Some relations among Pythagorean triples

Roberto Amato
Department of Engineering
University of Messina
98166 Messina, Italy
email: ramato@unime.it

Abstract

Some relations among Pythagorean triples are established. The main tool is a fundamental characterization of the Pythagorean triples through a cathetus that allows to determine the relationships between two Pythagorean triples with an assigned cathetus a and b and the Pythagorean triple with cathetus $a \cdot b$.

1 Introduction

Let x, y and z be positive integers satisfying

$$
x^{2}+y^{2}=z^{2} .
$$

Such a triple (x, y, z) is called a Pythagorean triple and if, in addition, x, y and z are co-prime, it is called a primitive Pythagorean triple. First, let us recall a recent novel formula that allows to obtain all Pythagorean triples as follows.

Theorem 1.1. ([1]) (x, y, z) is a Pythagorean triple if and only if there exists $d \in C(x)$ such that

$$
\begin{equation*}
x=x, \quad y=\frac{x^{2}}{2 d}-\frac{d}{2}, \quad z=\frac{x^{2}}{2 d}+\frac{d}{2}, \tag{1.1}
\end{equation*}
$$

Key words and phrases: Pythagorean triples, Diophantine equations.
AMS (MOS) Subject Classifications: 11D61.
with x positive integer, $x \geq 1$, and where

$$
C(x)= \begin{cases}D(x), & \text { if } x \text { is odd } \\ D(x) \cap P(x), & \text { if } x \text { is even }\end{cases}
$$

with

$$
D(x)=\left\{d \in \mathbb{N} \quad \text { such that } d \leq x \text { and } d \text { divisor of } x^{2}\right\}
$$

and if x is even with $x=2^{n} k, n \in \mathbb{N}$ and $k \geq 1$ is a fixed odd number, with $P(x)=\left\{d \in \mathbb{N}\right.$ such that $d=2^{s} l$, with l divisor of x^{2} and $\left.s \in\{1,2, \ldots, n-1\}\right\}$.

In [2] we found relations between the primitive Pythagorean triple (x, y, z) generated by any predeterminated positive odd integer x using (1.1) and the primitive Pythagorean triple generated by x^{m} with $m \in \mathbb{N}$ and $m \geq 2$. In [2] we took care of relations only for the case in which the primitive triple (x, y, z) is generated whith $d \in C(x)$ only with $d=1$ and the primitive triple $\left(x^{m}, y^{\prime}, z^{\prime}\right)$ is generated with $d_{m} \in C\left(x^{m}\right)$ only with $d_{m}=1$ obtaining formulas that give us y^{\prime} and z^{\prime} directly from x, y, z.
Theorem 1.2. ([2]) Let (x, y, z) be the primitive Pythagorean triple generated by any predeterminated positive odd integer $x \geq 1$ using (1.1) with $z-y=d=1$ and let $\left(x^{m}, y^{\prime}, z^{\prime}\right)$ be the primitive Pythagorean triple generated by $x^{m}, m \in \mathbb{N}, m \geq 2$, using (1.1) with $z^{\prime}-y^{\prime}=d_{m}=1$, we have the following formulas

$$
\begin{align*}
& y^{\prime}=y\left[1+\sum_{p=1}^{m-1} x^{2 p}\right] \tag{1.2}\\
& z^{\prime}=y\left[1+\sum_{p=1}^{m-1} x^{2 p}\right]+1,
\end{align*}
$$

for every $m \in \mathbb{N}$ and $m \geq 2$.
Moreover, we have

$$
z\left[(-1)^{m-1}+\sum_{p=1}^{m-1}(-1)^{m-1-p} x^{2 p}\right]= \begin{cases}y^{\prime} & \text { if } m \text { is even } \tag{1.3}\\ z^{\prime} & \text { if } m \text { is odd }\end{cases}
$$

and

$$
z\left[(-1)^{m-1}+\sum_{p=1}^{m-1}(-1)^{m-1-p} x^{2 p}\right]+(-1)^{m-2}= \begin{cases}z^{\prime} & \text { if } m \text { is even } \tag{1.4}\\ y^{\prime} & \text { if } m \text { is odd }\end{cases}
$$

This was the first step to investigate on other relations between Pythagorean triples.

We want to find relations between the Pythagorean triple $\left(a, a_{1}, a_{2}\right)$, $\left(b, b_{1}, b_{2}\right),(a \cdot b, y, z)$ generated by $a, b, a \cdot b$ respectively using (1.1) with $a_{2}-a_{1}=d_{1} \in C(a), b_{2}-b_{1}=d_{2} \in C(b), z-y=d_{3} \in C(a \cdot b)$ to obtain formulas that give us y, z and d_{3} directly from $a_{1}, a_{2}, b_{1}, b_{2}, d_{1}, d_{2}$.

2 Results

The following theorem holds.
Theorem 2.1. Let $\left(a, a_{1}, a_{2}\right),\left(b, b_{1}, b_{2}\right),(a \cdot b, y, z)$ be the Pythagorean triples generated by $a, b, a \cdot b$ respectively using (1.1) with $a_{2}-a_{1}=d_{1} \in C(a)$, $b_{2}-b_{1}=d_{2} \in C(b), z-y=d_{3} \in C(a \cdot b)$. Then

$$
\begin{equation*}
y=a_{1} b_{2}+a_{2} b_{1}, \quad z=a_{1} b_{2}+a_{2} b_{1}+d_{1} d_{2} \tag{2.1}
\end{equation*}
$$

and moreover,

$$
\begin{equation*}
y=a_{1} b_{1}+a_{2} b_{2}-d_{1} d_{2}, \quad z=a_{1} b_{1}+a_{2} b_{2} \tag{2.2}
\end{equation*}
$$

with $d_{3}=d_{1} \cdot d_{2} \in C(a \cdot b)$.
Proof. To prove (2.1) we verify that

$$
\begin{equation*}
z^{2}-y^{2}=(a \cdot b)^{2} \tag{2.3}
\end{equation*}
$$

with y and z given in (2.1).
To do this, consider the Pythagorean triples generated by a and b respectively using (1.1)

$$
\begin{array}{lll}
a, & a_{1}=\frac{a^{2}-d_{1}^{2}}{2 d_{1}}, & a_{2}=\frac{a^{2}+d_{1}^{2}}{2 d_{1}},
\end{array} \begin{array}{ll}
d_{1} \in C(a), \tag{2.4}\\
b, & b_{1}=\frac{b^{2}-d_{2}^{2}}{2 d_{2}},
\end{array} \quad b_{2}=\frac{b^{2}+d_{2}^{2}}{2 d_{2}}, \quad d_{2} \in C(b) .
$$

Writing (2.3) with y and z given from (2.1), we have

$$
\left(a_{1} b_{2}+a_{2} b_{1}+d_{1} d_{2}\right)^{2}-\left(a_{1} b_{2}+a_{2} b_{1}\right)^{2}=(a \cdot b)^{2}
$$

that is,

$$
d_{1}^{2} d_{2}^{2}+2 a_{1} b_{2} d_{1} d_{2}+2 a_{2} b_{1} d_{1} d_{2}=a^{2} b^{2}
$$

and using (2.4) we obtain

$$
\begin{gathered}
d_{1}^{2} d_{2}^{2}+2 \frac{a^{2}-d_{1}^{2}}{2 d_{1}} \frac{b^{2}+d_{2}^{2}}{2 d_{2}} d_{1} d_{2}+2 \frac{a^{2}+d_{1}^{2}}{2 d_{1}} \frac{b^{2}-d_{2}^{2}}{2 d_{2}} d_{1} d_{2}=a^{2} b^{2} \\
2 d_{1}^{2} d_{2}^{2}+\left(a^{2}-d_{1}^{2}\right)\left(b^{2}+d_{2}^{2}\right)+\left(a^{2}+d_{1}^{2}\right)\left(b^{2}-d_{2}^{2}\right)=2 a^{2} b^{2}
\end{gathered}
$$

from which it is easy to see that

$$
2 a^{2} b^{2}=2 a^{2} b^{2}
$$

As a result, (2.3) is an identity with y and z given from (2.1) and that the triple

$$
a \cdot b \quad a_{1} b_{2}+a_{2} b_{1} \quad a_{1} b_{2}+a_{2} b_{1}+d_{1} d_{2}
$$

is a Pythagorean triple with $d_{3}=\left(d_{1} \cdot d_{2}\right) \in C(a \cdot b)$.
Therefore, (2.1) holds.
To prove (2.2), using (2.1) and (1.1) we consider

$$
\begin{aligned}
y & =a_{1} b_{2}+a_{2} b_{1}=\frac{(a \cdot b)^{2}-\left(d_{1} \cdot d_{2}\right)^{2}}{2 d_{1} d_{2}}=\frac{a^{2} b^{2}-d_{1}^{2} d_{2}^{2}}{2 d_{1} d_{2}}=\frac{\left(a_{2}^{2}-a_{1}^{2}\right)\left(b_{2}^{2}-b_{1}^{2}\right)-d_{1}^{2} d_{2}^{2}}{2 d_{1} d_{2}} \\
& =\frac{d_{1}\left(a_{2}+a_{1}\right) d_{2}\left(b_{2}+b_{1}\right)-d_{1}^{2} d_{2}^{2}}{2 d_{1} d_{2}}=\frac{\left(a_{2}+a_{1}\right)\left(b_{2}+b_{1}\right)-d_{1} d_{2}}{2} ;
\end{aligned}
$$

that is,

$$
2 a_{1} b_{2}+2 a_{2} b_{1}=a_{1} b_{1}+a_{2} b_{2}+a_{1} b_{2}+a_{2} b_{1}-d_{1} d_{2}
$$

Then

$$
y=a_{1} b_{2}+a_{2} b_{1}=a_{1} b_{1}+a_{2} b_{2}-d_{1} d_{2}
$$

Since $z-y=d_{1} d_{2}$,

$$
z=a_{1} b_{1}+a_{2} b_{2} .
$$

So the triple

$$
a \cdot b \quad y=a_{1} b_{1}+a_{2} b_{2}-d_{1} d_{2} \quad z=a_{1} b_{1}+a_{2} b_{2}
$$

is a Pythagorean triple with $d_{3}=\left(d_{1} \cdot d_{2}\right) \in C(a \cdot b)$.

Therefore, (2.2) holds as well.
Consequently, formulas (2.1) and (2.2) have thus been proved with $d_{3}=$ $\left(d_{1} \cdot d_{2}\right) \in C(a \cdot b)$.

We note that from (2.1) it is possible to find easily the formulas (2.1) in which $d=d_{m}=1$ almost in the case $m=2$ and $m=3$ while for $m>3$ it is more difficult for calculus. In fact, if we consider the Pythagorean triple $\left(a, a_{1}, a_{1}+1\right)$ and having by (1.1) $a_{1}=\frac{a^{2}-1}{2}$ from which $2 a_{1}+1=a^{2}$, then using (2.1) we obtain for $m=2$

$$
\begin{gathered}
y^{\prime}=a_{1} b_{2}+a_{2} b_{1}=2 a_{1}\left(a_{1}+1\right)=a_{1}\left(1+1+2 a_{1}\right)=a_{1}\left(1+a^{2}\right), \\
z^{\prime}=a_{1}\left(1+a^{2}\right)+1,
\end{gathered}
$$

for $m=3$

$$
\begin{gathered}
y^{\prime}=a_{1} b_{2}+a_{2} b_{1}=2 a_{1}^{2}\left(1+a^{2}\right)+a_{1}\left(1+a^{2}\right)+a_{1}=a_{1}\left[2 a_{1}\left(1+a^{2}\right)+\left(1+a^{2}\right)+1\right] \\
=a_{1}\left[1+\left(1+a^{2}\right)\left(1+2 a_{1}\right)\right]=a_{1}\left[1+\left(1+a^{2}\right) a^{2}\right]=a_{1}\left[1+a^{2}+a^{4}\right] \\
z^{\prime}=a_{1}\left[1+a^{2}+a^{4}\right]+1,
\end{gathered}
$$

which is formulas (1.2) in the cases $m=2$ and $m=3$.
For future work, it may be interesting to study the relationships between Eisenstein Triples after the result found in [3] which gives a characterization of Eisenstein Triples through a side of the triangle.

References

[1] R. Amato, A characterization of pythagorean triples, JP Journal of Algebra, Number Theory and Applications 39, (2017), 221-230.
[2] R. Amato, A note on Pythagorean Triples, International Journal of Mathematics and Computer Science, 15, no. 2, (2020), 485-490.
[3] A. Cotronei, A Characterization of Eisenstein Triples, International Journal of Mathematics and Computer Science, 14, no. 3, (2019), 583590.
[4] W. Sierpinski, Elementary theory of numbers, PWN-Polish Scientific Publishers, 1988.

