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Abstract

In this paper, we discuss in brief the most common wave equations in quantum mechanics and some recent
development in wave mechanics. We also present two new quantum wave mechanics equations based on the
Compton momentum. We also question the idea that energy and mass are scalars, and we claim they are
vectors instead. We have good reasons to think that the standard momentum is a mathematical derivative of
the more fundamental Compton momentum. This will hopefully simplify interpretations of quantum mechanics
significantly; our new relativistic wave equations look promising, but need further investigation into what they
predict. This way of looking at quantum mechanics in new light is not in conflict with existing equations, but
they are supplemental to the collection of existing wave equations. We prove mathematically that if one satisfies
our new relativistic energy Compton momentum relation, one also satisfies the standard relativistic energy
momentum relation automatically. They are two sides of the same coin, where the relations to the Compton
wavelength likely represent the deeper reality, so we have reasons to think our new wave mechanics addresses a
deeper level of understanding than the existing conception. We also look at our new wave equation in relation to
hydrogen-like atoms; we follow the “standard approach” used for the Schrödinger equation of putting it in polar
coordinate form and, by change of variables, finding three ODEs and their solutions. We give a table summary
of our new ODEs and their solutions compared to the well-known solutions of the Schrödinger equation.

Key Words: quantum mechanics, de Broglie wavelength, Compton wavelength.

1 Momentum, Energy and Mass: Scalars or Vectors? Think Again!

Before we go into an analysis of quantum mechanics, we need to take a close look on whether momentum, energy
and mass are scalars or vectors. In modern physics, mass is considered a scalar; the same is the case with energy,
while momentum is a vector. Here we will evaluate the assumptions behind why this is so. To our own surprise,
it seems that mass and energy should also be vectors and not scalars. If so, this has implications for quantum
mechanics, and also for our understanding of fundamental particles and time. First, several questions must be
addressed in detail.

1.1 Why is momentum a vector?

The relativistic momentum for a particle with mass is considered to be

p = mv� =
mvq
1� v2

c2

(1)

Since the mass m, and the speed of light c are considered scalars, then it must be the velocity of the particle v

that pushes modern physics to interpret momentum as a vector. This corresponds to the standard view and is even
easier to see when v << c, as we can then approximate the momentum using the first term of a Taylor expansion,
and get the well-known momentum formula

p ⇡ mv (2)

Again, since the mass is considered a scalar, the momentum is considered a vector because the mass is multiplied by
velocity. We can write the momentum as the well-known three-momentum, where it is very clear from the notation
that the velocity causes the momentum to become a vector:
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ppp = (px, py, pz) = m�vvv (3)

where vvv = vx + vy + vz is the particle’s three-velocity
On the other hand, the well-known kinetic energy formula is Ek ⇡ 1

2mv
2, when v << c. In the kinetic energy

formula, the velocity is squared, and a vector multiplied by itself (dot product) is a scalar, so the energy must be
a scalar. However, that the momentum is a vector and energy is a scalar is based on the assumption that the mass
is a scalar, something we will get back to soon.

In modern physics, it is also assumed that photons have momentum, despite the fact that photons are considered
to be massless. In other words, we cannot use the standard momentum formula p = mv� for photons, as is naturally
well known. First, we would have no mass to put into the formula, although we could argue that the imaginary or
equivalent mass of the photon was m = E/c

2. However, we still could not use the relativistic momentum formula,
as inputting v = c would mean we needed to divide by zero, which is mathematically undefined. This is why there
is a separate formula for the momentum of photons, which is given by

p =
h

�
(4)

where h is the Planck constant and � is the wavelength of the photon. The Planck constant is just a constant
and must be a scalar, and a wavelength is normally considered to be a scalar. So, does this mean that the photon
momentum, unlike the standard momentum, is a scalar and not a vector? Further, since the photon momentum is
considered to be a vector, our only choice is to consider the photon wave as a vector. We have to be careful here
distinguishing between the photon wave and the photon wavelength, as the photon wave has a magnitude, which
is its length, but it also has a direction in space. It would be better to reformulate it more precisely, as we suggest
below

p = (px, py, pz) =
h
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where �x + �y + �z = �, and � = k���k.
It is well-known that the photon momentum is considered a vector; more precisely the so-called four-momentum

is given by

p = (pt, px, py, pz) =
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◆
(6)

where v
2
x + v

2
y + v

2
z = c

2. Here one gets the impression that the photon momentum is indeed caused by velocity,

since energy here is considered a scalar. The terms Evx
c2 , Evy

c2 , Evz
c2 give the impression that the photon velocity

makes the photon momentum a vector. But the speed of light is considered a scalar, so where did the vx and vy

and vz suddenly come from? Can we just introduce the velocity of light rather than the speed of light when we
need to turn energy into a vector? This may seem more like a mathematical trick than a well-founded theory, but
let?s explore the idea further. Based on the premise that the photon momentum is a vector due to the four-velocity
of light, then we could even turn energy into a vector by simply claiming we have

E = (Et
, E

x
, E

y
, E

z) =
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◆
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where v2x+ v
2
y + v

2
z = c

2. This is shown simply to highlight that it could be considered a mathematical trick to turn

the photon momentum p = h
� into a vector by suddenly introducing light velocity. We think it is more sound to

assume that the photon wave has a direction in space in addition to a magnitude, so that we simply have ppp = h
��� .

1.2 Mass a Scalar or a Vector?

Assume the smallest possible particle is a spherical indivisible particle, as shown in Figure 1. It clearly has no
direction in space since it is perfectly spherical, so it must be a scalar and not a vector. In standard physics,
elementary particles are point particles, but they also have wave-particle duality. It is also assumed that the matter
wave, which has a length equal to the de Broglie wavelength spread outs symmetrically in all directions. So, standard
physics clearly assumes that a rest-mass is a scalar.

When it comes to macroscopic objects, we can agree that if a parked car is sitting in a given direction, it can be
better described by a vector than a scalar. However, a ball lying on the ground is symmetrical and is a scalar. Still,
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we could imagine that the building blocks of the ball were many oval shaped particles, and then the building blocks
of the ball would be vectors. What we are interested in here is whether the most fundamental particles are vectors
or scalars. In our model, the ultimate particle is indeed indivisible [2], but this is a particle that always travels at
velocity c, except when colliding with other particles. This particle makes up both energy and mass; when it moves,
and it moves with velocity c, then it is what we call energy. So, if the particle in Figure one moves relative to the
observer, then it is a vector. That is, energy is a vector. A mass in our model is two colliding indivisible particles,
this is illustrated in Figure 2. The ultimate mass is two indivisible particles, and this structure is not symmetrical;
it has a direction in space, so it is a vector. In our model, both energy and mass are vectors at the quantum level,
which is unlike standard physics, where mass and energy are scalars.

Figure 1: The figure shows one indivisible particle, and if it is at rest, it is a scalar. However, indivisible particles that
are not colliding are energy that moves at speed c, and since the motion is in a direction, they are vectors.

Figure 2: The figure shows two indivisible particles colliding; this structure is what we call mass, and it can simply
be described as a vector.

Figure 3: The figure shows two indivisible particles traveling after each other with a distance center to center equal
to the Compton wavelength; this is a vector.
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1.3 Mass, Energy, and Time as Scalars or as Vectors?

In standard physics, a fundamental particle is both a point particle, with no spatial dimensions, and at the same
time it is a wave-particle duality. That is, all masses or at least elementary particles have also a matter wave,
normally it is assumed this wave extends out isotopically in all directions of space from the ”center” of the particle;
in that case, the particle is a scalar. However, in our view, this is nothing more than a hypothesis. We will suggest
that the wave of a fundamental particle has a direction in space. A larger mass consisting of many elementary
particles will be a cloud of such particles with waves going in all directions, so a large mass is likely a scalar from
this point of view, while an elementary particle, in our view, is a vector.

The Compton wavelength formula [1] is given by

�c =
~
mc

(8)

Solved with respect to mass this gives

m =
h

�c

1

c
(9)

This simple formula can describe any mass in terms of kg. The Planck constant is a scalar, so is the speed of
light. The wavelength is a magnitude, but we will claim the Compton wavelength itself is a vector. The Compton
wavelength is the distance center to center between indivisible particles, as described by Haug [2], but the Compton
wavelength is a vector. If this is the case, then the mass is a vector of the form

mmm = (mx,my,mz) =
h
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where �x + �y + �z = �, where �c = k���ck. Now relativistic energy will be a vector, because the mass is a vector.
The standard momentum for something with rest-mass will no longer be a vector, but actually a scalar, since we
have p =mmm · vvv. However, one can discuss how velocity can be a vector. The velocity is nothing physical and it has
no direction in space; it is the mass standing still or moving that has a direction in space. However, we will keep
the standard momentum as a scalar; this gives no problems for the consistency of the relativistic energy momentum
relation

||EEE||2 = p
2
c
2 + ||mmm||2c4 (11)

So here we end up with only scalars in our modified standard relativistic energy momentum relation. This may
seem inconsistent at this stage, as we now have a photon momentum that is a vector, and a momentum of particles
with rest-mass that is a scalar. However, as we have suggested in several papers [2], the standard momentum
is a derivative of what we consider the real momentum, or what we call a Compton momentum. The Compton
momentum is given by

pppt =mmmc� (12)

and can be derived from the Compton wavelength of matter, while the standard momentum is linked to the de
Broglie wavelength. In other words, we have

pppt = (px, py, pz) =mmmc� = (mxc�,myc�,mzc�) (13)

and for energy we will have

EEE = (Ex, Ey, Ez) =mmmc
2
� = (mxc

2
�,myc

2
�,mzc

2
�) (14)

However, we recently have shown [2] that one can define a new energy unit simply by dividing the standard
energy unit by c. We see then that the new energy is identical to our Compton momentum. There is actually no
need for both momentum and energy, and we can naturally call this new unit whatever we want: the Compton
momentum, since it is derived from the Compton wavelegth?s relation to matter, or we could call it energy. This
will simplify physics and make it more consistent.

We will even suggested that time is a vector rather than a scalar; that is, we suggest that

ttt = (tx, ty, tz) (15)
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This leads to a 6-dimensional space-time, where the three space dimensions will be directly linked to three time
dimensions. Observations in space are directly linked to observations in time, so the three space dimensions and

the three time dimensions will be two sides of the same coin. That is, we have t =
q
t2x + t2y + t2z. We actually

introduced this in our collision space-time paper, but we said little about it. Now it seems clear to us that our
unified theory is likely fully compatible with a such a 6-dimensional space-time, or as I would prefer to call it,
double-3D, as the three space dimensions are directly linked to the three time dimensions. We will discuss this is
greater depth later.

Returning to velocity, we are not convinced on whether the velocity should be a scalar or a vector. However,
does not seems to be important, as we no longer need the standard momentum since the Compton momentum is
closer to reality. The Compton momentum and kinetic energy are, in our view, clearly vectors that are readily
observable. They are directly linked to the impact from moving objects in collisions. For example, when a car hits
another car, it is of great importance what direction it came from, and the damage from the impact is directly
proportional to v

2 and not to v, when v << c. There are no direct observations of the standard momentum; it
is simply a derivative of the Compton momentum. The standard momentum does not exist physically, as it not
can be observed physically, but can only be derived from observations. The same is true for v in isolation; one
cannot observe a velocity without having a moving object. Since we are working with physics and not just math or
geometry, one can ask if a vector in fundamental physics actually must be something that has a physical extension
in real space. With physical extension in space we are not only talking about a solid object, since solid objects are
not necessarily that solid at the quantum level, but we are talking about something that can actually be measured,
which include interactions with energy. Assume that I have a velocity v; the velocity itself is nothing and cannot be
observed, but a particle moving at velocity v has a direction in space that can be measured through kinetic energy
(collision), or the Compton momentum, but not by standard momentum or v.

2 Standard Momentum and the de Broglie Wavelength

The relativistic de Broglie wavelength [3] is given by

�b =
h

mv�
(16)

where h is the Planck constant, � = 1q
1� v2

c2

, and v is the velocity of the mass. An important note is that the

de Broglie wavelength is not mathematically defined for a rest-mass particle, as setting v = 0 means that we are
dividing by zero. In addition, if we let v be close to zero, then the de Broglie wavelength converges towards infinity.
Next we solve the de Broglie relation with respect to momentum; this gives

p = mv� =
h

�b
(17)

This means that the momentum is not defined for a rest-mass particle, since �b is not defined for a rest-mass
particle. This is somewhat new, as modern physics directly and indirectly assumes that the momentum is simply
zero when v = 0. For any v > 0, the formula gives the correct momentum, but again for a rest-mass particle, the
standard momentum is not defined.

It seems this does not appear in the discussion among physicists. We think the likely reason is that the standard
momentum was suggested long before the relativistic momentum was conceived. The idea that momentum is mass
times velocity was suggested by Newton in the Principia in 1686 and in 1721 by John Jennings [4]. Jennings said
that momentum is the quantity of matter multiplied by the velocity, which is the standard momentum: p ⇡ mv,
which holds when v << c. However, we will claim it is not valid for v = 0. Also, Newton mentioned momentum
in the Principia, but it was less clearly defined than Jennings; the last version of Principia was published several
years after Jennings work1 The momentum suggested by Jennings came long before the development of relativity
theory. So, the relativistic momentum p = mv� was probably derived first by Einstein in 1905.

The de Broglie wavelength was a hypothesis set out by de Broglie in 1923. As it had been shown that light has
a particle-wave duality, de Broglie then speculated that matter had the same characteristics, so he assumed the
matter wave was given by �b = h

mv� . That is, the de Broglie wavelength was derived from the momentum. The
fact that something was understood later does not mean that is less fundamental; on the contrary, since we live so
far from the quantum world in our everyday lives, physics has mostly developed from the top down. Therefore, we
have come up with rules and formulas for macroscopic objects and observations first, then later understood their

1The exact history of momentum would require a detailed historical study of all versions of the Principia.
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connection to the particle and the quantum worlds. So, once the quantum world is established, we can just as well
derive such things as momentum from there. The point is that the momentum, from a quantum perspective, must
be given by the formula 17 and we have shown this means that neither the de Broglie wavelength nor the standard
momentum formula are valid when v = 0. As we will see, this is very important for quantum physics, as all the
quantum wave equations of modern physics will be impacted.

3 The Compton Wavelength and the New Compton Momentum

Around the same time as de Broglie introduced the hypothesis of his matter wave, Compton [1] calculated and
indirectly measured what today is known as the Compton wavelength. The relativistic Compton wavelength of an
electron is given by2

� =
h

mc�
(18)

First of all, here we see there are no issues with v = 0, as this just means that � = 1q
1� v2

c2

= 1q
1� 02

c2

= 1. That

is, the Compton wavelength, unlike the de Broglie wavelength, is mathematically well defined for any velocity of
v < c. See how to derive the Compton wavelength for any mass without knowledge of h in [6].

Next, if we follow a similar approach to the one we used for the de Broglie wavelength, we get

pt = mc� =
h

�
(19)

This is what we will call the total Compton momentum and it is a new type of momentum recently introduced
by Haug [2]. Unlike the standard momentum, this momentum is well defined for v = 0 as well, since the Compton
wavelength � is well defined for v = 0. Also, it does not have strange properties, such as going towards infinity
when v is close to zero, see [7], for example. The Compton wavelength is always on the scale of the atomic quantum
realm (very short compared to anything microscopic).

Further, it is important to note that we can always find the de Broglie wavelength from the Compton wavelength;
we have �b = �

c
v . So, if we know the Compton wavelength, we can calculate the de Broglie wavelength. The same

is true with the standard momentum (the de Broglie momentum); it can always be calculated from the Compton
momentum as p = pt

v
c .

Why should there be two wavelengths linked to matter? And why should we have two types of momentum? We
will suggest that the standard momentum and the de Broglie wavelength only are derivatives of the true matter
wave and the true and deeper physical momentum, namely what we call Compton momentum. If we should connect
the standard energy definition to the Compton momentum, we simply get

E = ptc (20)

That is, the total energy is equal to the Compton momentum multiplied by the speed of light; this is a new
(additional) relativistic energy momentum relation and means we can also derive a new quantum mechanical wave
equation from this new relation, which will be the relation between energy and the Compton momentum.

It is worth mentioning that the standard momentum is never observed directly – it is a mathematical construct.
First, assume we have a brass ball; we can measure its relative weight relative to one kg and then find its mass
relative to one kg. Second, we can put this brass ball in motion. We can then measure its velocity, but we cannot
directly observe mv. What we can observe is the impact from its kinetic energy. We can drop a brass ball, for
example, and measure its velocity just before it hit a brick of ”soft” clay. Most of the kinetic energy will then be
used to make an indent in the clay. Gravesande [8] did this and confirmed that experimentally the kinetic energy
was proportional to v

2 and not just of v. At that time, the question of whether the kinetic energy was a function
of v or v

2 had been a debate among leading physicists for many years. And at least when v << c, the kinetic
energy is a function of v2. So, indeed we can measure the kinetic energy of a moving body, and the mass of a body
easily when it is at rest, and we can easily measure the velocity of a body, but we cannot measure mv; this is a
mathematical entity, that is, however, linked to real observable entities, so it can be very useful. What about our
new Compton momentum? Can it be observed more directly? It should be possible because, as we have explained
here, we think the standard momentum is a derivative of the true (more real) momentum.

First, looking at our new Compton momentum: when v = 0, we get

2Actually this is a relativistic extension of Compton’s work, see [2, 5].
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pt = mc� = mc (21)

In other words, we get a rest-mass momentum that is mc. This is not easy to observe, as it is an embedded mo-
mentum, a rest-mass momentum. This may sound strange, as we are not used to thinking of rest-mass momentum,
and some may even say that this is impossible, as momentum is related to something that is moving. However, that
is the standard momentum that indeed only is defined for something that is moving. This is nothing more strange
than rest-mass energy. If the rest-mass momentum is p̃r = mc, then we must also have what we can call a kinetic
momentum, and this must be

pk = pt � pr = mc� �mc (22)

This formula holds for any v < c. It would require advanced laboratory equipment to test this when v is significantly
close to the speed of light c. However, when v << c what do we expect to observe? When v << c, we can
approximate the formula above with the first term of a Taylor expansion, and we then get

pk ⇡ 1

2
m
v
2

c
(23)

That is, our Compton momentum is a function of v2 and not of v, so it is kinetic energy divided by c. Our Compton
momentum is exactly the same function of v as kinetic energy, but it is simply our standard energy definition
divided by c, a significant finding (that we will come back to in a new update of this paper). Our momentum is
observable through measurements of impacts, while standard momentum is not, as it is a function of v and not v2.
This supports our view that our newly defined Compton momentum is the real momentum and that the standard
momentum is a derivative of this momentum. While the reader may not wish to take this for granted, it will be
helpful to be open to the thought that there can be a momentum (or another term could be chosen and defined)
that is linked to the Compton wavelength, and next we will look at the Relativistic Energy Momentum Relation in
more detail.

4 Relativistic Energy Momentum Relation

The standard relativistic energy momentum of Einstein [9] is given by

E
2 = p

2
c
2 +m

2
c
4 (24)

the standard momentum and this relation have played a central role in developing the well-known quantum me-
chanical wave equations. If our analysis is correct and the standard momentum (de Broglie momentum) not is
valid for rest-mass particles and further, if it is a mathematical derivative of the Compton momentum, then any
quantum mechanical wave equation derived from it will be a wave equation linked to a derivative and all such
quantum mechanical wave equations will probably also not be valid for rest-mass particles.

Our new relativistic energy momentum relation is

E = ptc = pk +mc
2 (25)

When deriving a quantum mechanical wave equation consistent with this, the equation should also be valid for
rest-mass particles, and should also be more directly linked to the depth of the reality, and therefore will likely be
easier to interpret.

This means we are claiming that there are two types of relativistic energy momentum relations: one related
to the standard momentum, that is linked to the de Broglie wavelength, and one that is linked to the Compton
momentum, that is linked to the Compton wavelength. These two energy momentum relations are two sides of the
same coin, so to speak, as shown in the derivation below. We have decided to show it rigorously line by line, as the
connection is important to understand.

Next, we will shortly discuss a series of well-known quantum mechanical wave equations and also show a few
new quantum mechanical wave equations.
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E = ptc = pk +mc
2 (26)

This means that if we build wave equations that satisfy the relativistic Compton momentum relation, then we
automatically satisfy the standard relativistic energy momentum relation and also the other way around. However,
as we soon will see, this gives us two new relativistic wave equations and will enable us to look at existing problems
from a new angle. This angle appears to be more directly linked to physical reality, as we have claimed the de
Broglie wavelength is a mathematical derivative of the Compton wavelength. Although we do not expect anyone to
take this for granted, we think it is interesting enough to warrant further study and investigation outside of what
we are able to cover in this paper.

Next, we will shortly discuss a series of well-known quantum mechanical wave equations and also show a few
new quantum mechanical wave equations.

5 Two New Relativistic Wave Equations

We have that

EEE = ptc (27)

This can be rewritten as

EEE = pkc+mmmc
2 (28)

where pk = mmmcq
1� ||vvv||2

c2

� mmmc, in other words, the kinetic Compton momentum. From this we get the following

quantum wave equation, using energy operator: i~rt = i~ @
@tx

+ i~ @
@ty

+ i~ @
@tz

, and kinetic Compton momentum

operator: �i~r = i~ @
@x + i~ @

@y + i~ @
@z , we get

i~rt =
�
�i~cr+mc

2
�
 (29)

This we can rewrite as

irt =

✓
�icr+

mc
2

~

◆
 

irt =
⇣
�icr+

c

�̄

⌘
 (30)

This is relativistic quantum wave equation3 consisting of a first order PDE where r is the operator linked to
the kinetic Compton momentum and rt an energy operator. It has nice properties, as time and spatial dimensions

3We actually put out a rough working draft paper with this equation in December 28, 2018 [10], and also we did not look into it
much before we adjusted the working paper a few days later to center on a wave equation with focus on total Compton momentum
rather than kinetic, something we soon will return to later. The wave equation we put out at that time likely had a sign error due to

the fact that we had the wrong sign on the energy operator; the equation we presented then was �i @ @t =
⇣
�icr+ mc2

~

⌘
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are on the same order (first order), unlike the Schödinger equation where the time and spatial dimension are on
a di↵erent order in terms of derivatives. It is well known that the Schödinger equation, therefore, is not Lorentz
invariant. Our new relativistic wave equation, which is fully rooted in the Compton wavelength, is, on the other
hand, also mathematically Lorentz invariant, except at the Planck scale.

Our new relativistic quantum equation has quite a di↵erent plane wave solution than the Klein–Gordon and
Schrödinger equations, but at first glance it looks exactly the same:

 = e
i(kx�!t) (31)

However, in our theory, we should have k = 2⇡
� , where � is the relativistic Compton wavelength and not the de

Broglie wavelength, as in standard wave mechanics. We can rewrite the plane wave solution as

e
i( pk

~ x�E
~ t) (32)

where pk is the total kinetic Compton momentum, as defined earlier. So, our quantum wave function is rooted
in the Compton wavelength instead of the de Broglie wavelength. For the formality of it, we look at the momentum
and energy operators and see that they are correctly specified

@ 

@x
=

ipk

~ e
i( pk

~ x�E
~ t) (33)

This means the momentum operator must be

p̂k = �i~r· (34)

and for energy we have

@ 

@tx
=

�iE

~ e
i( pk

~ x�E
~ t) (35)

and this gives us a time operator of

Ê = �i~rt (36)

The momentum and energy operators are the same as under standard quantum mechanics.

6 Wave Equation Based on Operator on Total Compton Momentum

We also get a quantum wave equation linked to the total momentum instead of the kinetic momentum. This is
because

EEE = pppkc+mmmc
2 = ppptc (37)

which gives

i~rt + i~cr = 0 (38)

which can be simplified to (see also [2] that basically gives the same wave equation, but we suspect with a sign
error.)

rt + cr = 0 (39)

That is, we have two new quantum mechanical wave equations. The plane wave solution to this wave equation
should be the same as in the other wave equation above. This is mathematically identical to the advection equation,
but the advection equation is not used in quantum mechanics, so even if it is not a new PDE from a mathematical
point of view, in our view, this can be used as a relativistic quantum mechanical equation when we root our quantum
mechanics in the Compton wavelength rather than the de Broglie wavelength.

Also ,in this case it has quite a di↵erent plane wave solution than the Klein–Gordon and Schrödinger equations,
but at first glance it looks exactly the same:

 = e
i(kx�!t) (40)
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However, here k = 2⇡
� , where � is the relativistic Compton wavelength and not the de Broglie wavelength, as in

standard wave mechanics. We can rewrite the plane wave solution as

e
i( pt

~ x�E
~ t) (41)

where pt is the total Compton momentum, as defined earlier. So, our quantum wave function is rooted in the
Compton wavelength instead of the de Broglie wavelength. For the formality of it, we look at the momentum and
energy operators and see that they are correctly specified

@ 

@x
=

ipt

~ e
i( pt

~ x�E
~ t) (42)

This means the momentum operator must be

p̂t = �i~r· (43)

and for energy we have

@ 

@t
=

�iE

~ e
i( pt

~ x�E
~ t) (44)

and this gives us a time operator of

Ê = �i~ @
@t

(45)

That is, the momentum and energy operators are the same as are used in already established quantum mechanics.

7 The Klein–Gordon Equation

Another well-known relativistic quantum equation is the Klein–Gordon equation, which is given by

E
2 = ppp · pppc2 +m

2
c
4 (46)

where p is the relativistic (de Broglie) momentum. When replacing E and p with their energy, i~ @
@t , and momentum

operator, i~r, we get the following wave equation

i
2~2 @

2
 

@t2
� i

2~2c2r2
 �m

2
c
4
 = 0

�~2 @
2
 

@t2
+ ~2c2r2

 �m
2
c
4
 = 0

1

c2

@
2
 

@t2
�r2

 +
m

2
c
2

~2  = 0 (47)

The last line is how the Klein–Gordon equation is often presented. Since the reduced Compton wavelength is
given by �̄ = ~

mc , we can replace m2c2

~2 in the equation above with 1
�̄2 and we get

1

c2

@
2
 

@t2
�r2

 +
1

�̄2
 = 0 (48)

The Klein–Gordon equation is indirectly liked to the de Broglie momentum (standard momentum), p = mv�,
which we claim is a derivative of the real momentum, the Compton momentum. The Klein–Gordon equation is
therefore unnecessarily complex. Yet, it cannot be simplified further if we want a relativistic wave equation from
the de Broglie momentum. The formula is likely not valid for a rest-mass particle, since it is derived from the de
Broglie momentum.

The Klein–Gordon equation is often written as

(⇤+ µ
2) = 0 (49)

where ⇤ is the d’Alembert operator: ⇤ = 1
c2

@2

@t2 �r2, and µ = mc
~ = 1

�̄2 . Do not let unfamiliar notation stop
you from exploring the mysteries of quantum mechanics.

The Klein–Gordon equation is only valid for spin zero particles, and the only particle detected it is valid
for is, therefore, the Higgs boson. The Klein–Gordon equation has unwanted properties, i.e., it allows negative
probabilities, which is what motivated Dirac to come up with another relativistic wave equation.
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8 The Schrödinger Equation

We have

E = Ek +mc
2

E = mc
2
� �mc

2 +mc
2

(50)

when v << c we can approximate the kinetic energy from the first term of a Taylor series expansion with Ek ⇡ 1
2mv

2,
this gives

E ⇡ 1

2
mv

2 +mc
2

E ⇡ p
2

2m
+mc

2 (51)

If we now use a momentum operator of i~r and an energy operator of i~ @
@t , we can write this as a wave equation,

something giving us the Schödinger [11] equation

i~@ 
@t

⇡
✓
i
2~2
2m

r2 +mc
2

◆
 (52)

This we can rewrite further

i~@ 
@t

⇡
✓
�~2
2m

r2 +mc
2

◆
 

i
@ 

@t
⇡

✓
�~
2m

r2 +
mc

2

~

◆
 

i
@ 

@t
⇡

✓
��̄c
2

r2 +
c

�̄

◆
 (53)

Note that when rewritten this way, there is no Planck constant in the Schrödinger equation in this form. Also
note that the imaginary number does not go away as it does in the Klein–Gordon equation. More important is that
the Schrödinger equation does not treat the time (energy) on equal footing with the spatial dimension (momentum).
This is because we have first- versus second-order derivatives in the same equation. This is unlike the Klein–Gordon
equation, where everything is on second order, and also unlike the Dirac equation, where all is first order. Our
new wave equations are both first order and note again that the Schequation does not have time and the spatial
dimension of the same order.

9 The Dirac Equation

The Klein–Gordon equation was not suitable to model the electron, as it only allows for zero spin, while electrons
are 1

2 spin fermions. Also, the fact that Klein–Gordon allows such things as negative probabilities pushed Dirac
[12] to develop a new relativistic wave equation, which is given by

i~@ 
@t

�
 
c

3X

i=n

↵npn � �mc
2

!
 = 0 (54)

this can be rewritten as

i
@ 

@t
�
 
c

~

3X

i=n

↵npn � �
c

�̄

!
 = 0 (55)

So, there is a Compton wavelength embedded in the Dirac equation, but the momentum operator is operating
on the standard momentum that is linked to the de Broglie wavelength.
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10 Summary

Table 1 shows a summary of three well-known wave equations in quantum mechanics, as well as two new ones.
The three older equations are all rooted in standard momentum and therefore in the de Broglie wavelength. In
addition, these equations contain the Compton wavelength embedded in their last term, but the momentum they
are deriving their equations from involve the de Broglie equivalent momentum. The standard momentum is not
defined for v = 0; that is to say, for rest-mass particles, so we suggest that these three traditional wave equations
are likely not valid for rest-mass particles. In addition, these three wave equations are, to a large degree, modeling
mathematical derivatives of reality rather than the deeper reality because the de Broglie momentum is a derivative
of the more fundamental Compton momentum. The two new wave equations are linked directly to the Compton
momentum; therefore, they are simpler and also hold for v = 0.

Wave equations: Momentum operator on : Comments :

Klein–Gordon (Spin 0 ) @2 
@t2 �r2

 + m2c2

~2  = 0 de Broglie momentum Relativistic

deeper level @2 
@t2 � c

2r2
 + c2

�̄2 = 0

Dirac (Spin 1/2 ) i~@ @t �
⇣
c
P3

i=n ↵npn � �mc
2
⌘
 = 0 de Broglie momentum Relativistic

deeper level i
@ 
@t �

⇣
c
~
P3

i=n ↵npn � �
c
�̄

⌘
 = 0

Schrödinger i
@ 
@t ⇡

⇣
�~
2mr2 + mc2

~

⌘
 de Broglie momentum Non-relativistic

deeper level i
@ 
@t ⇡

⇣
�c�̄
2 r2 + c

�̄

⌘
 

Haug-1: (Spin ?) irt =
⇣
�icr+ mc2

~

⌘
 Kinetic Compton momentum Relativistic

deeper level irt =
�
�icr+ c

�̄

�
 

Haug-2: (Spin ?) 1
crt +r = 0 Total Compton momentum Relativistic

Table 1: The table shows a summary of three well-known quantum mechanical wave equations derived from standard
momentum (de Broglie) momentum, and two new quantum mechanical wave equations derived from the Compton
momentum.

• The Schrödinger, Klein–Gordon, and Dirac equations all use a momentum operator on the standard momen-
tum. The standard momentum is, at a quantum level, actually directly linked to the de Broglie wavelength.
The de Broglie wavelength is not mathematically defined for a rest-mass particle. Second, the de Broglie
wavelength and the standard momentum are just mathematical derivatives of the more fundamental Comp-
ton wavelength and what we call Compton momentum. In other words, in the traditional equations, we are
taking partial derivatives of mathematical functions of reality, not of the deepest entities. This makes the
Schrödinger, Klein–Gordon, and Dirac equations all very hard to interpret at a deeper level. Of course, they
are ”easy” enough to interpret at the surface inside the exotic zoo of terminology that has evolved in physics
and quantum physics, as long as the analysis of modern physics does not go too deep.

• We have strong reasons to believe that our new quantum mechanical wave equations are better suited to
understanding certain aspects of the depth of reality. They are mathematically correct for v = 0, and they
are more directly linked to the depth of reality, as we are modeling from the Compton momentum directly
instead of the derivative of it, which is the de Broglie momentum and its corresponding de Broglie wave. Also,
our equations are both relativistic and always of first order.

• There is no Planck constant in the any of the wave equations except for the Dirac equation that we will soon
comment on separately. The apparent Planck constant in the Schrödinger and Klein–Gordon all cancel out
against a Planck constant that is hidden in the mass. What we obtain is the Compton wavelength in the
Schrödinger and Klein–Gordon equations, or more precisely, the Compton frequency is also embedded in these
equations. One might think that such a line of thought is wrong, if one believed that the Planck constant is
needed to find the Compton wavelength. However, this is not the case; even from Compton’s 1923 paper it
is clear that one can find the Compton wavelength without any knowledge of the Planck constant. Actually,
one can find the Compton wavelength for any mass without knowledge of any fundamental constants, see
[6]. In the Dirac equation, the Planck constant will indirectly cancel out as well, as the momentum operator
on the wave function returns the momentum, and the momentum embedded contains the Planck constant in
the mass will then cancel out against the Planck constant we see here. In our new wave equation from the
Compton momentum, the Planck constant also cancels out.
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11 Solving Our New Relativistic Wave Equation for Hydrogen-like
Atoms

We will here solve our wave equation for hydrogen-like atoms, using the standard approach4 also used for the
Schödinger equation. The Haug-1 wave equation is given by

i~rt = (�ci~r+ V ) (56)

where V is the potential energy, and �i~r is the Compton momentum operator. The potential energy between
two charges can easily be described by the Coulomb force [13]

V (r) = � Ze
2

4⇡✏0r
= �ke

Ze
2

r

where ke is Coulomb’s constant. Further, our wave equation rewritten in polar coordinates is given by

E =

✓
�i~c

✓
@

@r
+

1

r

@

@✓
+

1

r sin ✓

@

@'

◆
+ V

◆
 (57)

where ✓ is the polar angle, with ' for the azimuthal angle, and  =  (r, ✓,�).

The hydrogen atom’s Hamiltonian is

Ĥ = �i~cr� ke
Ze

2

r
(58)

where �i~r is a Compton momentum operator.

The Haug relativistic wave equation for the hydrogen atom in polar coordinates is given by

E =

✓
�i~c

✓
@

@r
+

1

r

@

@✓
+

1

r sin ✓

@

@'

◆
� Ze

2

4⇡✏0r

◆
 (59)

This we can rearrange as

i

~c

✓
E +

Ze
2

4⇡✏0r

◆
 = �@ 

@r
� 1

r

@ 

@✓
� 1

r sin ✓

@ 

@'
(60)

Next we rely on separation of variables

 (r, ✓,�) = R(r) · Y (✓,�) (61)

Further, since Y does not depend on r, we can move it in front of the radial derivative, which gives

@ 

@r
=

@

@r
RY = Y

dR

dr
(62)

and we therefore have

i

~c

✓
E � Ze

2

4⇡✏0r

◆
RY = Y

dR

dr
+R

1

r

@Y

@✓
+

R

r sin ✓

@Y

@'
(63)

Next we multiply by r and divide by RY to separate the radial and angular terms:

r

R

dR

dr
+

1

Y

@Y

@✓
+

1

Y sin ✓

@Y

@'
� ir

~c

✓
E � Ze

2

4⇡✏0r

◆
= 0 (64)

4We have basically followed the well-known “standard approach” that is used to solve the Schödinger PDE equation for the hydrogen
atom to solve our new PDE wave-equation. In particular, we found the webpage by Dr. Rudolf Winter at Aberystwyth University:
https://users.aber.ac.uk/ruw/teach/327/hatom.php, useful in this respect.



14

The first and last terms only depend on r, while the two middle terms depend on the angle. We can therefore
separate the equation into two ordinary ODEs. We get a radial equation that is a first order ODE:

r

R

dR

dr
� ir

~c

✓
E � Ze

2

4⇡✏0r

◆
�A = 0 (65)

where the solution is

R(r) = ic1e

log(r)(Ac~�izkee2)+iEr

c~

R(r) = c1e

log(r)(iAc~+zkee2)�Er

c~ (66)

where A must likely be a positive integer, as energy comes as n~. And we also get a first order PDE linked
to the angles:

1

Y

@Y

@✓
+

1

Y sin ✓

@Y

@'
+A = 0

@Y

@✓
+

1

sin ✓

@Y

@'
+AY = 0 (67)

where A is a separation constant.

The angle equation still contains terms for both ' and ✓, so we need to do one more separation of variables:

Y (✓,�) = ⇥(✓) · �(�) (68)

Replacing Y in the di↵erential equation, we get

�
d⇥

d✓
+

⇥

sin ✓

d�

d'
+A⇥� = 0 (69)

Next we isolate variables and separate terms

�
d⇥

d✓
+

⇥

sin ✓

d�

d'
+A⇥� = 0 (70)

Next we divide by ⇥� to separate the radial and angular terms:

sin ✓

⇥

d⇥

d✓
+

1

�

d�

d'
+A sin ✓ = 0 (71)

This we can separate into two new equations, the polar equation (colatitude)

sin ✓

⇥

d⇥

d✓
+A sin ✓ �B = 0 (72)

and the azimuthal equation

1

�

d�

d'
+B = 0 (73)

The given azimuthal equation has solution

�(�) = c1e
�iB� (74)

The solution must be a valid solution for any angle �. This means that B must be a positive integer for this
to hold true; if not the value of the azimuth wave function would be di↵erent for � = 0 and � = 360
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For comparison, the Schrödinger azimuthal ODE, 1
�

d2�
d'2 +B = 0 has solution �(�) = c1 cos

p
B�+c2 sin

p
B�,

and when setting c1 = 1 and c2 = i is equal to �(�) = e
i
p
B�. In the Schrödinger solution, one does a trick

that we will think about more deeply later on, particularly in terms of its validity. However, for now, we
note that here one is replacing B with m

2, and thereby gets �(�) = e
im�, which is basically is identical

to our solution if we replace i with �1. Yet, again in order to arrive at this solution from the Schrödinger
equation, one has to replace the constant B with m

2, and it is important to determine where this came from
mathematically. It seems to be guess work that is an adjustment (fudge) to fit observations. This will be
the subject of further analysis and we welcome input on the explanation for this approach. In the solution
to our azimuthal ODE, B itself is a quantum number, but in the Schrödinger solution one has to make the
assumption of setting B = m

2.

Moving on, our polar equation is given by

sin ✓

⇥

d⇥

d✓
+A sin ✓ �B = 0 (75)

rearranging

1

⇥

d⇥

d✓
+A� B

sin ✓
= 0 (76)

and solving directly, using Mathematica gives

⇥(✓) = ic1e
�A✓�B log[cos(✓/2)]+B log[sin(✓/2)] (77)

However, we can alternatively rewrite the polar equation somewhat before we solve it. Substituting P (cos ✓) :=
⇥(✓) and x := cos ✓, we get

� sin ✓

⇥

dP

dx
+A� B

sin ✓
= 0

sin ✓

⇥

dP

dx
�A+

B

sin ✓
= 0 (78)

since sin2 ✓ + cos2 ✓ = 1, we have that, sin ✓ =
p
1� cos2 ✓, and we can therefore rewrite the equation above

as

sin ✓

P

dP

dx
�A+

Bp
1� cos2 ✓

= 0

p
1� x2

dP

dx
�
✓
A+

Bp
1� x2

◆
P = 0 (79)

The coe�cient in the ODE is not constant, but depends on x. One possible solution seems to be

P (x) = ic1e
A arcsin[x]�B[x] (80)

where A and B are positive integers; in other words, quantum numbers, see the previous discussion for why
this is the case.

For comparison with the Schrödinger equation, based on the same principles we get the following ODE

(1� x
2)
d
2
P

dx2
� 2x

dP

dX
+

✓
A+

B

1� x2

◆
P = 0 (81)

The coe�cients in the ODE that we get from the Schrödinger equation are not constant, but depend on x.
This is a di↵erential equation known as a Legendre-type DE, with known solutions. Still, it is worth noticing
that it is much more complicated to solve this ODE than the polar ODE from our new relativistic wave
equation.
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12 Our PDE Leads to Three ODEs

The radial equation

1

R

dR

dr
� i

~c

✓
E � ke

Ze
2

r

◆
� AR

r
= 0 (82)

Further, we have the azimuthal equation

1

�

d�

d'
+B = 0 (83)

And the polar equation we get is

1

⇥

d⇥

d✓
+A� B

sin ✓
= 0 (84)

compared to Schrödinger’s polar equation for hydrogen-like atoms, which is given by sin ✓
⇥

d
d✓

�
sin d⇥

d✓

�
+ A �

B
sin2 ✓ = 0.

Table 1 summarizes our findings and also makes it easy to compare to Schrödinger’s equation.

Equations: Schrödinger : Solution :

Radial equation d
dr

�
r
2 dR
dr

�
� 2µr2

~

⇣
E � ke

Ze2

r

⌘
�AR = 0 R1 = c3e

i
p

2µE
~ r + c4e

�i
p

2µE
~ r

Azimuthal equation 1
�

d2�
d'2 +B = 0 �(�) = c1e

i
p
B� + c2e

�i
p
B�

Polar equation sin ✓
⇥

d
d✓

�
sin d⇥

d✓

�
+A� B

sin2 ✓ = 0

Rewritten (1-x2)d
2P
dx2 � 2x dP

dX +
⇣
A+ B

1�x2

⌘
P = 0

Equations: From our new equation : Solution :

Radial equation r
R

dR
dr � ir

~c

⇣
E � zke

Ze2

r

⌘
�A = 0 R(r) = c1e

log(r)(Ac~+izkee2)�iEr

c~

Azimuthal equation 1
�

d�
d' +B = 0 �(�) = c1e

�iB�

Polar equation 1
⇥

d⇥
d✓ +A� B

sin ✓ = 0 ⇥(✓) = ic1e
�A✓�B log[cos(✓/2)]+B log[sin(✓/2)]

Rewritten
p
1� x2 dP

dx �
⇣
A+ Bp

1�x2

⌘
P = 0 P (x) = ic1e

A arcsin[x]�B[x]

Table 2: The table shows three ODEs we get from the Schrödinger equation when written on polar coordinates, and
also three ODEs we get from our new relativistic wave equation.

13 Our New Wave Equation Following the Pauli Approach

The Haug-1 wave-equation is given by

i~rt = (�ci~r+ V ) (85)

where V is the potential energy, and �i~r is the kinetic Compton momentum operator.

The Hamiltonian operator in our new wave equation, when following the Pauli approach will be

Ĥ = c��� · (pppk � qAAA) + q� (86)

Due to the incorporation of the Pauli operator, the Hamilton operator is now a 2 ⇥ 2 matrix. The Pauli
operator ��� = (�1,�2,�3) is formed by Pauli matrixes:

�1 =

✓
0 1
1 0

◆
, �2 =

✓
0 �i

i 0

◆
, �2 =

✓
1 0
0 �1

◆
(87)

so, the Haug equation can then be rewritten as
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i~rt | i = �c��� · (pppk � qAAA) | i � q� | i (88)

Where | i is a two-component spinor wave function or a column vector | i =

✓
 +

 �

◆
and pppk = i~r is

the kinetic Compton momentum operator, AAA is the the magnetic vector potential, and � the electric scalar
potential. Equation 88 can be seen as a parallel to the Schrödinger-Pauli equation [11, 14], but this equation is
relativistic, while the Schrödinger-Pauli equation is non-relativistic. This equation is also simpler, in general,
as the time and space dimensions are of the same derivative order, while in the Schrödinger-Pauli equation,
the time derivative is of the first order and the space dimension is of the second order (derivatives).

14 Conclusion

We have introduced two new relativistic wave equations that seems fully valid. They are rooted in what
we can call the Compton momentum, which is linked to the Compton wavelength rather than the standard
momentum, which is linked to the de Broglie wavelength. We claim the standard momentum is not defined
for rest-mass particles, and also that it is likely just a derivative of the more physical Compton momentum.
This has likely made the interpretation of results from modern wave mechanics extraordinarily di�cult, and
we suspect one therefore has not yet reached the bottom of the quantum world. We have reasons to think
that our new relativistic wave equations can give us fresh and additional insights, but we leave this up to
further studies by ourselves and others to develop the ideas more fully. A series of tasks lie ahead to test this,
in order to determine for which particles these two relativistic wave equations are valid, and what can they
predict that we can test and check their validity against. Still, even if much work is left to do, at this stage we
feel it is important for the physics community to be aware of this additional and alternative path for deriving
quantum wave equations, as this may help to improve our understanding of the quantum world in the near
future.
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