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ABSTRACT This paper discusses malware detection in personal computers. Current malware detection 

solutions are static. Antiviruses rely on lists of malicious signatures that are then used in file scanning. 

These antiviruses are also very dependent on the operating system, requiring different solutions for different 

systems. This paper presents a solution that detects malware based on runtime attributes. It also emphasizes 

that these attributes are easily accessible and fairly generic meaning that it functions across systems and 

without specialized information. The attributes are used in a machine learning system that makes it flexible 

for retraining if necessary, but capable of handling new variants without needing to modify the solution. It 

can also be run quickly which allows for detection to be achieved before the malware gets too far. 

INDEX TERMS Malware, Machine Learning 

I. INTRODUCTION 

Malware is a large problem in modern technology. It causes 

many issues for people individually, as well as companies. 

This becomes more of an issue when you take into account 

the fact that malware is constantly evolving. As can be 

imagined, this makes it an incredibly difficult problem to 

solve. Antivirus hasn’t changed much at all over the past 20 

years for this reason. The solutions we employ are still 

fairly static. They rely on the antivirus publisher collecting 

samples continuously. These samples have to be analyzed 

to generate a signature that can then be used in detection. 

This is challenging for antivirus developers because they 

have to find ways of obtaining these samples and they have 

to invest resources in analyzing them.  The signatures 

obtained have to be added to a list that is pushed to clients. 

From a client’s perspective this means constant updates and 

slow response to new malware variants. 

When new malware strains are introduced or the 

malware is obfuscated the antivirus becomes completely 

ineffective. This leaves clients vulnerable to attacks, maybe 

even more so than without the antivirus because they 

assume it will keep them safe. 

This is where the solution I am proposing comes into 

play. It seems self-evident that malware should be 

detectable based on runtime attributes. These would be 

aspects of malware that on some high level would never 

change.  

The other issue that this paper aims to solve is that 

antivirus is effectively in itself malware that requires itself 

to be tightly coupled with the machine and incredibly 

specialized. This means that it needs to be designed 

specifically for each operating system and requires a large 

amount of information to function. 

What this paper proposes is a dynamic model that utilizes 

easily accessible runtime attributes in a generalizable way 

such that it can be extended between operating systems. 

These attributes are correlated in a statistically meaningful 

way by using machine learning. 

In this paper, I will outline what previous research has 

been done in this area. I will then detail the proposed 

solution after which the testing implementation will be laid 

out. There will then be discussion on the results of these 

tests. Lastly, the accomplishments of this paper and ideas 

for future work in this area will be summarized. 

II.  PREVIOUS RESEARCH 

It is quickly becoming common knowledge that existing 

antivirus solutions are inadequate. There are even articles 

appearing in common technical magazines outlining the idea 
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of changing from static analysis methods to dynamic 

methods [1]. The technical ideas supporting this change of 

thought are slightly sparser and this is due to the technical 

challenge involved in implementation. This is due to the fact 

that antivirus must be incredibly accurate and minimize false 

positives. This works in favor of static analysis, which will 

only positively flag malware if it is an exact match for known 

malware. Dynamic systems will always have more false 

positives since they are dependent on behavior that cannot be 

hard coded. 

There are a few dynamic solutions that have been 

proposed, but none of them match the criteria I have outlined 

here.  

Liu et al. [2] proposed an algorithm that takes into account 

malware behavior features and outputs a judgment based on 

these features. This doesn’t utilize a machine learning model 

as they created a custom predictor. The solution they 

proposed is also tied into Windows and requires low level 

information from the operating system. 

Wijnands [5] also proposed a very similar algorithm taking 

into account malware behavior features such as filesystem, 

registry, process creation/exiting, and thread creation/exiting. 

This compared feature sets by utilizing a matrix to calculate 

distance between nodes. This was also tied in with Windows. 

Aubrey-Jones [3] suggests intercepting API calls or using 

a virtualized environment to capture low level calls. 

Unfortunately, this only suggests a concept and provides no 

implementation or proof of concept. 

Tobiyama et al. [4] builds on this concept of intercepting 

API calls and adds the idea of using a Markov chain to 

construct behavior patterns for processes. These behavior 

patterns can then be labeled as malicious or benign. This 

also, only works on Windows, however. Xie et al. [6] also 

proposes using a Markov chain detection method, but this 

implementation is based on user behavior/interaction so that 

it can determine anomalous behavior. This implementation is 

specific to Android systems though. 

Shahzad et al. [7] uses low level process information such 

as page frames and context switches along with more general 

information like launcher size. This implementation is 

specific to Linux. 

Ferrante et al. [8] suggests using system calls as well as 

CPU and memory usage. This is more similar to the attribute 

set that is used in the solution proposed in this paper, but still 

requires low level attributes, has a fairly limited number of 

features and is specific to Android. 

Gheorghe et al. [9] is very similar in that it also utilizes 

CPU and memory usage, but instead of system calls, it uses 

system settings such as WiFi enabling/disabling and 

Bluetooth enabling/disabling. As can be surmised, this 

couples it to the operating system again - Android in this 

case. 

Milosevic et al. [10] is effectively the same attribute set 

that is used in this paper and does, in fact, use much of the 

same analysis process. The notable difference is that their 

solution is tied to Android. 

It is quite noticeable that the implementations in existence 

currently are very low level and require a tight knit coupling 

with the specific operating system in use. The solution 

proposed here is similar to most of these solutions, but 

significantly more generalized. 

III.  SOLUTION 

Based on the problem statement outlined in the introduction, 

the solution that is being proposed here is a machine learning 

model that utilizes process statistics to flag malicious 

programs. The process statistics that are being utilized are 

similar to what would come from a “top” or “ps” command 

on a Unix based system. 

Since the goal of this system is to be cross platform, it is 

important that the method of obtaining these process statistics 

is easily portable. With this in mind, a program call SIGAR 

[11] was selected. This is a Java library that captures process 

information using a DLL or shared object library file. The list 

of operating systems this supports is shown in Figure 1. 

While it is not completely universal, it is close and could be 

extended to support other operating systems as needed.  
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This library is used in a script that outputs to either the 

terminal or a text file about all process information it can 

capture as frequently as possible. Note that this means that 

benign and malicious processes are both logged to the same 

file since all processes are captured. The features that are 

captured are shown in Table 1. 

These features and the classification are organized in a flat 

text CSV file in entries like the following: 

 

29736960, 5009408, -1, -1, -1, 1635, -1, -1, -1, '-1', 117, 8, 'R', -1, 'WmiPrvSE', 'clean' 

67579904, 5136384, -1, -1, -1, 2236, 0.0, 187, 156, 

'C:\Users\michael\AppData\Roaming\sktoeys.exe', 57, 2, 'R', 187, 

'C:\Users\michael\AppData\Roaming\sktoeys.exe', 'infected' 

1441792, 233472, -1, -1, -1, 12491, -1, -1, -1, '-1', 328, 65, 'R', -1, 'System', 'clean' 

These CSV files are then mapped to ARFF files and the 

malicious data labeled using the identified malicious EXE 

with string attributes removed. The reason that string 

attributes are removed is that they limit the number of model 

types that can be used and don’t really provide any 

meaningful data unless parsed for specific pieces of content. 

For the purposes of this paper, it was unnecessary to keep 

this information, but could potentially be used in future 

implementations. ARFF files are the proprietary data format 

of the machine learning library WEKA [12]. This was chosen 

here due to its simplicity of implementation, vast feature 

selection, and data visualization tools. 

TABLE I 

SIGAR PROCESS ATTRIBUTE LIST [11] 

Attribute Type Description 

pid  STRING Process ID 

mem_size NUMERIC Total process virtual 

memory 

mem_resident NUMERIC Total process 

resident memory 

mem_share  NUMERIC Total process shared 

memory 

mem_minor_faults  NUMERIC Non I/O page faults 

mem_major_faults NUMERIC I/O page faults 

mem_page_faults NUMERIC Total number of 

page faults 

cpu_percent  NUMERIC Process cpu usage 

cpu_total  NUMERIC Process cpu time 

(sum of user and 

kernel time) 

cpu_system NUMERIC Process cpu time 

(kernel time) 

proc_name STRING Name of process 

executable 

proc_file_descriptors  NUMERIC Total number of 

open file descriptors 

proc_threads  NUMERIC Number of active 

threads 

proc_state STRING Process state 

(Running, Zombie, 

etc.) 

proc_time NUMERIC Process cpu time 

(sum of user and 

kernel) 

Once a model is generated, it can be used in correlation 

with the script that captures data to classify processes as 

malicious or not.  

IV.  TESTING IMPLEMENTATION 

There were three steps in setting up the testing for this. These 

were the selection of datasets, features, and machine learning 

model types. 

A.  DATASETS 

For testing purposes there were a few malware instances 

from theZoo malware database [13] whose runtime attributes 

were sampled. Note that these datasets include both benign 

and malicious data even though they are the dataset for a 

specific malware, but that they are labeled benign/malicious 

appropriately. There was also a large dataset of just clean 

data for false positive testing. These are all listed in Table 2. 

Once the data was collected it was segregated into 4 

training and 4 testing sets.  

FIGURE 1.  List of possible SIGAR library files by operating system. 
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TABLE 2 

DATASETS 

Malware Name Malicious EXE Malware Type Number of Data Entries 

Waski.Upatre utilview.exe Trojan 23,150 malicious, 1,523,816 clean 

Win32.Alina.3.4.B jucheck.exe Trojan 13,047 malicious, 881,478 clean 

EquationDrug EquationDrug_4556CE5EB007AF1DE5BD3B457F0B2

16D.exe 

Trojan  769 malicious, 10,936,625 clean 

ZeusVM dwm.exe Botnet 11,473 malicious, 1,203,780 clean 

IllusionBot BOTBINARY.EXE Botnet 249,050 malicious, 14,292,470 clean 

Teslacrypt sktoeys.exe Ransomware 53 malicious, 2,247 clean 

Jigsaw drpbx.exe Ransomware 114 malicious, 4,562 clean 

Locky svchost.exe Ransomware 80 malicious, 4,525 clean 

Clean  Clean Data 12,093,240 clean 

The first set was for Trojan testing. For this, the 

Waski.Upatre and Win32.Alina.3.4.B datasets were used for 

training and the EquationDrug dataset was used for testing. 

The second set was for botnet testing. For this, the 

IllusionBot dataset was used for training and the ZeusVM 

dataset was used for testing. 

The third set was for ransomware testing. For this, the 

Jigsaw and Locky datasets were used for training and the 

Teslacrypt dataset was used for testing. 

The last set was an aggregation of all of these malware 

variants and used combined training and testing sets. In other 

words, the training dataset was Waski.Upatre, 

Win32.Alina.3.4.B, IllusionBot, Jigsaw, and Locky. The 

testing dataset consisted of EquationDrug, ZeusVM, 

Teslacrypt, and the purely clean data. 

B.  FEATURE SELECTION 

Three feature selection algorithms in Weka were used to 

determine which of the acquired process attributes should be 

used in model training and testing. The algorithms used were 

CfsSubsetEval, CorrelationAttributeEval, and 

InfoGainAttributeEval. 

1)  CFSSUBSETEVAL 

This is a means of evaluating the value of a subset of 

attributes by comparing the value of an attribute with how 

redundant it is with other attributes in the subset. It utilized 

BestFirst which searches via greedy hillclimbing with 

backtracking. 

2)  CORRELATIONATTRIBUTEEVAL 

This picks the most relevant attributes based on how likely a 

class is for that specific variable. This utilized Ranker which 

simply organizes by the highest values achieved by attribute 

evaluators such as entropy. 

3)  INFOGAINATTRIBUTEEVAL 

This evaluates an attribute based on how much class 

information is gained from it. This also utilized Ranker. 

4)  FINAL FEATURES 

After running the above feature selection algorithms, the 

attribute rankings and what they represented were used to 

construct a list of the most valuable attributes for each of the 

4 test datasets. 

The attributes chosen were as follows: 

 Trojan datasets:  

o mem_size 

o mem_resident 

o proc_file_descriptors 

o proc_threads 

 Botnet datasets:  

o mem_page_faults 

o mem_size 

o proc_file_descriptors 

o proc_threads 

 Ransomware datasets:  

o proc_file_descriptors 

o mem_resident 

o mem_size 
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 Aggregate datasets:  

o proc_file_descriptors 

o mem_size 

o mem_resident 

o mem_page_faults 

C.  MODELS 

There were six Weka machine learning models chosen for 

testing. These are as follows: 

 Decision Table 

o This is a simple Decision Table majority 

classifier. It utilizes a grid to map features 

to the likeliest classification. 

 Logistic 

o This is a Logistic Regression model which 

includes a ridge estimator. 

 NaiveBayes  

o This is a NaiveBayes implementation 

using estimator classes. The estimator uses 

a precision that is based on the input data. 

 PART 

o This is a decision list based on tree data. 

Effectively it constructs partial C4.5 

decision trees and makes the best leaf from 

each into a rule in the list. 

 REPTree 

o This is a fast regression tree that uses 

information gain for tree derivation and is 

pruned. It sorts the attributes once and if 

anything needs to be added splits existing 

instances. 

 Voted Perceptron 

o This is a voting system where weight 

vectors are used with a set number of 

nodes to vote on data. This is supposed to 

be similar to SVM except faster. 

For all of these models, the default parameters specified in 

Weka were used, except for Voted Perceptron where the 

number of nodes was changed from 10000 to 3000. 

V. RESULTS 

First each training set was used to create each of the 6 

classifiers. Each of these classifiers was evaluated in two 

ways, using 10 fold cross validation and via the test dataset 

outlined previously.  

A.  10 FOLD CROSS VALIDATION RESULTS 

When the classifier was being made, 10 fold cross validation 

was performed. This means that the data is split into 10 

pieces and for each of those pieces one piece is used for 

testing while the other 9 are used for training. This generated 

the results outlined in Figures 2 - 25. 

1)  TROJAN 

As can be seen in Figures 2 - 7, the Decision Table, 

NaiveBayes, PART, and REPTree perform about equally and 

have near perfect accuracy. 

2)  BOTNET 

As can be seen in Figures 8 - 13, all of the classifiers have 

near perfect accuracy with the exception of Voted 

Perceptron. 

3)  RANSOMWARE 

According to Figures 14 - 19, the Decision Table, PART, and 

REPTree have near perfect accuracy and the NaiveBayes and 

Logistic have moderate performance. 

4)  COMBINED 

As can be seen in Figures 20 - 25, the Decision Table, PART, 

and REPTree perform extremely well. The NaiveBayes also 

performs fairly well, but has an increased false positive rate. 

5)  EVALUATION 

This shows that the classifiers would work for moderately 

similar data, but are at least fairly extensible. The only 

consistently bad classifier was the Voted Perceptron which 

consistently missed identification of malware. 

B.  TEST RESULTS 

The next step then was to analyze completely unseen 

malware samples’ runtime attributes. This was where the 

classifiers just generated were then tested using the test data 

outlined in the previous section. The results of this are shown 

in Figures 26 - 49. 

1)  TROJAN 

As can be seen in Figures 26- 31, none of the classifiers 

correctly identify a single malware sample. 

2)  BOTNET 

This demonstrates that the logistic classifier at least starts to 

identify the malicious samples as shown in Figure 33. Even 

so, it only classifies a small portion of the samples and all of 

the other classifiers fail completely in malicious 

identification as shown in Figures 32 - 37.
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FIGURE 2.  Trojan, 
Decision Table, 10 
Fold Cross 
Validation Results. 

 

FIGURE 3.  Trojan, 
Logistic, 10 Fold 
Cross Validation 
Results. 

 

FIGURE 4.  Trojan, 
NaiveBayes, 10 
Fold Cross 
Validation Results. 
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FIGURE 5.  Trojan, 
PART, 10 Fold 
Cross Validation 
Results. 

 

FIGURE 6.  Trojan, 
REPTree, 10 Fold 
Cross Validation 
Results. 

 

FIGURE 7.  Trojan, 
Voted Perceptron, 
10 Fold Cross 
Validation Results. 
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FIGURE 8.  Botnet, 
Decision Table, 10 
Fold Cross 

Validation Results. 

FIGURE 9.  Botnet, 
Logistic, 10 Fold 
Cross Validation 
Results. 

 

FIGURE 10.  
Botnet, 
NaiveBayes, 10 
Fold Cross 
Validation Results. 
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FIGURE 11.  
Botnet, PART, 10 
Fold Cross 
Validation Results. 

 

FIGURE 12.  
Botnet, REPTree, 
10 Fold Cross 
Validation Results. 

 

FIGURE 13.  
Botnet, Voted 
Perceptron, 10 
Fold Cross 
Validation Results. 
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FIGURE 14.  
Ransomware, 
Decision Table, 10 
Fold Cross 
Validation Results. 

 

FIGURE 15.  
Ransomware, 
Logistic, 10 Fold 
Cross Validation 
Results. 

 

FIGURE 16.  
Ransomware, 
NaiveBayes, 10 
Fold Cross 
Validation Results. 
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FIGURE 17.  
Ransomware, 
PART, 10 Fold 
Cross Validation 
Results. 

 

FIGURE 18.  
Ransomware, 
REPTree, 10 Fold 
Cross Validation 
Results. 

 

FIGURE 19.  
Ransomware, 
Voted Perceptron, 
10 Fold Cross 
Validation Results. 
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FIGURE 20.  
Combined, 
Decision Table, 10 
Fold Cross 
Validation Results. 

 

FIGURE 21.  
Combined, 
Logistic, 10 Fold 
Cross Validation 
Results. 

 

FIGURE 22.  
Combined, 
NaiveBayes, 10 
Fold Cross 
Validation Results. 
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FIGURE 23.  
Combined, PART, 

10 Fold Cross 
Validation Results. 

 

FIGURE 24.  
Combined, 
REPTree, 10 Fold 
Cross Validation 
Results. 

 

FIGURE 25.  
Combined, Voted 
Perceptron, 10 
Fold Cross 
Validation Results. 
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FIGURE 26.  
Trojan, Decision 
Table, Testing 
Results. 

 

FIGURE 27.  
Trojan, Logistic, 
Testing Results. 

 

FIGURE 28.  
Trojan, 
NaiveBayes, 
Testing Results. 
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FIGURE 29.  
Trojan, PART, 
Testing Results. 

 

FIGURE 30.  
Trojan, REPTree, 
Testing Results. 

 

FIGURE 31.  
Trojan, Voted 
Perceptron, 
Testing Results. 
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FIGURE 32.  
Botnet, Decision 
Table, Testing 

Results. 

FIGURE 33.  
Botnet, Logistic, 
Testing Results. 

 

FIGURE 34.  
Botnet, 
NaiveBayes, 
Testing Results. 
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FIGURE 35.  
Botnet, PART, 
Testing Results. 

 

FIGURE 36.  
Botnet, REPTree, 
Testing Results. 

 

FIGURE 37.  
Botnet, Voted 
Perceptron, 
Testing Results. 
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FIGURE 38.  
Ransomware, 
Decision Table, 
Testing Results. 

 

FIGURE 39.  
Ransomware, 
Logistic, Testing 
Results. 

 

FIGURE 40.  
Ransomware, 
NaiveBayes, 
Testing Results. 
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FIGURE 41.  
Ransomware, 

PART, Testing 
Results. 

 

FIGURE 42.  
Ransomware, 
REPTree, Testing 
Results. 

 

FIGURE 43.  
Ransomware, 
Voted Perceptron, 
Testing Results. 
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FIGURE 44.  
Combined, 

Decision Table, 
Testing Results. 

 

FIGURE 45.  
Combined, 
Logistic, Testing 
Results. 

 

FIGURE 46.  
Combined, 
NaiveBayes, 
Testing Results. 
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FIGURE 47.  
Combined, PART, 

Testing Results. 

 

FIGURE 48.  
Combined, 
REPTree, Testing 
Results. 

 

FIGURE 49.  
Combined, Voted 
Perceptron, 
Testing Results. 
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3)  RANSOMWARE 

As can be seen in Figures 38 - 43, none of the classifiers 

correctly identify a single malware sample. 

4)  COMBINED 

As shown in Figures 44 - 49, the combined data models start 

to correctly classify samples. In particular the PART and 

REPTree models perform very well with a relatively small 

number of false positives. The NaïveBayes and Decision 

Table perform reasonably as well. 

5)  EVALUATION 

The test datasets provide an interesting outcome. You’ll note 

that these performed incredibly poorly except for the 

combined dataset which succeeded with certain classifiers. 

This seems to be due to the lower amounts of data in the 

training sets. Since there is less data, there is less process 

diversity. This process diversity does not seem to be related 

to malware types, e.g. botnets, ransomware, or trojans, either. 

It seems that malware tends to share traits across families and 

variants and training across these spreads provides a level of 

robustness to the system that is demonstrated in the 

combined data testing. 

 Note that the important factor here is low false positives. 

The malicious samples are repeatedly taken which means 

that even if a malware process is missed the first time, it can 

be caught in the future. This means that even if the rate of 

flagging malware correctly is low, it doesn’t mean that it 

wouldn’t perform well in practice as long as its false positive 

rate is low. 

Another point to make is that over the course of the testing 

there were two models that performed consistently better 

than the other models. These were the PART and REPTree 

classifiers. It is worth noting that these are both tree based 

classifiers which shows that trees can be used for simple 

identification of malicious process attributes. The other win 

here is that trees are fairly efficient meaning that in an 

identification system, they would not add much overhead. 

C.  PERFORMANCE 

The last point to address here is the speed performance. The 

process monitor script was run on an Intel Core i7-6700k 

4GHz processor. The machine was running 385 processes 

and the average time to iterate over all of these processes in 

the script was 24.748 seconds. This means that the overhead 

to run the process capture script is roughly 64 ms per process 

running on a given machine. This would of course be added 

to the amount of time necessary to classify a given instance. 

This would be dependent on the machine learning algorithm 

chosen, but would be fairly insignificant. This means that this 

system could be run repeatedly and quite frequently to ensure 

that malware is caught almost immediately upon entering a 

system. 

In addition, the models themselves are anywhere from 2 to 

10 kilobytes meaning that the memory needed to use them 

for classification is fairly low. This means that it could be run 

on low memory systems as well. 

VI. SUMMARY 

This section provides a brief summary of what was 

accomplished in this paper. First, a system was proposed that 

allows for cross platform evaluation of malicious process 

behavior. While this was tested on a Windows system, the 

solution only relies on a system’s ability to support the 

process statistics gathering library SIGAR and Java, both of 

which are widely supported. The malware flagging system is 

also fairly low power and can be run as often as needed so it 

can be run more frequently to catch malware more quickly or 

can be run less frequently for better performance which 

would allow it to work on IOT and Android devices as well 

as personal computers. 

The second contribution was that it evaluated multiple 

machine learning models on 4 different datasets and showed 

which models performed the best. This demonstration 

showed that tree based models seem to provide the most 

accurate classification method for this data. 

It also showed that this identification could be performed 

quickly and efficiently. Due to the statistics being gathered 

being fairly accessible and the simplicity of the solution, it 

doesn’t cause a large amount of overhead on the system. This 

means that the classification can be done as often as needed. 

Lastly, it showed that having malicious data spread across 

different variants and families provides a robust system 

capable of flagging a wide variety of malware. This was 

shown based on the inaccuracy of the classifiers when used 

on individual malware families when compared with the 

success of the classifiers when trained on cross family 

malware datasets and evaluated on diverse variants. It also 

had fairly low false positive rates indicating that the attributes 

chosen in the data were fairly indicative of malicious 

processes and had little overfitting. 

VII. FUTURE WORK 
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A few ideas will now be proposed for how to increase the 

effectiveness of this malware detection system.  

The first is taking into account some standard telltale signs 

of malware. For instance, malware is typically installed to the 

“AppData” or “tmp” folder and provides a decent estimator 

of malicious behavior. It was not included in this 

implementation since it is operating system specific. That 

said it could be used in future implementations by simply 

checking a variety of different common malware installation 

folder paths. Another example would be utilizing processes’ 

tree structures. Malware typically spins off multiple 

processes to accomplish its goals so using the tree structure 

as part of the input to the classifier may help. Both these and 

other signs could be used as part of the dataset that the model 

is trained on to increase accuracy. 

The second improvement that could be made is the usage 

of behavior over time. This system simply checks a process’ 

statistics at a given time. This could be made significantly 

more robust by taking multiple samples for regression 

classification. This modifies the machine learning to account 

for time. Another possible implementation of time based 

behavior identification that wouldn’t require modification of 

the existing classifier would be to check for sequential flags 

on a process. In other words, if a process is flagged as 

malicious by the model multiple times in succession, there is 

a high likelihood of it being malicious. This modification of 

the system would reduce the likelihood of false positives. 

This could be used to balance false positives with malware 

identification. 

Lastly, this paper was designed on the prospect of making 

adaptable dynamic systems that are cross platform 

compatible. The reality, though, is that most platforms 

already have static systems in place. It might be beneficial to 

tie into these systems and leverage their abilities with the 

strengths of a dynamic system. The dynamic system could 

also be used to find potentially malicious processes to send 

samples of to the antivirus manufacturer for addition to the 

malware signature list. This would be a means of obtaining a 

large number of malicious samples that would take less time 

to process due to the high malicious classification accuracy 

of the dynamic system. 
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