
 Author: Herman Schoenfeld <herman@sphere10.com>

 Version: 1.0

 Date: 2020-07-20

 Copyright: (c) Sphere 10 Software Pty Ltd

 License: MIT

W-OTS# - Shorter and Faster Winternitz
Signatures

Abstract

A very simple modification to the standard W-OTS scheme is presented called W-OTS# that

achieves a security enhancement similar to W-OTS+ 1 but without the overhead of hashing a
randomization vector in every round of the chaining function. The idea proffered by W-OTS# is to

simply thwart Birthday-attacks 2 altogether by signing an HMAC of the message-digest (keyed
with cryptographically random salt) rather than the message-digest itself. The signer thwarts a
birthday attack by virtue of requiring that the attacker guess the salt bits in addition to the
message-digest bits during the collision scanning process. By choosing a salt length matching the
message-digest length, the security of W-OTS# reduces to that of the cryptographic hash
function. This essentially doubles the security level of W-OTS and facilitates the use of shorter
hash functions which provide shorter and faster signatures for same security. For example, W-
OTS# 128-bit signatures have commensurate security to standard W-OTS 256-bit signatures yet
are roughly half the size and twice as fast. It is proposed that Blake2b-128 and Winternitz
parameter w=4 (i.e. base-16 digits) be adopted as the default parameter set for the W-OTS#
scheme.

1. Birthday Attack

A birthday attack involves an attacker forging a signature for a "malicious" message M by re-
using a signature for an "agreed" message m . In this class of attack, the attacker has pre-
knowledge of a message m that the victim is willing and intending to sign in the future.

The attacker creates variations of m as {m_1..m_k} any of which will also be deemed "valid" and
signed by the victim. Whilst the victim considers each message m_i "identical", their hash digests
are unique. This can be achieved by simply varying nonces or whitespace within m to create this
set.

The attacker simultaneously generates variations of a "malicious" message M as the set
{M1..M_l} and stops until a collision H(m_i) = H(M_j) is found (where H is the hash function
used in the scheme).

Note the probability of finding such collisions is far more likely than a standard brute-force

attack by virtue of the Birthday problem 2 3 .

When a collision-pair (m_i, M_j) is found, the attacker asks the victim to sign valid m_i giving s
= Sign(m_i, key) = SignDigest(H(m_i), key) . The attacker then proceeds to forge a
signature for invalid M_i by simply re-using s , as follows:

af://n49
af://n54

Unbeknownst to the victim, by signing m_i , they have also signed M_j .

2. W-OTS & W-OTS+

The Winternitz scheme is a well-documented 4 5 scheme whose description is beyond the scope
of this document. However, of relevance is the relationship between the W-OTS "security
parameter" n (the bit-length of H) and it's "security level" which is generally n/2 . This follows
from the fact that if a brute-force attack on H requires 2^n hash rounds then a birthday attack

requires 2^(n/2) 2 hash rounds. By eliminating the birthday attack, and assuming no such
other class of attacks exist for H , the security level of the scheme is restored back to that of a
brute-force attack on H which is n .

W-OTS+ achieves a similar security enhancement through obfuscation of pre-images in the
hashing chains, however they are performed during the chaining function which adds an
overhead (significant in some implementations). W-OTS# is similar to W-OTS+ in this regard
except it only obfuscates the message-digest once via an HMAC (keyed with the salt) and uses the
standard W-OTS chaining function, which is faster than W-OTS+. Despite the concatenation of the
salt to the signature, the overall signature size decreases by virtue of selecting a shorter hash
function H .

3. W-OTS#

The W-OTS# construction is identical to a standard W-OTS construction for Winternitz parameter
w and cryptographic hash function H . The security parameter n is inferred from the the bit-
length of H .

In W-OTS, a message-digest md is computed as md=H(message) . During signing, digits of base
2^w are read from md and signed in a Winternitz chain. In W-OTS#, the message-digest md is
replaced with the "sig-mac" smac defined as:

3.1 Signature Message Authentication Code (SMAC)

The salt is concatenated to the signature and used to compute smac during verification.

NOTE the checksum digits are calculated and signed identically as per W-OTS but derived from
smac not md .

3.2 Salt

The Salt is generated by the signer using cryptographic random number generator. The length
of the Salt is n bits which is the minimum value required to nullify a birthday attack (proven
below). The salt is defined as:

1: S = Sign(M_j, key)

2: = SignDigest(H(M_j), key)

3: = SignDigest(H(m_i), key)

4: = s

1: smac = SMAC(m, salt)

2: = HMAC(H(m), salt)

3: = H(Salt || H(Salt || H(m)))

af://n62
af://n65
af://n68
af://n72

1. Hülsing, A. "W-OTS+ -Shorter Signatures for Hash-Based Signature Schemes". 2013. Url: https://eprint.iacr.org/2017/965.pdf. Accessed:
2020-07-22. ↩

2. Wikipedia. "Birthday Attack". Url: https://en.wikipedia.org/wiki/Birthday_attack. Accessed: 2020-07-22 ↩ ↩ ↩ ↩ ↩

3. Wikipedia. "Birthday Problem". Url: https://en.wikipedia.org/wiki/Birthday_problem. Accessed: 2020-07-22 ↩

4. Ralph Merkle. "Secrecy, authentication and public key systems / A certified digital signature". Ph.D. dissertation, Dept. of Electrical
Engineering, Stanford University, 1979. Url: http://www.merkle.com/papers/Certified1979.pdf ↩

5. Crypto4A. "Hash Chains and the Winternitz One-Time Signature Scheme". URL: https://crypto4a.com/sectorization-defunct/wots/.
Accessed on: 2020-07-20 ↩

3.1.2 Proof

1. A birthday-collision is expected after 1.25 * SQRT(U) 2 hashing rounds where U is
maximum hashing rounds ever required (non-repeating).

2. In W-OTS, U=2^n where n is the security parameter (bits-length of H) and thus (1) becomes
1.25 * 2^(n/2) .

3. In W-OTS#, adding a d -bit salt hardens a birthday-collision to A = 1.25 * 2^((n+d)/2)
rounds. This follows from the fact that an attacker must scan for collision (HMAC(H(m_i),
Salt), HMAC(H(M_j), Salt)) which involves d more bits (whereas in W-OTS they just scan
for (H(m_i), H(M_j))).

4. A brute-force attack on H requires B = 2^n hashing rounds 2 .
5. We need to choose d such A = B , since we only need to harden a birthday attack to match

that of a brute-force attack. Hardening beyond is redundant since the security level of the
scheme is only as strong as the weakest attack vector.

6. Evaluating (5) gives d = 2 ln(0.8)/ln(0.2) + n = 0.2773 + n which is approximately n
7. Thus choosing d=n is sufficient to thwart birthday-attack. QED.

4. References

1: Salt = {0,1}^n (i.e. n cryptographically random bits)

https://eprint.iacr.org/2017/965.pdf
https://en.wikipedia.org/wiki/Birthday_attack
https://en.wikipedia.org/wiki/Birthday_problem
http://www.merkle.com/papers/Certified1979.pdf
https://crypto4a.com/sectorization-defunct/wots/
af://n75
af://n92

	W-OTS# - Shorter and Faster Winternitz Signatures
	1. Birthday Attack
	2. W-OTS & W-OTS+
	3. W-OTS#
	3.1 Signature Message Authentication Code (SMAC)
	3.2 Salt
	3.1.2 Proof

	4. References

