 0.807 0.799 0.847

0.902 0.882 0.863 0.853 0.844 0.826 0.817 0.828

0.931 0.908 0.887 0.876 0.866 0.846 0.836 0.805

0.940 0.917 0.895 0.884 0.873 0.852 0.842 0.796

0.966 0.941 0.916 0.904 0.892 0.869 0.858 0.772

0.996 0.968 0.940 0.926 0.914 0.888 0.876 0.740

1 0.929 0.877 0.735

0.977 0.936 0.883 0.730

0.989 0.944 0.889 0.720

0.990 0.945 0.710

1.00 0.955 0.897 0.700

0.963 0.903 0.690

0.973 0.910 0.680

0.909 0.670

0.993 0.925 0.650

0.976 0.942 0.651

1.00 0.640

0.983 0.946 0.928 0.628

1.00 0.963 0.943 0.592

0.972 0.951 0.564

0.990 0.967 0.527

0.964 0.513

1.00 0.500

1.00 0.400

0.300

0.200

0.100

0

TABLE II. Bethe-Peierls approx. in presence of little external magnetic fields

in their next paper, [25], below spin-glass transition temperature a spin-glass phase with

non-zero magnetisation. Almeida etal, [26], Gray and Moore, [27],finally Parisi, [28], [29]

improved and gave final touch, [30], to their line of work. Parisi and collaborators, [31]-[35],

wrote a series of papers in postscript, all revolving around a consistent assumption of con-

stant magnetisation in the spin-glass phase in presence of little constant external magnetic

field.

In another sequence of theoretical work, by Fisher etal,[36–38], concluded that for Ising

model with nearest neighbour or, short range interaction of random type spin-glass phase

does not exist in presence of external magnetic field.

For recent series of experiments on spin-glass, the references, [39, 40], are the places to look
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into.

For an indepth account, accessible to a commonner, the series of articles by late P. W.

Anderson in Physics Today, [41]-[47], is probably the best place to look into. For a book to

enter into the subject of spin-glass, one may start at [48].

Here, in our work to follow, spin-glass refers to spin-glass phase of a system with infinite

range random interactions.

III. CURVES OF MAGNETISATION

The Ising Hamiltonian,[10],[19],for a lattice of spins is −ϵΣn.nσiσj−HΣiσi, where n.n refers

to nearest neighbour pairs, σi is i-th spin, H is external magnetic field and ϵ is coupling

between two nearest neighbour spins. σi is binary i.e. can take values ±1. At a temperature

T, below a certain temperature called phase transition temperature, Tc, for the two dimen-

sional Ising model in absence of external magnetic field i.e. for H equal to zero, the exact,

unapproximated, Onsager solution gives reduced magnetisation as a function of reduced

temperature as, [13], [19],

M

Mmax

= [1− (sinh
0.8813736

T
Tc

)−4]1/8.

Graphically, the Onsager solution appears as in fig.1. In the Bragg-Williams and Bethe-
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FIG. 1. Reduced magnetisation vs reduced temperature curves for exact solution of two dimensional

Ising model, due to Onsager, in absence of external magnetic field

Peierls approximations for an Ising model in any dimension, in presence of external mag-

netic fields, reduced magnetisation as a function of reduced temperature, below the phase
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FIG. 2. Reduced magnetisation vs reduced reduced temperature curves for Bragg-Williams ap-

proximation, in presence of little magnetic field, BW(c=0.01) and Bethe-Peierls approximation in

absence of magnetic field, BP(4,βH=0), for four nearest neighbours (outer one).

transition temperature, Tc, vary as in the figures 3-5. The graphs in the figures,1-4, are
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FIG. 3. Reduced magnetisation vs reduced temperature curves, BP(4,βH), for Bethe-Peierls

approximation in presence of little external magnetic fields, for four nearest neighbours, with

βH = 2m.

used in the sections to follow as reference curves.
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FIG. 4. Reduced magnetisation vs reduced temperature curves, BP(4,βH=0.1) and

BP(4,βH=0.08).
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letter A B C D E F G H I J K L M

number 2446 2480 4122 2691 1832 2027 1453 1610 1982 412 337 1398 2238

splitting 2363+83 2290+190 4102+20 2688+3 1826+6 2008+19 1415+38 1578+32 1889+93 411+1 325+12 1385+13 2217+21

letter N O P Q R S T U V W X Y Z

number 786 1150 3652 225 2331 5428 2679 949 702 1184 17 159 74

splitting 770+16 1051+99 3634+18 225+0 2323+8 5411+17 2387+292 936+13 702+0 1169+15 15+2 138+21 74+0

TABLE III. english entries: the first row represents letters of the english alphabet in the serial

order, the second row is the respective number of entries, the third row describes the splitting of

entries.

IV. METHOD OF STUDY

The English language alphabet is composed of twenty six letters. We take the the Little

Oxford English Dictionary, [1]. Then we count all the entries in the dictionary, [1], one by

one from the beginning to the end, starting with different letters. This has been done in

two steps for the dictionary. First, we have counted all entries initiating with A form the

section for the letter A. The number is two thousand three hundred sixty three. Second, we

have enlisted all entries initiating with A form the sections for the letters B, D,..,Z. Then

we have removed from the list entries already appearing in the section belonging to A. Then

we have counted the number of the entries in that list. The number is eighty three. As

a result total number of words beginning with A is two thousand three hundred and sixty

three. This exercise was then followed for B,C,..Z. The result is the table, III. Next we

count all the head-words, written in boldface, in the dictionary, [1], one by one from the

beginning to the end, starting with different letters. This has been done in two steps for the

dictionary. First, we have counted all the head-words, initiating with A form the section for

the letter A. The number is one thousand three hundred eleven. Second, we have enlisted

all head-words initiating with A form the sections for the letters B, D,..,Z. Then we have

removed from the list entries already appearing in the section belonging to A. Then we have

counted the number of the head-words in that list. The number is zero. As a result total

number of words beginning with A is one thousand three hundred and eleven. This exercise

was then followed for B,C,..Z. The result is the table, IV.

To visualise the pattern of change of number of entries and head-words along the the letters

initiating with, we draw the number of entries and head-words vs. sequence number of the

respective letters in the fig.5.
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letter A B C D E F G H I J K L M

number 1311 1186 2083 1285 869 977 752 840 948 201 180 704 1217

splitting 1311+0 1186+0 2083+0 1285+0 867+2 977+0 751+1 840+0 948+0 201+0 180+0 704+0 1217+0

letter N O P Q R S T U V W X Y Z

number 431 552 1812 119 1066 2484 1185 562 376 597 7 82 39

splitting 431+0 552+0 1812+0 119+0 1066+0 2484+0 1185+0 562+0 376+0 597+0 7+0 82+0 39+0

TABLE IV. english headwords: the first row represents letters of the english alphabet in the serial

order, the second row is the respective number of headwords, the third row describes the splitting

of headwords.

FIG. 5. Vertical axis is number of entries and head-words of english and horizontal axis is the

respective letters of the English alphabet. Letters are represented by the sequence number in the

alphabet.

To explore for the occurance of graphical law in the entries, we assort the letters according to

the number of entries, in the descending order, denoted by f and the respective rank, denoted

by k. k is a positive integer starting from one. Moreover, we attach a limiting rank, klim,

or, kd and a limiting number of words. The limiting rank is maximum rank plus one, here it

is twenty seven and the limiting number of words is one. As a result both lnf
lnfmax

and lnk
lnklim

varies from zero to one. Then we plot lnf
lnfmax

against lnk
lnklim

. We then ignore the letters with

the highest, then next highest, then next next highest and so on number of words and redo

the plot, normalising the lnfs with next-to-maximum lnfnextmax, and starting from k = 2;

next-to-next-to-maximum lnfnextnextmax, and starting from k = 3; next-to-next-to-next-to-

maximum lnfnextnextnextmax, and starting from k = 4, nnnnmax lnfnnnnmax, and starting
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from k = 5, nnnnnmax lnfnnnnnmax, and starting from k = 6, nnnnnnmax lnfnnnnnnmax,

and starting from k = 7, 10n-max lnfnnnnnnnnnmax, and starting from k = 11. The results

are the table V and the figures (fig.6-fig.14).

To explore for the occurance of graphical law in the head-words, we assort the letters accord-

ing to the number of head-words, in the descending order, denoted by f and the respective

rank, denoted by k. k is a positive integer starting from one. Moreover, we attach a limiting

rank, klim, or, kd and a limiting number of words. The limiting rank is maximum rank plus

one, here it is twenty seven and the limiting number of words is one. As a result both lnf
lnfmax

and lnk
lnklim

varies from zero to one. Then we plot lnf
lnfmax

against lnk
lnklim

. We then ignore the

letters with the highest, then next highest, then next next highest and so on number of words

and redo the plot, normalising the lnfs with next-to-maximum lnfnextmax, and starting from

k = 2; next-to-next-to-maximum lnfnextnextmax, and starting from k = 3; next-to-next-to-

next-to-maximum lnfnextnextnextmax, and starting from k = 4, nnnnmax lnfnnnnmax, and

starting from k = 5, nnnnnmax lnfnnnnnmax, and starting from k = 6, 10n-max lnf10n−max,

and starting from k = 11. The results are the table VI and the figures (fig.18-fig.24).

V. RESULTS

A. all words
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k lnk lnk/lnklim f lnf lnf/lnfmax lnf/lnfnmax lnf/lnfnnmax lnf/lnfnnnmax lnf/lnfnnnnmax lnf/lnfnnnnnmax lnf/lnfnnnnnnmax lnf/lnf9nmax lnf/lnf10nmax

1 0 0 5428 8.599 1 Blank Blank Blank Blank Blank Blank Blank Blank

2 0.69 0.209 4122 8.324 0.968 1 Blank Blank Blank Blank Blank Blank Blank

3 1.10 0.333 3652 8.203 0.954 0.985 1 Blank Blank Blank Blank Blank Blank

4 1.39 0.421 2691 7.898 0.918 0.949 0.963 1 Blank Blank Blank Blank Blank

5 1.61 0.488 2679 7.893 0.918 0.948 0.962 0.999 1 Blank Blank Blank Blank

6 1.79 0.542 2480 7.816 0.909 0.939 0.953 0.990 0.990 1 Blank Blank Blank

7 1.95 0.591 2446 7.802 0.907 0.937 0.951 0.988 0.988 0.998 1 Blank Blank

8 2.08 0.630 2331 7.754 0.902 0.932 0.945 0.982 0.982 0.992 0.994 Blank Blank

9 2.20 0.667 2238 7.713 0.897 0.927 0.940 0.977 0.977 0.987 0.989 Blank Blank

10 2.30 0.697 2027 7.614 0.885 0.915 0.928 0.964 0.965 0.974 0.976 1 Blank

11 2.40 0.727 1982 7.592 0.883 0.912 0.926 0.961 0.962 0.971 0.973 0.997 1

12 2.48 0.752 1832 7.513 0.874 0.903 0.916 0.951 0.952 0.961 0.963 0.987 0.990

13 2.56 0.776 1610 7.384 0.859 0.887 0.900 0.935 0.936 0.945 0.946 0.970 0.973

14 2.64 0.800 1453 7.281 0.847 0.875 0.888 0.922 0.922 0.932 0.933 0.956 0.959

15 2.71 0.821 1398 7.243 0.842 0.870 0.883 0.917 0.918 0.927 0.928 0.951 0.954

16 2.77 0.839 1184 7.077 0.823 0.850 0.863 0.896 0.897 0.905 0.907 0.929 0.932

17 2.83 0.858 1150 7.048 0.820 0.847 0.859 0.892 0.893 0.902 0.903 0.926 0.928

18 2.89 0.876 949 6.855 0.797 0.824 0.836 0.868 0.868 0.877 0.879 0.900 0.903

19 2.94 0.891 786 6.667 0.775 0.801 0.813 0.844 0.845 0.853 0.855 0.876 0.878

20 3.00 0.909 702 6.554 0.762 0.787 0.799 0.830 0.830 0.839 0.840 0.861 0.863

21 3.04 0.921 412 6.021 0.700 0.723 0.734 0.762 0.763 0.770 0.772 0.791 0.793

22 3.09 0.936 337 5.820 0.677 0.699 0.709 0.737 0.737 0.745 0.746 0.764 0.767

23 3.14 0.952 225 5.416 0.630 0.651 0.660 0.686 0.686 0.693 0.694 0.711 0.713

24 3.18 0.964 159 5.069 0.589 0.609 0.618 0.642 0.642 0.649 0.650 0.666 0.668

25 3.22 0.976 74 4.304 0.501 0.517 0.525 0.545 0.545 0.551 0.552 0.565 0.567

26 3.26 0.988 17 2.833 0.329 0.340 0.345 0.359 0.359 0.362 0.363 0.372 0.373

27 3.30 1 1 0 0 0 0 0 0 0 0 0 0

TABLE V. entries of the Little Oxford English Dictionary: ranking, natural logarithm, normalisa-

tions
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FIG. 6. Vertical axis is lnf
lnfmax

and horizontal axis is lnk
lnklim

. The + points represent the entries

of the english language with the fit curve being Bethe-Peierls curve in presence of four nearest

neighbours and in absence of external magnetic field. The uppermost curve is the Onsager solution.

FIG. 7. Vertical axis is lnf
lnfnext−max

and horizontal axis is lnk
lnklim

. The + points represent the

entries of the english language with the fit curve being Bethe-Peierls curve in presence of four

nearest neighbours and little magnetic field, m = 0.005 or, βH = 0.01. The uppermost curve is

the Onsager solution.
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FIG. 8. Vertical axis is lnf
lnfnn−max

and horizontal axis is lnk
lnklim

. The + points represent the entries

of the english language with the fit curve being Bethe-Peierls curve in presence of four nearest

neighbours and little magnetic field, m = 0.01 or, βH = 0.02. The uppermost curve is the Onsager

solution.

FIG. 9. Vertical axis is lnf
lnfnnn−max

and horizontal axis is lnk
lnklim

. The + points represent the

entries of the english language with the fit curve being Bethe-Peierls curve in presence of four

nearest neighbours and little magnetic field, m = 0.025 or, βH = 0.05. The uppermost curve is

the Onsager solution.
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FIG. 10. Vertical axis is lnf
lnfnnnn−max

and horizontal axis is lnk
lnklim

. The + points represent the

entries of the english language with the fit curve being Bethe-Peierls curve in presence of four

nearest neighbours and little magnetic field, m = 0.03 or, βH = 0.06. The uppermost curve is the

Onsager solution.

FIG. 11. Vertical axis is lnf
lnfnnnnn−max

and horizontal axis is lnk
lnklim

. The + points represent the

entries of the english language with the fit curve being Bethe-Peierls curve in presence of four

nearest neighbours and little magnetic field, m = 0.04 or, βH = 0.08. The uppermost curve is the

Onsager solution.
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FIG. 12. Vertical axis is lnf
lnfnnnnnn−max

and horizontal axis is lnk
lnklim

. The + points represent

the entries of the english language with the fit curve being Bethe-Peierls curve in presence of four

nearest neighbours and little magnetic field, m = 0.04 or, βH = 0.08. The uppermost curve is the

Onsager solution.

FIG. 13. Vertical axis is lnf
lnfnnnnnnnnn−max

and horizontal axis is lnk
lnklim

. The + points represent

the entries of the english language, with the fit curve being Bethe-Peierls curve in presence of four

nearest neighbours and little magnetic field, m = 0.05 or, βH = 0.1. The reference curve is the

Onsager solution. The entries of the Little Oxford English Dictionary are not going over to the

Onsager solution.
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FIG. 14. Vertical axis is lnf
lnf10n−max

and horizontal axis is lnk
lnklim

. The + points represent the

entries of the english language. The reference curve is the Onsager solution. The entries of the

Little Oxford English Dictionary are not going over to the Onsager solution.
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1. conclusion

From the figures (fig.6-fig.14), we observe that behind the entries of the dictionary, [1], there

is a magnetisation curve, BP(4,βH = 0.01), in the Bethe-Peierls approximation with four

nearest neighbours, in presence of liitle magnetic field, βH = 0.01.

Moreover, the associated correspondance with the Ising model is,

lnf

lnfnext−to−maximum

←→ M

Mmax

,

and

lnk ←→ T.

k corresponds to temperature in an exponential scale, [49]. As temperature decreases, i.e.

lnk decreases, f increases. The letters which are recording higher entries compared to those

which have lesser entries are at lower temperature. As the English language expands, the

letters which get enriched more and more, fall at lower and lower temperatures. This is a

manifestation of cooling effect as was first observed in [50] in another way.

On the top of it, on successive higher normalisations, entries of the English language,[1], do

not go over to Onsager solution in the normalised lnf vs lnk
lnklim

graphs.

As matching of the plots in the figures fig.(6-14), with comparator curves i.e. the magneti-

sation curves of Bethe-Peierls approximations, is with large dispersions and dispersion does

not reduce significantly over higher orders of normalisations, to explore for possible existence

of spin-glass transition, in presence of little external magnetic field, lnf
lnfmax

, lnf
lnfnext−max

and

lnf
lnfnn−max

are drawn against lnk in the figures fig.15-fig.17.
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FIG. 15. Vertical axis is lnf
lnfmax

and horizontal axis is lnk. The + points represent the entries of

the english language.

FIG. 16. Vertical axis is lnf
lnfnext−max

and horizontal axis is lnk. The + points represent the entries

of the english language.

In the figures Fig.15-Fig.17, the points has a smoothened transition, rather than a clearcut

transition. Above the transition point(s), the line is almost horizontal, increasing little and

below the transition point(s), pointsline rises sharply, but without the tail part, like the

branch of a rectangular hyperbola. Hence, the entries of the English language,[1], better
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FIG. 17. Vertical axis is lnf
lnfnn−max

and horizontal axis is lnk. The + points represent the entries

of the english language.

be described, to underlie a Spin-Glass magnetisation curve, [20], in the presence of little

magnetic field.
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k lnk lnk/lnklim f lnf lnf/lnfmax lnf/lnfnmax lnf/lnfnnmax lnf/lnfnnnmax lnf/lnfnnnnmax lnf/lnfnnnnnmax lnf/lnf10nmax

1 0 0 2484 7.818 1 Blank Blank Blank Blank Blank Blank

2 0.69 0.209 2083 7.642 0.977 1 Blank Blank Blank Blank Blank

3 1.10 0.333 1812 7.502 0.960 0.982 1 Blank Blank Blank Blank

4 1.39 0.421 1311 7.179 0.918 0.939 0.957 1 Blank Blank Blank

5 1.61 0.488 1285 7.159 0.916 0.937 0.954 0.997 1 Blank Blank

6 1.79 0.542 1217 7.104 0.909 0.930 0.947 0.990 0.992 1 Blank

7 1.95 0.591 1186 7.078 0.905 0.926 0.943 0.986 0.989 0.996 Blank

8 2.08 0.630 1185 7.077 0.905 0.926 0.943 0.986 0.989 0.996 Blank

9 2.20 0.667 1066 6.972 0.892 0.912 0.929 0.971 0.974 0.981 Blank

10 2.30 0.697 977 6.884 0.881 0.901 0.918 0.959 0.962 0.969 Blank

11 2.40 0.727 948 6.854 0.877 0.897 0.914 0.955 0.957 0.965 1

12 2.48 0.752 869 6.767 0.866 0.886 0.902 0.943 0.945 0.953 0.987

13 2.56 0.776 840 6.733 0.861 0.881 0.897 0.938 0.940 0.948 0.982

14 2.64 0.800 752 6.623 0.847 0.867 0.883 0.923 0.925 0.932 0.966

15 2.71 0.821 704 6.557 0.839 0.858 0.874 0.913 0.916 0.923 0.957

16 2.77 0.839 597 6.392 0.818 0.836 0.852 0.890 0.893 0.900 0.933

17 2.83 0.858 562 6.332 0.810 0.829 0.844 0.882 0.884 0.891 0.924

18 2.89 0.876 552 6.314 0.808 0.826 0.842 0.880 0.882 0.889 0.921

19 2.94 0.891 431 6.066 0.776 0.794 0.809 0.845 0.847 0.854 0.885

20 3.00 0.909 376 5.930 0.759 0.776 0.790 0.826 0.828 0.835 0.865

21 3.04 0.921 201 5.303 0.678 0.694 0.707 0.739 0.741 0.746 0.774

22 3.09 0.936 180 5.193 0.664 0.680 0.692 0.723 0.725 0.731 0.758

23 3.14 0.952 119 4.779 0.611 0.625 0.637 0.666 0.668 0.673 0.697

24 3.18 0.964 82 4.407 0.564 0.577 0.587 0.614 0.616 0.620 0.643

25 3.22 0.976 39 3.664 0.469 0.479 0.488 0.510 0.512 0.516 0.535

26 3.26 0.988 7 1.946 0.249 0.255 0.259 0.271 0.272 0.274 0.284

27 3.30 1 1 0 0 0 0 0 0 0 0

TABLE VI. headwords of the Little Oxford English Dictionary:ranking, natural logarithm, nor-

malisations

B. headwords

24



FIG. 18. Vertical axis is lnf
lnfmax

and horizontal axis is lnk
lnklim

. The + points represent the

headwords of the english language with the fit curve being Bethe-Peierls curve in presence of four

nearest neighbours and in absence of external magnetic field. The uppermost curve is the Onsager

solution.

FIG. 19. Vertical axis is lnf
lnfnext−max

and horizontal axis is lnk
lnklim

. The + points represent the

headwords of the english language with the fit curve being Bethe-Peierls curve in presence of four

nearest neighbours and little magnetic field, m = 0.005 or, βH = 0.01. The uppermost curve is

the Onsager solution.
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FIG. 20. Vertical axis is lnf
lnfnn−max

and horizontal axis is lnk
lnklim

. The + points represent the

headwords of the english language with the fit curve being Bethe-Peierls curve in presence of four

nearest neighbours and little magnetic field, m = 0.01 or, βH = 0.02. The uppermost curve is the

Onsager solution.

FIG. 21. Vertical axis is lnf
lnfnnn−max

and horizontal axis is lnk
lnklim

. The + points represent the

headwords of the english language with the fit curve being Bethe-Peierls curve in presence of four

nearest neighbours and little magnetic field, m = 0.025 or, βH = 0.05. The uppermost curve is

the Onsager solution.

26



FIG. 22. Vertical axis is lnf
lnfnnnn−max

and horizontal axis is lnk
lnklim

. The + points represent the

headwords of the english language with the fit curve being Bethe-Peierls curve in presence of four

nearest neighbours and little magnetic field, m = 0.03 or, βH = 0.06. The uppermost curve is the

Onsager solution.

FIG. 23. Vertical axis is lnf
lnfnnnnn−max

and horizontal axis is lnk
lnklim

. The + points represent the

headwords of the english language with the fit curve being Bethe-Peierls curve in presence of four

nearest neighbours and little magnetic field, m = 0.04 or, βH = 0.08. The uppermost curve is the

Onsager solution.
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FIG. 24. Vertical axis is lnf
lnf10n−max

and horizontal axis is lnk
lnklim

. The + points represent the

headwords of the english language. The uppermost curve is the Onsager solution. The headwords

of the Little Oxford English Dictionary are not going over to the Onsager solution.
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1. conclusion

From the figures (fig.18-fig.24), we observe that behind the head-words of the Little Oxford

English Dictionary, [1], there is a magnetisation curve, BP(4,βH = 0.01), in the Bethe-

Peierls approximation with four nearest neighbours, in presence of liitle magnetic field,

βH = 0.01.

Moreover, the associated correspondance with the Ising model is,

lnf

lnfnext−to−maximum

←→ M

Mmax

,

and

lnk ←→ T.

k corresponds to temperature in an exponential scale, [49]. As temperature decreases, i.e.

lnk decreases, f increases. The letters which are recording higher entries compared to those

which have lesser entries are at lower temperature. As the English language expands, the

letters which get enriched more and more, fall at lower and lower temperatures. This is a

manifestation of cooling effect as was first observed in [50] in another way.

On the top of it, on successive higher normalisations, headwords of the Little Oxford English

Dictionary, do not go over to Onsager solution in the normalised lnf vs lnk
lnklim

graphs.

As matching of the plots in the figures fig.(18-24), with comparator curves i.e. the magneti-

sation curves of Bethe-Peierls approximations, is with large dispersions and dispersion does

not reduce significantly over higher orders of normalisations, to explore for possible existence

of spin-glass transition, in presence of little external magnetic field, lnf
lnfmax

, lnf
lnfnext−max

and

lnf
lnfnn−max

are drawn against lnk in the figures fig.(25-27).
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FIG. 25. Vertical axis is lnf
lnfmax

and horizontal axis is lnk. The + points represent the headwords

of the english language.

FIG. 26. Vertical axis is lnf
lnfnext−max

and horizontal axis is lnk. The + points represent the

headwords of the english language.

In the figures Fig.25-Fig.27, the points has a smoothened transition, rather than a clearcut

transition. Above the transition point(s), the line is almost horizontal, increasing little and

below the transition point(s), pointsline rises sharply, but without the tail part, like the

branch of a rectangular hyperbola. Hence, the headwords of the English language,[1], better
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FIG. 27. Vertical axis is lnf
lnfnn−max

and horizontal axis is lnk. The + points represent the headwords

of the english language.

be described, to underlie a Spin-Glass magnetisation curve, [20], in the presence of little

magnetic field.

VI. DISCUSSION

We compare the English language with the Basque and the Romanian in the table, VII.

To make the comparison more explicit, we draw lnf
lnfmax

vs lnk simultaneously in the figure

Fig.28for both the entries and headwords of the English langauge,[1], as well as lnf
lnfmax

vs lnk

for headwords of the English,[1], headwords of the Basque, [51] and words of the Romanian

language,[52], in the figure Fig.29, to put forward their relative spin-glass natures.

Moreover, it is of immediate interest to carry on the analysis of this paper to the non-

compound words and to the non-derived words of the Little Oxford English Dictionary, [1].

It is of further interest to continue the analysis with the Pocket Oxford English Dictionary,

[53], then with the Concise Oxford English Dictionary, [54], then to the complete Oxford

English Dictionary.
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Englishle Englishlh basque romanian

lnf
lnfmax

vs lnk
lnklim

BP(4, β H=0) BP(4, β H=0) BW(c=0.01) BW(c=0.01)

lnf
lnfnext−max

vs lnk
lnklim

BP(4, β H=0.01) BP(4, β H=0.01) BP(4, β H=0.01) BP(4, β H=0)

lnf
lnfnnmax

vs lnk
lnklim

BP(4, β H=0.02) BP(4, β H=0.02) BP(4, β H=0.01) BP(4, β H=0)

lnf
lnfnnnmax

vs lnk
lnklim

BP(4, β H=0.05) BP(4, β H=0.05) BP(4, β H=0.02) BP(4, β H=0)

lnf
lnfnnnnmax

vs lnk
lnklim

BP(4, β H=0.06) BP(4, β H=0.06) BP(4, β H=0.05)

lnf
lnfnnnnnmax

vs lnk
lnklim

BP(4, β H=0.08) BP(4, β H=0.08) BP(4, β H=0.08)

lnf
lnfnnnnnnmax

vs lnk
lnklim

BP(4, β H=0.08) BP(4, β H=0.1)

lnf
lnf10nmax

vs lnk
lnklim

Onsager:no Onsager:no Onsager:no Onsager:no

Onsager core NO NO NO NO

spin-glass transition consideration

lnf
lnfmax

vs lnk rectangular hyperbolic rise rectangular hyperbolic rise rectangular hyperbolic rise rectangular hyperbolic rise

lnf
lnfnext−max

vs lnk rectangular hyperbolic rise rectangular hyperbolic rise rectangular hyperbolic rise rectangular hyperbolic rise

lnf
lnfnn−max

vs lnk rectangular hyperbolic rise rectangular hyperbolic rise rectangular hyperbolic rise

TABLE VII. comparison of generalised words, headwords of the English and the words of the

basque and the romanian languages
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FIG. 28. Vertical axis is lnf
lnfmax

and horizontal axis is lnk. The + points represent the entries of

the english language and the × points represent the headwords of the english language.

FIG. 29. Vertical axis is lnf
lnfmax

and horizontal axis is lnk. The ∗ points represent the headwords of

the Little Oxford English Dictionary, the +points represent the headwords of the basque language

and the × points represent the words of the romanian language.
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