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Abstract

My previous work [arXiv:1902.00977] studied the dynamics of Rényi entanglement
entropy Rα in local quantum circuits with charge conservation. Initializing the system
in a random product state, it was proved that Rα with Rényi index α > 1 grows no
faster than “diffusively” (up to a sublogarithmic correction) if charge transport is not
faster than diffusive. The proof was given only for qubit or spin-1/2 systems. In this
note, I extend the proof to qudit systems, i.e., spin systems with local dimension d ≥ 2.

1 Introduction

My previous work [2] studied the dynamics of Rényi entanglement entropy Rα in local
quantum circuits with charge conservation. Initializing the system in a random product
state, it was proved that Rα with Rényi index α > 1 grows no faster than “diffusively” (up
to a sublogarithmic correction) if charge transport is not faster than diffusive.

For simplicity, Ref. [2] only gave a proof for qubit or spin-1/2 systems. While the proof
also works for qudit systems (i.e., spin systems with local dimension d ≥ 2), this extension
was not explicitly presented in Ref. [2]. Due to the recent interest [7], in this note I give an
exposition so that readers who are only interested in the results do not have to spend time
verifying that every step of the proof in Ref. [2] remains valid for qudit systems. This note
does not contain any essentially new ideas beyond those in Ref. [2].

For completeness and for the convenience of the reader, definitions and proofs are pre-
sented in full so that this note is technically self-contained, although this leads to substantial
text overlap with the original paper [2]. It is not necessary to consult Ref. [2] before or
during reading this note. However, in this note I do not discuss the conceptual aspects of
the work. Such discussions are in Ref. [2].
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I recommend related papers [5, 6, 7], which study the same problem with various analyt-
ical and numerical methods. These works provide insights that are complementary to those
in Ref. [2] and here.

The rest of this note is organized as follows. In Section 2, I give basic definitions. In
Section 3, I present results with a complete proof for qudit systems.

2 Preliminaries

Throughout this note, standard asymptotic notations are used extensively. Let f, g : R+ →
R+ be two functions. One writes f(x) = O(g(x)) if and only if there exist constantsM,x0 > 0
such that f(x) ≤ Mg(x) for all x > x0; f(x) = Ω(g(x)) if and only if there exist constants
M,x0 > 0 such that f(x) ≥ Mg(x) for all x > x0; f(x) = Θ(g(x)) if and only if there exist
constants M1,M2, x0 > 0 such that M1g(x) ≤ f(x) ≤M2g(x) for all x > x0.

For notational simplicity, we do not specify the base of the logarithm explicitly. All
equations involving logarithms are valid as long as the base is an arbitrary fixed positive
number.

Definition 1 (entanglement entropy). The Rényi entanglement entropy Rα with index α ∈
(0, 1) ∪ (1,+∞) of a bipartite pure state ρAB is defined as

Rα(ρA) :=
1

1− α
log tr(ραA) =

1

1− α
log
∑
i≥1

Λα
i , (1)

where Λ1 ≥ Λ2 ≥ · · · ≥ 0 with
∑

i≥1 Λi = 1 are the eigenvalues (in descending order) of the
reduced density matrix ρA = trB ρAB. The min-entropy is defined as

R∞(ρA) := lim
α→+∞

Rα(ρA) = − log Λ1. (2)

The von Neumann entanglement entropy is given by

lim
α→1

Rα(ρA) = − tr(ρA log ρA). (3)

Lemma 1. For α > 1,

R∞(ρA) ≤ Rα(ρA) ≤ α

α− 1
R∞(ρA). (4)

Proof. For completeness, we give a proof of this well-known result. The first inequality
is due to the fact that Rα is monotonically non-increasing in α (this is why R∞ is called
min-entropy). The second inequality follows from

Rα(ρA) =
1

1− α
log
∑
i≥1

Λα
i ≤

1

1− α
log(Λα

1 ) =
α

α− 1
R∞(ρA). (5)
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Definition 2 (local quantum circuit with charge conservation). Consider a chain of N qudits
or spins with local dimension d ≥ 2. Assume without loss of generality that N is even. Let
the time-evolution operator be

U(t, 0) = U(t, t− 1)U(t− 1, t− 2) · · ·U(1, 0), t ∈ Z+. (6)

Each layer of the circuit consists of two sublayers of local unitaries:

U(t, t− 1) =

N/2−1∏
i=1

U
(t)
2i,2i+1 ×

N/2∏
i=1

U
(t)
2i−1,2i. (7)

Each unitary U
(t)
i,i+1 acts on two neighboring spins at sites i, i+1, and commutes with Szi +Szi+1,

where Szi is the z component of the spin operator at site i. It should be clear that every

U
(t)
i,i+1 and hence U(t, 0) preserve charge or the z component

∑N
i=1 S

z
i of the total spin.

Let us consider some examples. For spin-1/2 (d = 2),

Szi =
1

2

(
1 0
0 −1

)
(8)

in the computational basis {|0〉, |1〉}, and

U
(t)
i,i+1 =


∗ 0 0 0
0 ∗ ∗ 0
0 ∗ ∗ 0
0 0 0 ∗

 (9)

is block diagonal in the basis {|00〉, |01〉, |10〉, |11〉}, where “∗” denotes a possibly non-zero

entry, i.e., U
(t)
i,i+1 is the direct sum of a phase factor, a unitary matrix of order 2, and a phase

factor.
For spin-1 (d = 3),

Szi =

1 0 0
0 0 0
0 0 −1

 (10)

in the basis {|0〉, |1〉, |2〉}, and

U
(t)
i,i+1 =



∗ 0 0 0 0 0 0 0 0
0 ∗ ∗ 0 0 0 0 0 0
0 ∗ ∗ 0 0 0 0 0 0
0 0 0 ∗ ∗ ∗ 0 0 0
0 0 0 ∗ ∗ ∗ 0 0 0
0 0 0 ∗ ∗ ∗ 0 0 0
0 0 0 0 0 0 ∗ ∗ 0
0 0 0 0 0 0 ∗ ∗ 0
0 0 0 0 0 0 0 0 ∗


(11)

is block diagonal in the basis {|00〉, |01〉, |10〉, |02〉, |11〉, |20〉, |12〉, |21〉, |22〉}.
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Definition 3 (Haar-random local quantum circuit with charge conservation). Recall that

each local unitary U
(t)
i,i+1 in Eq. (7) commutes with Szi +Szi+1 and is therefore block diagonal in

the computational basis. The ensemble of Haar-random local quantum circuits with charge
conservation is defined by letting each block of each U

(t)
i,i+1 be an independent Haar-random

unitary.

3 Results and proofs

Recall that in our notation, the eigenstates of Szi are {|0〉i, |1〉i, . . . , |d − 1〉i} with Szi |k〉i =
((d−1)/2−k)|k〉i. Let Qi := (d−1)/2−Szi be the charge operator. Since Qi|k〉i = k|k〉i, we
interpret |k〉i as there being k charges on site i. Let Xi be the generalized Pauli X operator
at site i defined by

Xi|k〉i = |(k + 1) mod d〉i. (12)

Let {|0)i, |1)i, . . . , |d−1)i} be eigenstates of Xi. It is not difficult to see that |〈k|k′)| = 1/
√
d

for any k, k′ = 0, 1, . . . , d−1, where the subscript i has been dropped for notational simplicity.
Diffusive transport means that the transport of conserved quantities satisfies the diffu-

sion equation at large distance and time scales. It can be considered, e.g., in the linear
response regime and in quantum quench, where the system is infinitely close to and far from
equilibrium, respectively. However, it is not clear whether diffusive transport in one setting
is equivalent to or implies that in another (it might be possible that transport is diffusive
in one setting but not in another). Our results rely on the following necessary condition for
no-faster-than-diffusive transport.

Condition 1. Consider a chain of N qudits divided into two subsystems C⊗D. Subsystem
C is a contiguous region of m qudits, and subsystem D is the rest of the system. We initialize
C in the state |0〉⊗m and D in an arbitrary product state, i.e., each qudit in D is disentangled
from all other qudits. Let i be the position of a qudit in the bulk of C such that the distances
from site i to the two endpoints of C are both Θ(m). Then,

〈ψ(t)|Qi|ψ(t)〉 = e−Ω(m2/t), (13)

where ψ(t) is the state (wave function) at time t.

Equation (13) implies that

‖(1− |0〉i〈0|i)|ψ(t)〉‖2 = 〈ψ(t)|(1− |0〉i〈0|i)|ψ(t)〉 ≤ 〈ψ(t)|Qi|ψ(t)〉 = e−Ω(m2/t). (14)

Equation (13) can be intuitively understood as follows. At initialization t = 0, there is
no charge in C, i.e., C is in the all-zero state. Any charge observed on site i at a later time
t > 0 must be transported from D all the way to the bulk of C. The distance is Θ(m). The
left-hand side of Eq. (13) is the amount of charge on site i at time t, and the right-hand
side follows from the diffusion equation. In particular, a nonvanishing amount of charge
requires that t = Ω(m2). It should be clear that violating Eq. (13) unambiguously implies
that charge transport is faster than diffusive.

As an instructive example, we show that
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Lemma 2. For any initial state |ψ(0)〉 with no charge in C,

Pr
U(t,0)∈R

(
〈ψ(0)|U †(t, 0)QiU(t, 0)|ψ(0)〉 = e−Ω(m2/t)

)
= 1− e−Ω(m2/t), (15)

where R is the ensemble of Haar-random local quantum circuits with charge conservation
(Definition 3).

Proof. It is not difficult to prove that the distribution of charge{
E

U(t,0)∈R
〈ψ(0)|U †(t, 0)QiU(t, 0)|ψ(0)〉

}N
i=1

(16)

after averaging over the ensemble R evolves as an unbiased discrete random walk [3, 4].
Hence,

E
U(t,0)∈R

〈ψ(0)|U †(t, 0)QiU(t, 0)|ψ(0)〉 = e−Ω(m2/t) (17)

if site i is in the bulk of C. Then, Eq. (15) follows from Markov’s inequality.

We are ready to state and prove the main result.

Theorem 1. Consider a chain of N qudits as a bipartite quantum system A⊗ B. Assume
without loss of generality that N is even. Subsystem A consists of qudits at sites 1, 2, . . . , N/2,
and subsystem B is the rest of the system (we study the entanglement across the middle cut).
Initialize the system in a random product state |ψini〉 in the generalized Pauli X basis, i.e.,
each spin is independently in {|0), |1), . . . , |d − 1)} with equal probability. Let α > 1 and
ρA(t) := trB(U(t, 0)|ψini〉〈ψini|U †(t, 0)) be the reduced density matrix of subsystem A at time
t. If charge transport under the dynamics U(t, 0) is not faster than diffusive in the sense of
Condition 1, then

Rα(ρA) =
α

α− 1
O
(√

t log t
)

(18)

holds with probability ≥ 1− 1/p(t), where p is a polynomial of arbitrarily high degree.

Proof. We divide the system into two subsystems C ⊗D. Subsystem C consists of m qudits
at sites N/2 −m/2 + 1, N/2 −m/2 + 2, . . . , N/2 + m/2 near the cut, where m is an even
positive integer to be determined later. Subsystem D is the rest of the system. The initial
state can be expressed as

|ψini〉 = |ψini〉C ⊗ |ψini〉D, (19)

where |ψini〉C and |ψini〉D are random product states in subsystems C and D, respectively.
Define

|ψ0〉 = |0〉⊗mC ⊗ |ψini〉D (20)

so that |〈ψ0|ψini〉| = d−m/2. Since U(t, 0) is unitary,

|〈U(t, 0)ψ0, U(t, 0)ψini〉| = d−m/2. (21)
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The left-hand side of this equation is the absolute value of the inner product of U(t, 0)|ψ0〉
and U(t, 0)|ψini〉. Occasionally we do not use the standard Dirac notation because it is
cumbersome. Let P := |0〉N/2〈0|N/2 ⊗ |0〉N/2+1〈0|N/2+1. Using (14) twice,

‖(1− P )U(t, 0)|ψ0〉‖ ≤ ‖(1− |0〉N/2〈0|N/2)U(t, 0)|ψ0〉‖
+ ‖|0〉N/2〈0|N/2(1− |0〉N/2+1〈0|N/2+1)U(t, 0)|ψ0〉‖ ≤ 2e−Ω(m2/t). (22)

Assume without loss of generality that N/2 is odd. In U(t, t− 1), the only local unitary
acting on both subsystems A and B is in the second product on the right-hand of Eq. (7).
Define a modified local quantum circuit

V (t, 0) = V (t, t− 1)V (t− 1, t− 2) · · ·V (1, 0), (23)

V (t, t− 1) =

N/2−1∏
i=1

U
(t)
2i,2i+1

(N/2−1)/2∏
i=1

U
(t)
2i−1,2iu

(t)
N/2,N/2+1

N/2∏
i=(N/2+3)/2

U
(t)
2i−1,2i, (24)

where u
(t)
N/2,N/2+1 := 〈00|U (t)

N/2,N/2+1|00〉 is a phase factor (complex number). It is easy to see
that

U(t, t− 1)P = V (t, t− 1)P. (25)

Hence,

U(t, 0)|ψ0〉 = U(t, t− 1)U(t− 1, 0)|ψ0〉 ≈ U(t, t− 1)PU(t− 1, 0)|ψ0〉
= V (t, t− 1)PU(t− 1, 0)|ψ0〉 ≈ V (t, t− 1)U(t− 1, 0)|ψ0〉, (26)

where the error of each approximation step is upper bounded by (22). Iterating this process,

‖|∆t〉‖ = 4te−Ω(m2/t), |∆t〉 := U(t, 0)|ψ0〉 − V (t, 0)|ψ0〉. (27)

Recall that both |ψini〉C and |ψini〉D are random product states in the generalized Pauli
X basis. We now fix the latter but not the former. Then, |ψ0〉 and hence |∆t〉 are fixed but
|ψini〉 is not. Let

S = {|0), |1), . . . , |d)}⊗mC ⊗ |ψini〉D (28)

with |S| = dm be the set of all possible initial states consistent with |ψini〉D. Since the states
in S are pairwise orthogonal,

1

|S|
∑
|ψini〉∈S

|〈∆t|U(t, 0)|ψini〉|2 ≤ d−m‖|∆t〉‖2. (29)

Define a subset of S as

S ′ :=
{
|ψini〉 ∈ S : |〈∆t|U(t, 0)|ψini〉| ≤ d−m/2‖|∆t〉‖

√
p(t)

}
. (30)

Markov’s inequality implies that

|S ′|/|S| ≥ 1− 1/p(t). (31)

It suffices to prove Eq. (18) for all (initial) states in S ′. To this end, we use
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Lemma 3 (Eckart-Young theorem [1]). Let

|ψ〉 =
∑
i≥1

λi|ai〉A ⊗ |bi〉B (32)

be the Schmidt decomposition of the state |ψ〉, where λ1 ≥ λ2 ≥ · · · > 0 with
∑

i≥1 λ
2
i = 1

are the Schmidt coefficients in descending order. Then,

|〈φ|ψ〉| ≤ |〈ψ′|ψ〉| =

√√√√ D∑
i=1

λ2
i (33)

for any normalized state |φ〉 of Schmidt rank D, where

|ψ′〉 :=
1√∑D
i=1 λ

2
i

D∑
i=1

λi|ai〉A ⊗ |bi〉B. (34)

For any state |ψini〉 ∈ S ′,

|〈V (t, 0)ψ0, U(t, 0)ψini〉| = |〈U(t, 0)ψ0, U(t, 0)ψini〉 − 〈∆t|U(t, 0)|ψini〉|

≥ d−m/2 − |〈∆t|U(t, 0)|ψini〉| ≥ d−m/2
(

1− ‖|∆t〉‖
√
p(t)

)
= d−m/2

(
1− 4te−Ω(m2/t)

√
p(t)

)
. (35)

Let λ1 be the largest Schmidt coefficient of U(t, 0)|ψini〉, and Λ1 = λ2
1 be the largest eigenvalue

of the reduced density matrix ρA(t) = trB(U(t, 0)|ψini〉〈ψini|U †(t, 0)). Since none of the local
unitaries in V (t, t− 1) act on both subsystems A and B, V (t, t− 1) and hence V (t, 0) do not
generate entanglement so that V (t, 0)|ψ0〉 is a product state between A and B, i.e., a state
of Schmidt rank 1. Combining this observation with (35) and Lemma 3,

λ1 ≥ d−m/2
(

1− 4te−Ω(m2/t)
√
p(t)

)
. (36)

Lemma 1 implies that

Rα(ρA) ≤ α

α− 1
R∞(ρA) = − α

α− 1
ln Λ1 = − 2α

α− 1
lnλ1. (37)

We complete the proof by letting m = O(
√
t log t) with a sufficiently large coefficient hidden

in the Big-O notation such that the factor in parentheses on the right-hand side of (36) is
lower bounded by a positive constant.

Combined with Lemma 2, the conclusion of Theorem 1 applies in particular to Haar-
random local quantum circuits with charge conservation.

As shown in Ref. [2], it is straightforward to extend Theorem 1 to local quantum circuits
where charge transport is sub- or super-diffusive. It is also straightforward to extend Theorem
1 to two and higher spatial dimensions.
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[7] M. Žnidarič. Entanglement growth in diffusive systems. Communications Physics, 3:100,
2020.

8


	Introduction
	Preliminaries
	Results and proofs

