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Abstract

Some relations among Pythagorean triples are established. The

main tool is a fundamental characterization of the Pythagorean triples

through a cathetus that allows to determine the relationships between

two Pythagorean triples with an assigned cathetus a and b and the

Pythagorean triple with cathetus a · b.

1 Introduction

Let x, y and z be positive integers satisfying

x2 + y2 = z2.

Such a triple (x, y, z) is called a Pythagorean triple and if, in addition, x, y
and z are co-prime, it is called a primitive Pythagorean triple. First, let us
recall a recent novel formula that allows to obtain all Pythagorean triples as
follows.

Theorem 1.1. ([1]) (x, y, z) is a Pythagorean triple if and only if there exists
d ∈ C(x) such that

x = x, y =
x2

2d
−

d

2
, z =

x2

2d
+

d

2
, (1.1)
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with x positive integer, x ≥ 1, and where

C(x) =







D(x), if x is odd,

D(x) ∩ P (x), if x is even,

with
D(x) =

{

d ∈ N such that d ≤ x and d divisor of x2
}

,

and if x is even with x = 2nk, n ∈ N and k ≥ 1 is a fixed odd number, with

P (x) =
{

d ∈ N such that d = 2sl, with l divisor of x2 and s ∈ {1, 2, . . . , n− 1}
}

.

In [2] we found relations between the primitive Pythagorean triple (x, y, z)
generated by any predeterminated positive odd integer x using (1.1) and the
primitive Pythagorean triple generated by xm with m ∈ N and m ≥ 2. In
[2] we took care of relations only for the case in which the primitive triple
(x, y, z) is generated whith d ∈ C(x) only with d = 1 and the primitive
triple (xm, y′, z′) is generated with dm ∈ C(xm) only with dm = 1 obtaining
formulas that give us y′ and z′ directly from x, y, z.

Theorem 1.2. ([2]) Let (x, y, z) be the primitive Pythagorean triple gen-
erated by any predeterminated positive odd integer x ≥ 1 using (1.1) with
z − y = d = 1 and let (xm, y′, z′) be the primitive Pythagorean triple gener-
ated by xm, m ∈ N, m ≥ 2, using (1.1) with z′ − y′ = dm = 1, we have the
following formulas

y′ = y

[

1 +

m−1
∑

p=1

x2p

]

,

(1.2)

z′ = y

[

1 +

m−1
∑

p=1

x2p

]

+ 1 ,

for every m ∈ N and m ≥ 2.
Moreover, we have

z

[

(−1)m−1 +

m−1
∑

p=1

(−1)m−1−px2p

]

=

{

y′ if m is even,
z′ if m is odd,

(1.3)

and

z

[

(−1)m−1 +
m−1
∑

p=1

(−1)m−1−px2p

]

+ (−1)m−2 =

{

z′ if m is even,
y′ if m is odd.

(1.4)
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This was the first step to investigate on other relations between Pythagorean
triples.

We want to find relations between the Pythagorean triple (a, a1, a2),
(b, b1, b2), (a · b, y, z) generated by a, b, a · b respectively using (1.1) with
a2 − a1 = d1 ∈ C(a), b2 − b1 = d2 ∈ C(b), z − y = d3 ∈ C(a · b) to obtain
formulas that give us y, z and d3 directly from a1, a2, b1, b2, d1, d2.

2 Results

The following theorem holds.

Theorem 2.1. Let (a, a1, a2), (b, b1, b2), (a·b, y, z) be the Pythagorean triples
generated by a, b, a · b respectively using (1.1) with a2 − a1 = d1 ∈ C(a),
b2 − b1 = d2 ∈ C(b), z − y = d3 ∈ C(a · b). Then

y = a1b2 + a2b1, z = a1b2 + a2b1 + d1d2, (2.1)

and moreover,

y = a1b1 + a2b2 − d1d2, z = a1b1 + a2b2, (2.2)

with d3 = d1 · d2 ∈ C(a · b).

Proof. To prove (2.1) we verify that

z2 − y2 = (a · b)2, (2.3)

with y and z given in (2.1).
To do this, consider the Pythagorean triples generated by a and b respectively
using (1.1)

a, a1 =
a2 − d2

1

2d1
, a2 =

a2 + d2
1

2d1
, d1 ∈ C(a),

b, b1 =
b2 − d2

2

2d2
, b2 =

b2 + d2
2

2d2
, d2 ∈ C(b).

(2.4)

Writing (2.3) with y and z given from (2.1), we have

(a1b2 + a2b1 + d1d2)
2 − (a1b2 + a2b1)

2 = (a · b)2;

that is,
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d2
1
d2
2
+ 2a1b2d1d2 + 2a2b1d1d2 = a2b2,

and using (2.4) we obtain

d2
1
d2
2
+ 2

a2 − d2
1

2d1

b2 + d2
2

2d2
d1d2 + 2

a2 + d2
1

2d1

b2 − d2
2

2d2
d1d2 = a2b2,

2d2
1
d2
2
+ (a2 − d2

1
)(b2 + d2

2
) + (a2 + d2

1
)(b2 − d2

2
) = 2a2b2,

from which it is easy to see that

2a2b2 = 2a2b2.

As a result, (2.3) is an identity with y and z given from (2.1) and that the
triple

a · b a1b2 + a2b1 a1b2 + a2b1 + d1d2

is a Pythagorean triple with d3 = (d1 · d2) ∈ C(a · b).
Therefore, (2.1) holds.
To prove (2.2), using (2.1) and (1.1) we consider

y = a1b2 + a2b1 =
(a · b)2 − (d1 · d2)

2

2d1d2
=

a2b2 − d2
1
d2
2

2d1d2
=

(a2
2
− a2

1
)(b2

2
− b2

1
)− d2

1
d2
2

2d1d2

=
d1(a2 + a1)d2(b2 + b1)− d2

1
d2
2

2d1d2
=

(a2 + a1)(b2 + b1)− d1d2

2
;

that is,

2a1b2 + 2a2b1 = a1b1 + a2b2 + a1b2 + a2b1 − d1d2.

Then
y = a1b2 + a2b1 = a1b1 + a2b2 − d1d2.

Since z − y = d1d2,

z = a1b1 + a2b2.

So the triple

a · b y = a1b1 + a2b2 − d1d2 z = a1b1 + a2b2

is a Pythagorean triple with d3 = (d1 · d2) ∈ C(a · b).
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Therefore, (2.2) holds as well.
Consequently, formulas (2.1) and (2.2) have thus been proved with d3 =
(d1 · d2) ∈ C(a · b).

We note that from (2.1) it is possible to find easily the formulas (2.1) in
which d = dm = 1 almost in the case m = 2 and m = 3 while for m > 3 it
is more difficult for calculus. In fact, if we consider the Pythagorean triple
(a, a1, a1 + 1) and having by (1.1) a1 = a

2
−1

2
from which 2a1 + 1 = a2, then

using (2.1) we obtain for m = 2

y′ = a1b2 + a2b1 = 2a1(a1 + 1) = a1(1 + 1 + 2a1) = a1(1 + a2),

z′ = a1(1 + a2) + 1,

for m = 3

y′ = a1b2 + a2b1 = 2a2
1
(1 + a2) + a1(1 + a2) + a1 = a1[2a1(1 + a2) + (1 + a2) + 1]

= a1[1 + (1 + a2)(1 + 2a1)] = a1[1 + (1 + a2)a2] = a1[1 + a2 + a4]

z′ = a1[1 + a2 + a4] + 1,

which is formulas (1.2) in the cases m = 2 and m = 3.

For future work, it may be interesting to study the relationships between
Eisenstein Triples after the result found in [3] which gives a characterization
of Eisenstein Triples through a side of the triangle.
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