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ABSTRACT This paper discusses malware detection in personal computers. Current malware detection
solutions are static. Antiviruses rely on lists of malicious signatures that are then used in file scanning.
These antiviruses are also very dependent on the operating system, requiring different solutions for different
systems. This paper presents a solution that detects malware based on runtime attributes. It also emphasizes
that these attributes are easily accessible and fairly generic meaning that it functions across systems and
without specialized information. The attributes are used in a machine learning system that makes it flexible
for retraining if necessary, but capable of handling new variants without needing to modify the solution. It
can also be run quickly which allows for detection to be achieved before the malware gets too far.

INDEX TERMS Malware, Machine Learning

I. INTRODUCTION

Malware is a large problem in modern technology. It causes
many issues for people individually, as well as companies.
This becomes more of an issue when you take into account
the fact that malware is constantly evolving. As can be
imagined, this makes it an incredibly difficult problem to
solve. Antivirus hasn’t changed much at all over the past 20
years for this reason. The solutions we employ are still
fairly static. They rely on the antivirus publisher collecting
samples continuously. These samples have to be analyzed
to generate a signature that can then be used in detection.
This is challenging for antivirus developers because they
have to find ways of obtaining these samples and they have
to invest resources in analyzing them. The signatures
obtained have to be added to a list that is pushed to clients.
From a client’s perspective this means constant updates and
slow response to new malware variants.

When new malware strains are introduced or the
malware is obfuscated the antivirus becomes completely
ineffective. This leaves clients vulnerable to attacks, maybe
even more so than without the antivirus because they
assume it will keep them safe.

This is where the solution | am proposing comes into
play. It seems self-evident that malware should be
detectable based on runtime attributes. These would be

aspects of malware that on some high level would never
change.

The other issue that this paper aims to solve is that
antivirus is effectively in itself malware that requires itself
to be tightly coupled with the machine and incredibly
specialized. This means that it needs to be designed
specifically for each operating system and requires a large
amount of information to function.

What this paper proposes is a dynamic model that utilizes
easily accessible runtime attributes in a generalizable way
such that it can be extended between operating systems.
These attributes are correlated in a statistically meaningful
way by using machine learning.

In this paper, | will outline what previous research has
been done in this area. | will then detail the proposed
solution after which the testing implementation will be laid
out. There will then be discussion on the results of these
tests. Lastly, the accomplishments of this paper and ideas
for future work in this area will be summarized.

1. PREVIOUS RESEARCH

It is quickly becoming common knowledge that existing
antivirus solutions are inadequate. There are even articles
appearing in common technical magazines outlining the idea
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of changing from static analysis methods to dynamic
methods [1]. The technical ideas supporting this change of
thought are slightly sparser and this is due to the technical
challenge involved in implementation. This is due to the fact
that antivirus must be incredibly accurate and minimize false
positives. This works in favor of static analysis, which will
only positively flag malware if it is an exact match for known
malware. Dynamic systems will always have more false
positives since they are dependent on behavior that cannot be
hard coded.

There are a few dynamic solutions that have been
proposed, but none of them match the criteria | have outlined
here.

Liu et al. [2] proposed an algorithm that takes into account
malware behavior features and outputs a judgment based on
these features. This doesn’t utilize a machine learning model
as they created a custom predictor. The solution they
proposed is also tied into Windows and requires low level
information from the operating system.

Wijnands [5] also proposed a very similar algorithm taking
into account malware behavior features such as filesystem,
registry, process creation/exiting, and thread creation/exiting.
This compared feature sets by utilizing a matrix to calculate
distance between nodes. This was also tied in with Windows.

Aubrey-Jones [3] suggests intercepting API calls or using
a virtualized environment to capture low level calls.
Unfortunately, this only suggests a concept and provides no
implementation or proof of concept.

Tobiyama et al. [4] builds on this concept of intercepting
API calls and adds the idea of using a Markov chain to
construct behavior patterns for processes. These behavior
patterns can then be labeled as malicious or benign. This
also, only works on Windows, however. Xie et al. [6] also
proposes using a Markov chain detection method, but this
implementation is based on user behavior/interaction so that
it can determine anomalous behavior. This implementation is
specific to Android systems though.

Shahzad et al. [7] uses low level process information such
as page frames and context switches along with more general

information like launcher size. This implementation is
specific to Linux.

Ferrante et al. [8] suggests using system calls as well as
CPU and memory usage. This is more similar to the attribute
set that is used in the solution proposed in this paper, but still
requires low level attributes, has a fairly limited number of
features and is specific to Android.

Gheorghe et al. [9] is very similar in that it also utilizes
CPU and memory usage, but instead of system calls, it uses
system settings such as WiFi enabling/disabling and
Bluetooth enabling/disabling. As can be surmised, this
couples it to the operating system again - Android in this
case.

Milosevic et al. [10] is effectively the same attribute set
that is used in this paper and does, in fact, use much of the
same analysis process. The notable difference is that their
solution is tied to Android.

It is quite noticeable that the implementations in existence
currently are very low level and require a tight knit coupling
with the specific operating system in use. The solution
proposed here is similar to most of these solutions, but
significantly more generalized.

Ill. SOLUTION

Based on the problem statement outlined in the introduction,
the solution that is being proposed here is a machine learning
model that utilizes process statistics to flag malicious
programs. The process statistics that are being utilized are
similar to what would come from a “top” or “ps” command
on a Unix based system.

Since the goal of this system is to be cross platform, it is
important that the method of obtaining these process statistics
is easily portable. With this in mind, a program call SIGAR
[11] was selected. This is a Java library that captures process
information using a DLL or shared object library file. The list
of operating systems this supports is shown in Figure 1.
While it is not completely universal, it is close and could be
extended to support other operating systems as needed.



File Language Description Required

libsigar-universal-macosx.dylib Mac OS X PowerPCllntel 32-bit *

libsigar-universal64-macosx.dylib Mac OS X PowerPC/Intel 64-bit *
libsigar-x&6-freebsd-5.50 FreeBSD 5.x AMD/Intel 32-bit  *

libsigar-x86-freebsd-6.s0 FreeBSD 6.x AMD/Intel 64-bit  *

sigarjar Java Java API Yes (for Java only)
logdj jar Java Java logging API Nao
libsigar-x86-linux.so c Linux AMD/Intel 32-bit "
libsigar-amdé&4-linux.so c Linux AMD/Intel 64-bit *
libsigar-ppc-linux.so c Linux PowerPC 32-bit "
libsigar-ppcéd-linux.so c Linux PowerPC 64-bit *
libsigar-iab4-linux.so c Linux Itanium 64-bit "
libsigar-s390x-linux.so c Linux zSeries 64-bit *
sigar-x86-winnt.dll c Windows AMD/Intel 32-bit "
sigar-amd&4-winnt.dll c Windows AMD/Intel 64-bit *
libsigar-ppc-aix-5.so c AIX PowerPC 32-bit "
libsigar-ppctd-aix-5.s0 c AlX PowerPC 64-bit *
libsigar-pa-hpux-11.sl c HP-UX PA-RISC 32-bit *
libsigar-iaG4-hpux-11.sl c HP-UX ltanium 64-bt "
libsigar-sparc-solaris so c Solaris Sparc 32-bit *
libsigar-sparcG4-solaris.so c Solaris Sparc 64-bit "
libsigar-x86-solaris so c Solaris AMD/Intel 32-bit *
libsigar-amd64-solaris.so c Solaris AMD/Intel 64-bit "

c

c

c

c

c

libsigar-amdé4-freebsd-6.s0 FreeBSD 6.x AMD/Intel 64-bit  *

FIGURE 1. List of possible SIGAR library files by operating system.

This library is used in a script that outputs to either the
terminal or a text file about all process information it can
capture as frequently as possible. Note that this means that
benign and malicious processes are both logged to the same
file since all processes are captured. The features that are
captured are shown in Table 1.

These features and the classification are organized in a flat
text CSV file in entries like the following:

TABLE |

SIGAR PROCESS ATTRIBUTE LIST [11]

Attribute Type Description
pid STRING Process ID
mem_size NUMERIC Total process virtual
memory
mem_resident NUMERIC Total process
resident memory
mem_share NUMERIC Total process shared
memory
mem_minor_faults NUMERIC Non I/0 page faults
mem_major_faults NUMERIC 1/0 page faults
mem_page_faults NUMERIC Total number of
page faults
cpu_percent NUMERIC Process cpu usage
cpu_total NUMERIC Process cpu time
(sum of user and
kernel time)
cpu_system NUMERIC Process cpu time
(kernel time)
proc_name STRING Name of process
executable
proc_file_descriptors NUMERIC Total number of
open file descriptors
proc_threads NUMERIC Number of active
threads
proc_state STRING Process state
(Running, Zombie,
etc.)
proc_time NUMERIC Process cpu time

(sum of user and
kernel)

29736960, 5009408, -1, -1, -1, 1635, -1, -1, -1, -1', 117, 8, 'R’, -1, "WmiPrvSE', ‘clean’

67579904, 5136384, -1, -1, -1, 2236, 0.0, 187, 156,
'C:\Users\michael\AppData\Roaming\sktoeys.exe', 57, 2, 'R, 187,
'C:\Users\michael\AppData\Roaming\sktoeys.exe', ‘infected’

1441792, 233472, -1, -1, -1,12491, -1, -1, -1, -1', 328, 65, 'R, -1, 'System’, 'clean’

These CSV files are then mapped to ARFF files and the
malicious data labeled using the identified malicious EXE
with string attributes removed. The reason that string
attributes are removed is that they limit the number of model
types that can be used and don’t really provide any
meaningful data unless parsed for specific pieces of content.
For the purposes of this paper, it was unnecessary to keep
this information, but could potentially be used in future
implementations. ARFF files are the proprietary data format
of the machine learning library WEKA [12]. This was chosen
here due to its simplicity of implementation, vast feature
selection, and data visualization tools.

Once a model is generated, it can be used in correlation
with the script that captures data to classify processes as
malicious or not.

IV. TESTING IMPLEMENTATION

There were three steps in setting up the testing for this. These
were the selection of datasets, features, and machine learning
model types.

A. DATASETS

For testing purposes there were a few malware instances
from theZoo malware database [13] whose runtime attributes
were sampled. Note that these datasets include both benign
and malicious data even though they are the dataset for a
specific malware, but that they are labeled benign/malicious
appropriately. There was also a large dataset of just clean
data for false positive testing. These are all listed in Table 2.

Once the data was collected it was segregated into 4
training and 4 testing sets.
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TABLE 2

DATASETS

Malware Name Malicious EXE Malware Type Number of Data Entries
Waski.Upatre utilview.exe Trojan 23,150 malicious, 1,523,816 clean
Win32.Alina.3.4.B  jucheck.exe Trojan 13,047 malicious, 881,478 clean
EquationDrug EquationDrug_4556 CESEB007AF1DESBD3B457F0B2  Trojan 769 malicious, 10,936,625 clean

16D.exe
ZeusVM dwm.exe Botnet 11,473 malicious, 1,203,780 clean
IllusionBot BOTBINARY.EXE Botnet 249,050 malicious, 14,292,470 clean
Teslacrypt sktoeys.exe Ransomware 53 malicious, 2,247 clean
Jigsaw drpbx.exe Ransomware 114 malicious, 4,562 clean
Locky svchost.exe Ransomware 80 malicious, 4,525 clean
Clean Clean Data 12,093,240 clean

The first set was for Trojan testing. For this, the
Waski.Upatre and Win32.Alina.3.4.B datasets were used for
training and the EquationDrug dataset was used for testing.

The second set was for botnet testing. For this, the
IllusionBot dataset was used for training and the ZeusVM
dataset was used for testing.

The third set was for ransomware testing. For this, the
Jigsaw and Locky datasets were used for training and the
Teslacrypt dataset was used for testing.

The last set was an aggregation of all of these malware
variants and used combined training and testing sets. In other
words, the training dataset was  Waski.Upatre,
Win32.Alina.3.4.B, lllusionBot, Jigsaw, and Locky. The
testing dataset consisted of EquationDrug, ZeusVM,
Teslacrypt, and the purely clean data.

B. FEATURE SELECTION

Three feature selection algorithms in Weka were used to
determine which of the acquired process attributes should be
used in model training and testing. The algorithms used were
CfsSubsetEval, CorrelationAttributeEval, and
InfoGainAttributeEval.

1) CFSSUBSETEVAL

This is a means of evaluating the value of a subset of
attributes by comparing the value of an attribute with how
redundant it is with other attributes in the subset. It utilized
BestFirst which searches via greedy hillclimbing with
backtracking.

2) CORRELATIONATTRIBUTEEVAL

This picks the most relevant attributes based on how likely a
class is for that specific variable. This utilized Ranker which
simply organizes by the highest values achieved by attribute
evaluators such as entropy.

3) INFOGAINATTRIBUTEEVAL

This evaluates an attribute based on how much class
information is gained from it. This also utilized Ranker.

4) FINAL FEATURES

After running the above feature selection algorithms, the
attribute rankings and what they represented were used to
construct a list of the most valuable attributes for each of the
4 test datasets.

The attributes chosen were as follows:

e Trojan datasets:
o mem_size
o mem_resident
o proc_file_descriptors
o proc_threads

e Botnet datasets:
o mem_page faults
o mem_size
o proc_file_descriptors
o proc_threads

e Ransomware datasets:
o proc_file_descriptors
o mem_resident
o mem_size



e  Aggregate datasets:
o proc_file_descriptors
o mem_size
o mem_resident
o mem_page_faults

C. MODELS

There were six Weka machine learning models chosen for
testing. These are as follows:

e Decision Table
o This is a simple Decision Table majority
classifier. It utilizes a grid to map features
to the likeliest classification.
e Logistic
o Thisis a Logistic Regression model which
includes a ridge estimator.
o NaiveBayes
o This is a NaiveBayes implementation
using estimator classes. The estimator uses
a precision that is based on the input data.
e PART
o This is a decision list based on tree data.
Effectively it constructs partial C4.5
decision trees and makes the best leaf from
each into a rule in the list.
o REPTree
o This is a fast regression tree that uses
information gain for tree derivation and is
pruned. It sorts the attributes once and if
anything needs to be added splits existing
instances.
e Voted Perceptron
o This is a voting system where weight
vectors are used with a set number of
nodes to vote on data. This is supposed to
be similar to SVM except faster.

For all of these models, the default parameters specified in
Weka were used, except for Voted Perceptron where the
number of nodes was changed from 10000 to 3000.

V. RESULTS

First each training set was used to create each of the 6
classifiers. Each of these classifiers was evaluated in two
ways, using 10 fold cross validation and via the test dataset
outlined previously.

A. 10 FOLD CROSS VALIDATION RESULTS

When the classifier was being made, 10 fold cross validation
was performed. This means that the data is split into 10

pieces and for each of those pieces one piece is used for
testing while the other 9 are used for training. This generated
the results outlined in Figures 2 - 25.

1) TROJAN

As can be seen in Figures 2 - 7, the Decision Table,
NaiveBayes, PART, and REPTree perform about equally and
have near perfect accuracy.

2) BOTNET

As can be seen in Figures 8 - 13, all of the classifiers have
near perfect accuracy with the exception of Voted
Perceptron.

3) RANSOMWARE

According to Figures 14 - 19, the Decision Table, PART, and
REPTree have near perfect accuracy and the NaiveBayes and
Logistic have moderate performance.

4) COMBINED

As can be seen in Figures 20 - 25, the Decision Table, PART,
and REPTree perform extremely well. The NaiveBayes also
performs fairly well, but has an increased false positive rate.

5) EVALUATION

This shows that the classifiers would work for moderately
similar data, but are at least fairly extensible. The only
consistently bad classifier was the Voted Perceptron which
consistently missed identification of malware.

B. TEST RESULTS

The next step then was to analyze completely unseen
malware samples’ runtime attributes. This was where the
classifiers just generated were then tested using the test data
outlined in the previous section. The results of this are shown
in Figures 26 - 49.

1) TROJAN

As can be seen in Figures 26- 31, none of the classifiers
correctly identify a single malware sample.

2) BOTNET

This demonstrates that the logistic classifier at least starts to
identify the malicious samples as shown in Figure 33. Even
so, it only classifies a small portion of the samples and all of
the other classifiers fail completely in malicious
identification as shown in Figures 32 - 37.
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FIGURE 2. Trojan
Decision Table, 10
Fold Cross
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FIGURE 3. Trojan,
Logistic, 10 Fold
Cross Validation
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FIGURE 5. Trojan,
PART, 10 Fold
Cross Validation
Results.

FIGURE 6. Trojan,
REPTree, 10 Fold
Cross Validation
Results.

FIGURE 7. Trojan,
Voted Perceptron,
10 Fold Cross

Validation Results.




FIGURE 8. Botnet,
Decision Table, 10
14541519 Fold Cross
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FIGURE 9. Botnet,
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FIGURE 11.
Botnet, PART, 10
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FIGURE 12.
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FIGURE 14.
Ransomware,
Decision Table, 10
Fold Cross
Validation Results.

FIGURE 15.
Ransomware,
Logistic, 10 Fold
Cross Validation
Results.

FIGURE 16.
Ransomware,
NaiveBayes, 10
Fold Cross
Validation Results.
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FIGURE 17.
Ransomware,
PART, 10 Fold
Cross Validation
Results.

FIGURE 18.
Ransomware,
REPTree, 10 Fold
Cross Validation
Results.

FIGURE 19.
Ransomware,
Voted Perceptron,
10 Fold Cross
Validation Results.
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FIGURE 20.
Combined,
Decision Table, 10
Fold Cross
Validation Results.

FIGURE 21.
Combined,
Logistic, 10 Fold
Cross Validation
Results.

FIGURE 22.
Combined,
NaiveBayes, 10
Fold Cross
Validation Results.
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FIGURE 23.
Combined, PART,
10 Fold Cross
Validation Results.

FIGURE 24.
Combined,
REPTree, 10 Fold
Cross Validation
Results.

FIGURE 25.
Combined, Voted
Perceptron, 10
Fold Cross
Validation Results.




FIGURE 26.
Trojan, Decision
Table, Testing
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FIGURE 28.
Trojan,
NaiveBayes,
Testing Results.
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FIGURE 29.
Trojan, PART,
Testing Results.

FIGURE 30.
Trojan, REPTree,
Testing Results.

FIGURE 31.
Trojan, Voted
Perceptron,
Testing Results.
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FIGURE 32.
Botnet, Decision
Table, Testing
Results.

FIGURE 33.
Botnet, Logistic,
Testing Results.

FIGURE 34.
Botnet,
NaiveBayes,
Testing Results.




FIGURE 35.
Botnet, PART,
Testing Results.
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FIGURE 36.
Botnet, REPTree,
Testing Results.
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FIGURE 37.
Botnet, Voted
Perceptron,
Testing Results.
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FIGURE 38.
Ransomware,
Decision Table,
Testing Results.
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FIGURE 39.
Ransomware,
Logistic, Testing
Results.
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FIGURE 40.
Ransomware,
NaiveBayes,
Testing Results.
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FIGURE 41.
Ransomware,
PART, Testing
Results.
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FIGURE 42.
Ransomware,
REPTree, Testing
Results.
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FIGURE 43.
Ransomware,
Voted Perceptron,
Testing Results.
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3) RANSOMWARE

As can be seen in Figures 38 - 43, none of the classifiers
correctly identify a single malware sample.

4) COMBINED

As shown in Figures 44 - 49, the combined data models start
to correctly classify samples. In particular the PART and
REPTree models perform very well with a relatively small
number of false positives. The NaiveBayes and Decision
Table perform reasonably as well.

5) EVALUATION

The test datasets provide an interesting outcome. You’ll note
that these performed incredibly poorly except for the
combined dataset which succeeded with certain classifiers.
This seems to be due to the lower amounts of data in the
training sets. Since there is less data, there is less process
diversity. This process diversity does not seem to be related
to malware types, e.g. botnets, ransomware, or trojans, either.
It seems that malware tends to share traits across families and
variants and training across these spreads provides a level of
robustness to the system that is demonstrated in the
combined data testing.

Note that the important factor here is low false positives.
The malicious samples are repeatedly taken which means
that even if a malware process is missed the first time, it can
be caught in the future. This means that even if the rate of
flagging malware correctly is low, it doesn’t mean that it
wouldn’t perform well in practice as long as its false positive
rate is low.

Another point to make is that over the course of the testing
there were two models that performed consistently better
than the other models. These were the PART and REPTree
classifiers. It is worth noting that these are both tree based
classifiers which shows that trees can be used for simple
identification of malicious process attributes. The other win
here is that trees are fairly efficient meaning that in an
identification system, they would not add much overhead.

C. PERFORMANCE

The last point to address here is the speed performance. The
process monitor script was run on an Intel Core i7-6700k
4GHz processor. The machine was running 385 processes
and the average time to iterate over all of these processes in
the script was 24.748 seconds. This means that the overhead
to run the process capture script is roughly 64 ms per process
running on a given machine. This would of course be added

to the amount of time necessary to classify a given instance.
This would be dependent on the machine learning algorithm
chosen, but would be fairly insignificant. This means that this
system could be run repeatedly and quite frequently to ensure
that malware is caught almost immediately upon entering a
system.

In addition, the models themselves are anywhere from 2 to
10 kilobytes meaning that the memory needed to use them
for classification is fairly low. This means that it could be run
on low memory systems as well.

VI. SUMMARY

This section provides a brief summary of what was
accomplished in this paper. First, a system was proposed that
allows for cross platform evaluation of malicious process
behavior. While this was tested on a Windows system, the
solution only relies on a system’s ability to support the
process statistics gathering library SIGAR and Java, both of
which are widely supported. The malware flagging system is
also fairly low power and can be run as often as needed so it
can be run more frequently to catch malware more quickly or
can be run less frequently for better performance which
would allow it to work on IOT and Android devices as well
as personal computers.

The second contribution was that it evaluated multiple
machine learning models on 4 different datasets and showed
which models performed the best. This demonstration
showed that tree based models seem to provide the most
accurate classification method for this data.

It also showed that this identification could be performed
quickly and efficiently. Due to the statistics being gathered
being fairly accessible and the simplicity of the solution, it
doesn’t cause a large amount of overhead on the system. This
means that the classification can be done as often as needed.

Lastly, it showed that having malicious data spread across
different variants and families provides a robust system
capable of flagging a wide variety of malware. This was
shown based on the inaccuracy of the classifiers when used
on individual malware families when compared with the
success of the classifiers when trained on cross family
malware datasets and evaluated on diverse variants. It also
had fairly low false positive rates indicating that the attributes
chosen in the data were fairly indicative of malicious
processes and had little overfitting.

VII. FUTURE WORK
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A few ideas will now be proposed for how to increase the
effectiveness of this malware detection system.

The first is taking into account some standard telltale signs
of malware. For instance, malware is typically installed to the
“AppData” or “tmp” folder and provides a decent estimator
of malicious behavior. It was not included in this
implementation since it is operating system specific. That
said it could be used in future implementations by simply
checking a variety of different common malware installation
folder paths. Another example would be utilizing processes’
tree structures. Malware typically spins off multiple
processes to accomplish its goals so using the tree structure
as part of the input to the classifier may help. Both these and
other signs could be used as part of the dataset that the model
is trained on to increase accuracy.

The second improvement that could be made is the usage
of behavior over time. This system simply checks a process’
statistics at a given time. This could be made significantly
more robust by taking multiple samples for regression
classification. This modifies the machine learning to account
for time. Another possible implementation of time based
behavior identification that wouldn’t require modification of
the existing classifier would be to check for sequential flags
on a process. In other words, if a process is flagged as
malicious by the model multiple times in succession, there is
a high likelihood of it being malicious. This modification of
the system would reduce the likelihood of false positives.
This could be used to balance false positives with malware
identification.

Lastly, this paper was designed on the prospect of making
adaptable dynamic systems that are cross platform
compatible. The reality, though, is that most platforms
already have static systems in place. It might be beneficial to
tie into these systems and leverage their abilities with the
strengths of a dynamic system. The dynamic system could
also be used to find potentially malicious processes to send
samples of to the antivirus manufacturer for addition to the
malware signature list. This would be a means of obtaining a
large number of malicious samples that would take less time
to process due to the high malicious classification accuracy
of the dynamic system.
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