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Abstract

This article is a continuation of the previous study [1] devoted to the
physical phenomena, connected with a surface tension of liquid. The meniscus of
liquid at a vessel wall is one of the most known effects of such nature.

As well as the problem of the form of hanging and sitting drops of liquid, the
analysis of meniscus form traditionally is based on the solution of Laplace
equation [2].

In the given article the problem of meniscus is examined from the point of
view of mechanical balance of a liquid under surface tension, gravity and
wettability of a wall surface. The obtained solutions are convenient for computer
calculations, and at the same time have necessary universality.

More and more exact and detailed knowledge about, apparently, well-
known physical phenomena are indispensable for the development of modern
technologies and technical equipment. In the full measure it concerns the study of

liquid properties caused by surface tension [3].

1. Meniscus of liquid at an infinite straight wall

Perhaps it is the most simple problem to study meniscus under ideal
circumstances when liquid has unlimited area of a surface and comes in contact
with infinite straight vertical wall.

Depending on wettability of a wall surface the level of a liquid will be or
above, or below the level of a liquid observed at a great distance from a wall.

On fig. 1 the variant with great wettability of wall surface is shown when
liquid rises up the wall, and the surface tension draws upwards more remote areas

of liquid.



It occurs due to negative curvature of liquid surface creating under the
surface negative pressure p (in relation to surrounding atmospheric pressure).

Laplace equation in an examined variant has a most simple form:

=2 (1)

Here R - radius of curvature of a liquid surface,

o - surface tension force.
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Fig. 1. Meniscus of liquid at a straight wall.

However the simplicity of equation notation does not always mean that it
should have the simple analytical solution. It is quite true in respect of Laplace
equation. Therefore we shall try to solve the formulated variant of meniscus form
problem in a different way.

To set up an equation we shall use balance of forces which support
mechanical equilibrium of a liquid (fig. 1):

dl d .

pgh%dh = %(0 sin ®)dh. (2)

In the left part of the equation (2) is written down the weight of a layer of the
liquid marked by dark color on fig. 1 which is above "zero" level (level at infinity).
The height of this layer is equal h, the width is equal dl, and length we shall accept

to be equal unit (in direction perpendicular to the plane of figure).



The derivative dl/dh, set in the left side of the equation, enables to regard h
as an argument of the sought dependence that in this case is more convenient for
the solution of a problem.

In the right side of (2) the force acting on the mentioned thin layer of a liquid
(an increment of vertical component of surface tension force) is written down.

The solution of the equation (2) is convenient to stage.

In the first stage a solution at great distance from the wall is tried for.

In the second stage the solution in a near zone is searched in view of
results, received at the first stage.

Far from a wall influence of a meniscus is small, hence the sine in the
equation is so small that it can be replaced with tangent, that is, can be expressed

through a derivative dh/dl.
So instead of the equation (2), it is possible to write down balance of forces

and the meniscus equation will have a more simple form:

d({ dh d’h  pg
hdl = e\, L _PEy, 3
re dl( dlj i’ o ®)

The solution of this equation is the exponential function.
Prg /
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Here H - some very small size chosen in view of the requirement of small h
in the area distant from a wall (for this calculation it was taken H = 0,01 mm);

¢ = pg /o - so-called capillary constant;

Ip = 1/\/5 - distance from a wall where the height of a meniscus decreases in e
times (for water this distance is approximately 2,7 mm).

The equation (3) can be set down, using dimensionless sizes
d’a _
dp’
Here ® = H?pg /o - Bond number, a = h/H, B = I/H - relative coordinates.
The solution of the equation (5) accordingly looks like:

a=ep(-Vop) (6)

The first derivative of function (6) is

Da. ()




Z:_;z— (I)exp(—\/aﬂ)=—\/6-a. (7)

The second derivative, obviously, coincides with (5).

Using the results of the first stage, we shall pass to the second stage of the

solution of the equation (2), that is, in a near zone.

Let's set down the equation (2), using dimensionless quantities (similarly to

the equation (5))

d . . dp
—(sin®@)=Pa—. 8
da (sin®) aa’a ®
Let's transform the equation (8), using known trigonometric identity
sin@z\/ ! — = ! =. 9)
I+ctg™®
()
da
After differentiation of the left part the equation (8) gets a following form:
d2 d 2 3/2
I _ ¢ 1+(—ﬂj . (10)
da da

The numerical solution of equation was carried out using program Excel, in
view of results of calculation in the far zone (6), (7). Thus for a reference position
we shall take exponential function (6), that is, the origin of coordinates proves to
be far from a wall.

Hence, while filling the first table line of calculation in Excel are used
following values (taken from the first stage of solution):

B =0, a=1(H=0,01mm =10°m), dB/da = (da/dB)”" = -(1/®)a, d =1,35-10°°.

Besides in the first line by means of formula (8) the second derivative is
determined using values already set down in this line.

And, at last, in the same line multiplication by step value Aa = 0,65 gives an
increment of the first derivative (proceeding from the second derivative), and also
an increment A, (proceeding from the first derivative dB/da). The step value Aa is
selected to provide sufficient accuracy of calculation (it is discussed below).

The second line is to be filled similarly to the first line in view of the
increments of values got in the first line.

Next lines are filled in by means of autofilling instrument.



Graphic representation of results of calculation is also carried out in
computer program Excel, but the diagramme S (a) is more convenient to draw in

natural view as it is shown on fig. 2 (a — standing axis, and 8 — horizontal axis).

Fig. 2. Meniscus at an infinite straight wall

(In relative coordinates).

The universal curve of meniscus represented on fig. 2, can be used for any
liquids, wetting angles and other conditions.

For example, the meniscus height of water at straight wall with best
wettability does not exceed about 380 H = 380-0,07mm = 3,8mm.

For other liquids or conditions it is necessary to select H so that the Bond
number H’pg /o stays constant.

In particular, in conditions of small free fall acceleration on the Moon (g =
1,62 m/s®) height of a meniscus can exceed 9 mm, that is, approximately 2,4 times
more (root of ratio 9,8/1,62) and also in this proportion slower meniscus decreases
when distance from a wall rises.

Universal curve (fig. 2) describes a case of meniscus at a wall with ideal
wetting (becomes vertical at wall).

Thus, there was conditionally removed the restriction associated with
wetting angle depending on a surface tension at interphase boundary (osg - solid
body - gas, og. - solid body - liquid, o - liquid - gas):
Os¢ ~Os

cos® =—5
0.6

(11)

Young equation (11) is a condition of mechanical equilibrium of a liquid and

usually is a starting point for calculations.



However, in consideration of universality of the meniscus form, it is logical
to impose boundary conditions (11) on the obtained full solution.

Really, putting a vertical plane (imitating wall) in places having various
horizontal coordinates, it is possible to get different wetting angles at an imaginary
wall (fig. 3).
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Fig. 3. Putting a vertical plane (imitating wall) in places with various horizontal

coordinates, it is possible to get different wetting angles at an imaginary wall.

Let's also note that in case of wall surface poor wettability the universal
curve of meniscus will be in negative region symmetric with respect to a horizontal
axis of coordinates.

To simplify the notation in formulas and in the text is used the reduced
writing of liquid surface tension o though, strictly speaking, it is necessary to use
more exact designation - 0, as in formula (11).

Turning back to the issue of accuracy of meniscus calculation, we shall
mention simple but enough effective method of control.

Numerical integration of the area under a meniscus curve was carried out,
then this value was multiplied by H?, by water density and by free fall acceleration
(the resulting amount is a specific per meter of wall length).

The received value is to be compared with the surface tension force of
water. In our case the «weight of a meniscus» is about 0,072537 and turns out

very close to known quantity of surface tension force 0,0728.



2. Meniscus of liquid at an external cylinder wall

Let's examine variant of meniscus at external wall of a cylinder facing

infinite water surface surrounding it (fig. 4).
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Fig. 4. Meniscus of liquid at external wall of a cylinder.

The equation of meniscus is set up similarly to the equation (2)

pgh-2mr ﬁa’h——(27z7f0'sm®)alh (12)

dh
Unlike the conditions of equation (2), here the equilibrium of a cylindrical

thin liquid layer having height h, radius r and thickness dr is considered.
After differentiation of the right side of (12) in view of expression (9) the

differential equation of meniscus takes on form:

2 2
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Or in relative coordinates:

2
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Here ® = H’pg/o - Bond number, a = h/H, B = r/H - relative coordinates,
H - some very small size chosen in view of the condition that h is small in

the area remote from a wall (here, as well as in case of the straight wall, examined

in pt.1, was assumed H = 0,01 mm).



Unlike a meniscus at a straight wall in this case the solution of the equation
depends on radius of the cylinder and consequently it is not unique. Thus, number
of functions describing meniscus at an external surface of cylinder is unlimited.

Numerical solution of the problem of meniscus at external wall of a cylinder
can be carried out, using the equation (14) similarly to pt. 1, but it is possible to do
it in a different rather evident way.

Let's set down the equation (12) in other form:

d
h-2mrdr =— 2mrosin ®)dr,

pghrdr =d(rosin ®).

Or, using dimensionless quantities, we have:

Daf-df =d(fsin®). (16)
Integration of the equation (16) is carried out step by step from some

remote point r,, (or B,) where very small value of height of meniscus H was set:
| ®ap-dp=psine. (17)

For the reason that in this remote point the form of a meniscus approaches
to exponent as at a straight wall (pt. 1), the initial value of sine in this conditions is
set equal to the root of Bond number (7).

In process of numerical integration of the left and right sides of the equation
the sine increases, as the general «weight of meniscus» grows proportionally to
integral in the left side of the equation (17).

Accordingly the increment of height da depends on tg(6) or da/dp, that is,
angle 6, which, in turn, is determined as arcsin(6).

In fig. 5 - 7 results of meniscus calculation for three different radiuses of

cylinder are shown.
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Fig. 5. Meniscus of water at an external wall of cylinder

(R = 3mm, height of meniscus is about 2,5mm).
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Fig. 6. Meniscus of water at an external wall of cylinder

(R = 2mm, height of meniscus is about 2,2mm).

Fig. 7. Meniscus of water at an external wall of cylinder

(R = 0.9mm, height of meniscus is about 1,7mm).

Comparison of lines represented in these figures shows, that reduction of
radius of the cylinder causes decrease of meniscus height.

It should be also noted that the height of meniscus at external wall of a
cylinder in whole is less than at a straight wall (pt. 1) where it reaches in case of

water about 3,8mm.

3. Meniscus of liquid between two infinite straight walls

Setting up the meniscus equation of liquid between two infinite walls we
shall reason by analogy with analyses of sitting and hanging drops [1].

In the lowermost area of meniscus we shall specify radius of curvature of
liquid surface R. Counting of height h we shall do basing on a minimum level of a
meniscus though in the sequel we shall also consider zero level determined by

external pressure.
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Fig. 8. Meniscus of liquid between two straight walls.

The equation describing equilibrium of a thin liquid layer (fig. 8) with height
h, width dl and unit length (perpendicular to the plane of figure) is of the form:

o dl d
— h |-— dh=— (o sin ®)dh. 18
(2 pen | an =4 (asino) (18)
Using expression (9) and differentiating the right side of equation, we get
d’l (1 ay)’
—2=[—+@hj- 1{_) . (19)
dh R o dh
Or in relative quantities:
dzﬂ dﬂ P 3/2

=(1+Dh) | 1+| — . 20
el ){ ( dajj (20)

The numerical solution of this equation is carried out in the same way as it
was already done at the solution of the equation (10). But, in view of facilities of
program Excel, it is possible to make it similarly to the solution of equation (15).

Then the equation (18) takes form:

(1+ ®a)-df = d(sin ®). (21)

Here ® = R%0g/o - Bond number, a = h/R, B = I/R - relative coordinates.

Integration of the equation (21) also is carried out step-by-step, starting

from a minimum of a meniscus, where h =0, (or a = 0); I =0 (or 8 = 0)
[l a+®aap=sine. (22)

Besides at filling the first line (first step) of calculation it is necessary to

consider, that near the zero it is possible to write down:
10
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In process of numerical integration of the left and right sides of the equation

l »
ax_f (23)

the sine increases, as «the summed up part of meniscus weight» grows
proportionally to integral in the left side of the equation (22).
As before, the increment of height da is determined through tg (6) (or

da/dB), and a angle 6, in turn, is determined as arcsin(6).

Fig. 9. Meniscus of liquid between two straight walls, ® = 0,735

(R = 1Tmm, meniscus =0,83 mm, distance between walls =2 mm, h, = 7,4mm).

In fig. 9 results of calculation of meniscus for R = Tmm are shown.

It is clear, that at small distances between walls the meniscus section in
form is close to semi circumference.

The lowermost area of meniscus proves to be above a zero-level (meeting
external pressure). It means that curve of meniscus (fig. 9) as a whole is to be
raised:
hy o 1

Q, =—. (24)

h = = — =
0 R pgR® @

i
pg’

=|Q

Thus, at distance between walls about 2 mm water level between them
rises in addition to the meniscus represented in figure (=0,83 mm) even more than
by 7,4 mm (0, = 1/® = 7,43).

At increase in distance between walls the form of meniscus more and more
deviates from cylindrical (fig. 10 - 13), the radius R in meniscus minimum

increases, and the zero-level of liquid decreases (24).

11



Fig. 10. Meniscus of liquid between two straight walls, ® = 3,36

(R = 5mm, meniscus =2,25 mm, distance between walls =7,25 mm, h, = 1,49mm).

Fig. 11. Meniscus of liquid between two straight walls, ® = 13,46

(R = 10mm, a meniscus =3 mm, distance between walls =10,56 mm, h, = 0,74mm).

Fig. 12. Meniscus of liquid between two straight walls, ® = 53,85

(R = 20mm, a meniscus =3,2 mm, distance between walls =14,5 mm, h, = 0,37mm).

12
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Fig. 13. Meniscus of liquid between two straight walls, ® = 336,5

(R = 50mm, a meniscus =3,5 mm, distance between walls =19,3 mm, h, = 0,175mm).

Simultaneously with it, the actual height of meniscus (the difference of liquid
levels at a wall and in the middle between walls) increases and at the parameters
shown in fig. 13, the meniscus nearly reaches limiting value at a single straight

wall (pt. 1).

4. Meniscus of liquid at an inner surface of cylinder

The equation of meniscus of liquid inside of a cylinder (tube) is set up in

similar terms of (12) and (18):

20 dr d
—+pgh |-r—dh=— in ®)dh. 25
(R pg]rdh AR (25)
Using expression (9) and differentiating the right side of the equation, we
get

d’ 2 1 1 ar VY
Zusl [ V. 7y Myt ) Y | R
dh R o (dr) r dh

1+ —

dh

Or in relative quantities:
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1+ —
da
Interestingly enough that the equation of meniscus of liquid inside of a
cylinder (27) actually agrees with the equation of a sitting drop form [1].
The equation (25) can be also set up in a following form:
(2+®a)B-df =d(BsinO). (28)
Here @ = Rng /o0 - Bond number, a = h/R, B = /R - relative coordinates; R
— radius of curvature of liquid surface in the center of a cylinder.
Integration of the equation (28), as before, is carried out step by step,

starting from a minimum point of meniscus, where h =0 (a=0); r=0 (8 = 0)
[l @+®a)pip=psine. (29)

At filling in the first line (first step) of calculation table it is also necessary to

keep in mind that near the zero it is trues the approximate expression:
1

ax Eﬂz. (30)

In process of numerical integration of the left and right sides of the equation
the sine increases, as «the summed up part of meniscus weight » grows
proportionally to integral in the left side of the equation (29).

Thus the zero-level (h,) proves to be twice more, than it was in case of two
parallel straight walls (24) as curvature of liquid surface in this case exists in two
mutually perpendicular directions:

. gl 202 (31)
R peR’ @

Fig. 14. Meniscus of liquid inside the cylinder, ® = 53,84

(R = 20mm, meniscus =3,5 mm, radius of the cylinder =7,6 mm, h, = 0,74mm).
14



Fig. 15. Meniscus of liquid inside the cylinder, ® = 13,46

(R = 10mm, meniscus =3,7 mm, radius of the cylinder =5,7 mm, h, = 1,48mm).

Fig. 16. Meniscus of liquid inside the cylinder, ® = 3,36

(R = 5mm, meniscus =2,5 mm, radius of the cylinder =3,8 mm, h, = 2,97mm).

Fig. 17. Meniscus of liquid inside the cylinder, ® = 0,538

(R = 2mm, a meniscus =1,6 mm, radius of the cylinder =1,85 mm, h, = 7,43mm).
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Fig. 18. Meniscus of liquid inside the cylinder, ® = 0,71346

(R = 1Tmm, meniscus =0,9 mm, radius of the cylinder =0,98 mm, h, = 14,86mm).

Just as it was in case of meniscus of liquid between two straight walls, the
increment in curvature radius R (in meniscus minimum) more and more causes
deviation of meniscus form the spherical from, and simultaneously the total level h,
decreases (fig. 14 - 18).

The above mentioned identity of equations of sitting drop and of liquid
meniscus inside a cylinder appears, in particular, in the fact that the form of the top
part of a drop coincides with the form of meniscus inside of the cylinder when
there is poor wettability (fig. 19).

We have specially made calculation of meniscus with the same initial radius
of surface curvature in the center R = 8,8mm, as well as of the sitting drop [1].
Results of calculations not only confirm the identity of these forms, but also
indicate satisfactory calculation accuracy.

As before, in all the calculations as liquid was taken water that does not
affect at all the generality of the received results due to the equations universality
(via Bond number).

Let's also notice, that as well as in case of meniscus of liquid between two
straight walls, the meniscus inside of the cylinder is described by different
functions depending on concrete conditions, that is, these variants have unlimited

number of solutions.
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Fig. 19. At the bottom of the figure the meniscus inside of the cylinder with poor wetting
is shown, ® = 10,42 (R = 8,8mm, meniscus =-3,5 mm, radius of the cylinder =5,28 mm,
ho =-1,69mm). In the top of the figure as basis of comparison the sitting drop with similar

parameters [1] is represented.

Depending on concrete conditions of contact of liquid with wall surface
(wetting angle) on the basis of general solutions any specific solution providing

conditions of liquid equilibrium (just as it is shown in fig. 3) can be got.

5. Conclusion

Opportunities of modern computer equipment make it possible to solve
problems, which in rather recent past required a huge investment of time and

laborious work.

17



Therefore in the last decades many problems not having the simple
analytical solution have not been properly studied.

At the same time, in quite a number of cases detailed studying of physical
phenomena about which there are approximate, insufficient knowledge, has not
only educational, cognitive value. Development of modern technologies and
techniques requires expanded, more detailed study of various physical
phenomena and substance properties.

In the given paper the problem of meniscus of liquid is studied not by
means of traditional solution of Laplace equation, but using analysis of mechanical
equilibrium of a liquid under gravity, liquid surface tension and wettability at
separation surface of solid and liquid. Such approach is not only obvious, but also
is convenient for the numerical solution.

Analysis of liquid meniscus equations was carried out in various variants of
contact (with a straight infinite wall, with the external side and with the internal side
of cylinder, between two parallel straight walls). It was shown that meniscus
equations in all cases can be expressed in dimensionless coordinates using Bond
number (also dimensionless) and capillary constant.

Unlike the capillary constant, the Bond number depends on a choice of
some characteristic parameter — linear segment or radius (in each case the choice
is specific and almost arbitrary).

The opportunity to abstract from concrete boundary conditions (wetting
angle) allows to derive universal solutions and to reveal on this basis general
regularities.

Envelope lines of meniscus (solutions of equations) actually are special
mathematical functions doe (). In particular, in case of meniscus at a straight wall
this special function at a great distance from a wall tends to exponential function.

It is necessary to emphasize especially, that the form of meniscus of liquid
at a wall with poor wettability (other conditions being equal) is symmetric reflection
of meniscus when there is ideal wettability (with respect to horizontal axis).

It is remarkable that form of meniscus of liquid inside the cylinder coincides
with the form of top part of sitting drop (with the same Bond number).

Calculations and plotting of meniscus forms of liquid were realized on the
basis of analysis of liquid equilibrium conditions with use of the most widespread

and accessible computer program Excel.
18



1.

Naturally, the proposed approach is not universal or replacing other
methods of the analysis, but, undoubtedly, it can appear very convenient and

useful addition to already known methods of studying of liquid properties.
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