
1

Date of publication 04, 2018.

Dynamic and System Agnostic Malware
Detection Via Machine Learning

Michael Sgroi
1
, Doug Jacobson

2

1Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50010 USA
2 Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50010 USA

Corresponding author: Michael Sgroi (e-mail: mcsgroi@iastate.edu, mcsgroi321@gmail.com).

ABSTRACT This paper discusses malware detection in personal computers. Current malware detection

solutions are static. Antiviruses rely on lists of malicious signatures that are then used in file scanning.

These antiviruses are also very dependent on the operating system, requiring different solutions for different

systems. This paper presents a solution that detects malware based on runtime attributes. It also emphasizes

that these attributes are easily accessible and fairly generic meaning that it functions across systems and

without specialized information. The attributes are used in a machine learning system that makes it flexible

for retraining if necessary, but capable of handling new variants without needing to modify the solution. It

can also be run quickly which allows for detection to be achieved before the malware gets too far.

INDEX TERMS Malware, Machine Learning

I. INTRODUCTION

Malware is a large problem in modern technology. It causes

many issues for people individually, as well as companies.

This becomes more of an issue when you take into account

the fact that malware is constantly evolving. As can be

imagined, this makes it an incredibly difficult problem to

solve. Antivirus hasn’t changed much at all over the past 20

years for this reason. The solutions we employ are still

fairly static. They rely on the antivirus publisher collecting

samples continuously. These samples have to be analyzed

to generate a signature that can then be used in detection.

This is challenging for antivirus developers because they

have to find ways of obtaining these samples and they have

to invest resources in analyzing them. The signatures

obtained have to be added to a list that is pushed to clients.

From a client’s perspective this means constant updates and

slow response to new malware variants.

When new malware strains are introduced or the

malware is obfuscated the antivirus becomes completely

ineffective. This leaves clients vulnerable to attacks, maybe

even more so than without the antivirus because they

assume it will keep them safe.

This is where the solution I am proposing comes into

play. It seems self-evident that malware should be

detectable based on runtime attributes. These would be

aspects of malware that on some high level would never

change.

The other issue that this paper aims to solve is that

antivirus is effectively in itself malware that requires itself

to be tightly coupled with the machine and incredibly

specialized. This means that it needs to be designed

specifically for each operating system and requires a large

amount of information to function.

What this paper proposes is a dynamic model that utilizes

easily accessible runtime attributes in a generalizable way

such that it can be extended between operating systems.

These attributes are correlated in a statistically meaningful

way by using machine learning.

In this paper, I will outline what previous research has

been done in this area. I will then detail the proposed

solution after which the testing implementation will be laid

out. There will then be discussion on the results of these

tests. Lastly, the accomplishments of this paper and ideas

for future work in this area will be summarized.

II. PREVIOUS RESEARCH

It is quickly becoming common knowledge that existing

antivirus solutions are inadequate. There are even articles

appearing in common technical magazines outlining the idea

mailto:mcsgroi@iastate.edu
mailto:mcsgroi321@gmail.com

2

of changing from static analysis methods to dynamic

methods [1]. The technical ideas supporting this change of

thought are slightly sparser and this is due to the technical

challenge involved in implementation. This is due to the fact

that antivirus must be incredibly accurate and minimize false

positives. This works in favor of static analysis, which will

only positively flag malware if it is an exact match for known

malware. Dynamic systems will always have more false

positives since they are dependent on behavior that cannot be

hard coded.

There are a few dynamic solutions that have been

proposed, but none of them match the criteria I have outlined

here.

Liu et al. [2] proposed an algorithm that takes into account

malware behavior features and outputs a judgment based on

these features. This doesn’t utilize a machine learning model

as they created a custom predictor. The solution they

proposed is also tied into Windows and requires low level

information from the operating system.

Wijnands [5] also proposed a very similar algorithm taking

into account malware behavior features such as filesystem,

registry, process creation/exiting, and thread creation/exiting.

This compared feature sets by utilizing a matrix to calculate

distance between nodes. This was also tied in with Windows.

Aubrey-Jones [3] suggests intercepting API calls or using

a virtualized environment to capture low level calls.

Unfortunately, this only suggests a concept and provides no

implementation or proof of concept.

Tobiyama et al. [4] builds on this concept of intercepting

API calls and adds the idea of using a Markov chain to

construct behavior patterns for processes. These behavior

patterns can then be labeled as malicious or benign. This

also, only works on Windows, however. Xie et al. [6] also

proposes using a Markov chain detection method, but this

implementation is based on user behavior/interaction so that

it can determine anomalous behavior. This implementation is

specific to Android systems though.

Shahzad et al. [7] uses low level process information such

as page frames and context switches along with more general

information like launcher size. This implementation is

specific to Linux.

Ferrante et al. [8] suggests using system calls as well as

CPU and memory usage. This is more similar to the attribute

set that is used in the solution proposed in this paper, but still

requires low level attributes, has a fairly limited number of

features and is specific to Android.

Gheorghe et al. [9] is very similar in that it also utilizes

CPU and memory usage, but instead of system calls, it uses

system settings such as WiFi enabling/disabling and

Bluetooth enabling/disabling. As can be surmised, this

couples it to the operating system again - Android in this

case.

Milosevic et al. [10] is effectively the same attribute set

that is used in this paper and does, in fact, use much of the

same analysis process. The notable difference is that their

solution is tied to Android.

It is quite noticeable that the implementations in existence

currently are very low level and require a tight knit coupling

with the specific operating system in use. The solution

proposed here is similar to most of these solutions, but

significantly more generalized.

III. SOLUTION

Based on the problem statement outlined in the introduction,

the solution that is being proposed here is a machine learning

model that utilizes process statistics to flag malicious

programs. The process statistics that are being utilized are

similar to what would come from a “top” or “ps” command

on a Unix based system.

Since the goal of this system is to be cross platform, it is

important that the method of obtaining these process statistics

is easily portable. With this in mind, a program call SIGAR

[11] was selected. This is a Java library that captures process

information using a DLL or shared object library file. The list

of operating systems this supports is shown in Figure 1.

While it is not completely universal, it is close and could be

extended to support other operating systems as needed.

3

This library is used in a script that outputs to either the

terminal or a text file about all process information it can

capture as frequently as possible. Note that this means that

benign and malicious processes are both logged to the same

file since all processes are captured. The features that are

captured are shown in Table 1.

These features and the classification are organized in a flat

text CSV file in entries like the following:

29736960, 5009408, -1, -1, -1, 1635, -1, -1, -1, '-1', 117, 8, 'R', -1, 'WmiPrvSE', 'clean'

67579904, 5136384, -1, -1, -1, 2236, 0.0, 187, 156,

'C:\Users\michael\AppData\Roaming\sktoeys.exe', 57, 2, 'R', 187,

'C:\Users\michael\AppData\Roaming\sktoeys.exe', 'infected'

1441792, 233472, -1, -1, -1, 12491, -1, -1, -1, '-1', 328, 65, 'R', -1, 'System', 'clean'

These CSV files are then mapped to ARFF files and the

malicious data labeled using the identified malicious EXE

with string attributes removed. The reason that string

attributes are removed is that they limit the number of model

types that can be used and don’t really provide any

meaningful data unless parsed for specific pieces of content.

For the purposes of this paper, it was unnecessary to keep

this information, but could potentially be used in future

implementations. ARFF files are the proprietary data format

of the machine learning library WEKA [12]. This was chosen

here due to its simplicity of implementation, vast feature

selection, and data visualization tools.

TABLE I

SIGAR PROCESS ATTRIBUTE LIST [11]

Attribute Type Description

pid STRING Process ID

mem_size NUMERIC Total process virtual

memory

mem_resident NUMERIC Total process

resident memory

mem_share NUMERIC Total process shared

memory

mem_minor_faults NUMERIC Non I/O page faults

mem_major_faults NUMERIC I/O page faults

mem_page_faults NUMERIC Total number of

page faults

cpu_percent NUMERIC Process cpu usage

cpu_total NUMERIC Process cpu time

(sum of user and

kernel time)

cpu_system NUMERIC Process cpu time

(kernel time)

proc_name STRING Name of process

executable

proc_file_descriptors NUMERIC Total number of

open file descriptors

proc_threads NUMERIC Number of active

threads

proc_state STRING Process state

(Running, Zombie,

etc.)

proc_time NUMERIC Process cpu time

(sum of user and

kernel)

Once a model is generated, it can be used in correlation

with the script that captures data to classify processes as

malicious or not.

IV. TESTING IMPLEMENTATION

There were three steps in setting up the testing for this. These

were the selection of datasets, features, and machine learning

model types.

A. DATASETS

For testing purposes there were a few malware instances

from theZoo malware database [13] whose runtime attributes

were sampled. Note that these datasets include both benign

and malicious data even though they are the dataset for a

specific malware, but that they are labeled benign/malicious

appropriately. There was also a large dataset of just clean

data for false positive testing. These are all listed in Table 2.

Once the data was collected it was segregated into 4

training and 4 testing sets.

FIGURE 1. List of possible SIGAR library files by operating system.

4

TABLE 2

DATASETS

Malware Name Malicious EXE Malware Type Number of Data Entries

Waski.Upatre utilview.exe Trojan 23,150 malicious, 1,523,816 clean

Win32.Alina.3.4.B jucheck.exe Trojan 13,047 malicious, 881,478 clean

EquationDrug EquationDrug_4556CE5EB007AF1DE5BD3B457F0B2

16D.exe

Trojan 769 malicious, 10,936,625 clean

ZeusVM dwm.exe Botnet 11,473 malicious, 1,203,780 clean

IllusionBot BOTBINARY.EXE Botnet 249,050 malicious, 14,292,470 clean

Teslacrypt sktoeys.exe Ransomware 53 malicious, 2,247 clean

Jigsaw drpbx.exe Ransomware 114 malicious, 4,562 clean

Locky svchost.exe Ransomware 80 malicious, 4,525 clean

Clean Clean Data 12,093,240 clean

The first set was for Trojan testing. For this, the

Waski.Upatre and Win32.Alina.3.4.B datasets were used for

training and the EquationDrug dataset was used for testing.

The second set was for botnet testing. For this, the

IllusionBot dataset was used for training and the ZeusVM

dataset was used for testing.

The third set was for ransomware testing. For this, the

Jigsaw and Locky datasets were used for training and the

Teslacrypt dataset was used for testing.

The last set was an aggregation of all of these malware

variants and used combined training and testing sets. In other

words, the training dataset was Waski.Upatre,

Win32.Alina.3.4.B, IllusionBot, Jigsaw, and Locky. The

testing dataset consisted of EquationDrug, ZeusVM,

Teslacrypt, and the purely clean data.

B. FEATURE SELECTION

Three feature selection algorithms in Weka were used to

determine which of the acquired process attributes should be

used in model training and testing. The algorithms used were

CfsSubsetEval, CorrelationAttributeEval, and

InfoGainAttributeEval.

1) CFSSUBSETEVAL

This is a means of evaluating the value of a subset of

attributes by comparing the value of an attribute with how

redundant it is with other attributes in the subset. It utilized

BestFirst which searches via greedy hillclimbing with

backtracking.

2) CORRELATIONATTRIBUTEEVAL

This picks the most relevant attributes based on how likely a

class is for that specific variable. This utilized Ranker which

simply organizes by the highest values achieved by attribute

evaluators such as entropy.

3) INFOGAINATTRIBUTEEVAL

This evaluates an attribute based on how much class

information is gained from it. This also utilized Ranker.

4) FINAL FEATURES

After running the above feature selection algorithms, the

attribute rankings and what they represented were used to

construct a list of the most valuable attributes for each of the

4 test datasets.

The attributes chosen were as follows:

 Trojan datasets:

o mem_size

o mem_resident

o proc_file_descriptors

o proc_threads

 Botnet datasets:

o mem_page_faults

o mem_size

o proc_file_descriptors

o proc_threads

 Ransomware datasets:

o proc_file_descriptors

o mem_resident

o mem_size

5

 Aggregate datasets:

o proc_file_descriptors

o mem_size

o mem_resident

o mem_page_faults

C. MODELS

There were six Weka machine learning models chosen for

testing. These are as follows:

 Decision Table

o This is a simple Decision Table majority

classifier. It utilizes a grid to map features

to the likeliest classification.

 Logistic

o This is a Logistic Regression model which

includes a ridge estimator.

 NaiveBayes

o This is a NaiveBayes implementation

using estimator classes. The estimator uses

a precision that is based on the input data.

 PART

o This is a decision list based on tree data.

Effectively it constructs partial C4.5

decision trees and makes the best leaf from

each into a rule in the list.

 REPTree

o This is a fast regression tree that uses

information gain for tree derivation and is

pruned. It sorts the attributes once and if

anything needs to be added splits existing

instances.

 Voted Perceptron

o This is a voting system where weight

vectors are used with a set number of

nodes to vote on data. This is supposed to

be similar to SVM except faster.

For all of these models, the default parameters specified in

Weka were used, except for Voted Perceptron where the

number of nodes was changed from 10000 to 3000.

V. RESULTS

First each training set was used to create each of the 6

classifiers. Each of these classifiers was evaluated in two

ways, using 10 fold cross validation and via the test dataset

outlined previously.

A. 10 FOLD CROSS VALIDATION RESULTS

When the classifier was being made, 10 fold cross validation

was performed. This means that the data is split into 10

pieces and for each of those pieces one piece is used for

testing while the other 9 are used for training. This generated

the results outlined in Figures 2 - 25.

1) TROJAN

As can be seen in Figures 2 - 7, the Decision Table,

NaiveBayes, PART, and REPTree perform about equally and

have near perfect accuracy.

2) BOTNET

As can be seen in Figures 8 - 13, all of the classifiers have

near perfect accuracy with the exception of Voted

Perceptron.

3) RANSOMWARE

According to Figures 14 - 19, the Decision Table, PART, and

REPTree have near perfect accuracy and the NaiveBayes and

Logistic have moderate performance.

4) COMBINED

As can be seen in Figures 20 - 25, the Decision Table, PART,

and REPTree perform extremely well. The NaiveBayes also

performs fairly well, but has an increased false positive rate.

5) EVALUATION

This shows that the classifiers would work for moderately

similar data, but are at least fairly extensible. The only

consistently bad classifier was the Voted Perceptron which

consistently missed identification of malware.

B. TEST RESULTS

The next step then was to analyze completely unseen

malware samples’ runtime attributes. This was where the

classifiers just generated were then tested using the test data

outlined in the previous section. The results of this are shown

in Figures 26 - 49.

1) TROJAN

As can be seen in Figures 26- 31, none of the classifiers

correctly identify a single malware sample.

2) BOTNET

This demonstrates that the logistic classifier at least starts to

identify the malicious samples as shown in Figure 33. Even

so, it only classifies a small portion of the samples and all of

the other classifiers fail completely in malicious

identification as shown in Figures 32 - 37.

6

FIGURE 2. Trojan,
Decision Table, 10
Fold Cross
Validation Results.

FIGURE 3. Trojan,
Logistic, 10 Fold
Cross Validation
Results.

FIGURE 4. Trojan,
NaiveBayes, 10
Fold Cross
Validation Results.

7

FIGURE 5. Trojan,
PART, 10 Fold
Cross Validation
Results.

FIGURE 6. Trojan,
REPTree, 10 Fold
Cross Validation
Results.

FIGURE 7. Trojan,
Voted Perceptron,
10 Fold Cross
Validation Results.

8

FIGURE 8. Botnet,
Decision Table, 10
Fold Cross

Validation Results.

FIGURE 9. Botnet,
Logistic, 10 Fold
Cross Validation
Results.

FIGURE 10.
Botnet,
NaiveBayes, 10
Fold Cross
Validation Results.

9

FIGURE 11.
Botnet, PART, 10
Fold Cross
Validation Results.

FIGURE 12.
Botnet, REPTree,
10 Fold Cross
Validation Results.

FIGURE 13.
Botnet, Voted
Perceptron, 10
Fold Cross
Validation Results.

10

FIGURE 14.
Ransomware,
Decision Table, 10
Fold Cross
Validation Results.

FIGURE 15.
Ransomware,
Logistic, 10 Fold
Cross Validation
Results.

FIGURE 16.
Ransomware,
NaiveBayes, 10
Fold Cross
Validation Results.

11

FIGURE 17.
Ransomware,
PART, 10 Fold
Cross Validation
Results.

FIGURE 18.
Ransomware,
REPTree, 10 Fold
Cross Validation
Results.

FIGURE 19.
Ransomware,
Voted Perceptron,
10 Fold Cross
Validation Results.

12

FIGURE 20.
Combined,
Decision Table, 10
Fold Cross
Validation Results.

FIGURE 21.
Combined,
Logistic, 10 Fold
Cross Validation
Results.

FIGURE 22.
Combined,
NaiveBayes, 10
Fold Cross
Validation Results.

13

FIGURE 23.
Combined, PART,

10 Fold Cross
Validation Results.

FIGURE 24.
Combined,
REPTree, 10 Fold
Cross Validation
Results.

FIGURE 25.
Combined, Voted
Perceptron, 10
Fold Cross
Validation Results.

14

FIGURE 26.
Trojan, Decision
Table, Testing
Results.

FIGURE 27.
Trojan, Logistic,
Testing Results.

FIGURE 28.
Trojan,
NaiveBayes,
Testing Results.

15

FIGURE 29.
Trojan, PART,
Testing Results.

FIGURE 30.
Trojan, REPTree,
Testing Results.

FIGURE 31.
Trojan, Voted
Perceptron,
Testing Results.

16

FIGURE 32.
Botnet, Decision
Table, Testing

Results.

FIGURE 33.
Botnet, Logistic,
Testing Results.

FIGURE 34.
Botnet,
NaiveBayes,
Testing Results.

17

FIGURE 35.
Botnet, PART,
Testing Results.

FIGURE 36.
Botnet, REPTree,
Testing Results.

FIGURE 37.
Botnet, Voted
Perceptron,
Testing Results.

18

FIGURE 38.
Ransomware,
Decision Table,
Testing Results.

FIGURE 39.
Ransomware,
Logistic, Testing
Results.

FIGURE 40.
Ransomware,
NaiveBayes,
Testing Results.

19

FIGURE 41.
Ransomware,

PART, Testing
Results.

FIGURE 42.
Ransomware,
REPTree, Testing
Results.

FIGURE 43.
Ransomware,
Voted Perceptron,
Testing Results.

20

FIGURE 44.
Combined,

Decision Table,
Testing Results.

FIGURE 45.
Combined,
Logistic, Testing
Results.

FIGURE 46.
Combined,
NaiveBayes,
Testing Results.

21

FIGURE 47.
Combined, PART,

Testing Results.

FIGURE 48.
Combined,
REPTree, Testing
Results.

FIGURE 49.
Combined, Voted
Perceptron,
Testing Results.

22

3) RANSOMWARE

As can be seen in Figures 38 - 43, none of the classifiers

correctly identify a single malware sample.

4) COMBINED

As shown in Figures 44 - 49, the combined data models start

to correctly classify samples. In particular the PART and

REPTree models perform very well with a relatively small

number of false positives. The NaïveBayes and Decision

Table perform reasonably as well.

5) EVALUATION

The test datasets provide an interesting outcome. You’ll note

that these performed incredibly poorly except for the

combined dataset which succeeded with certain classifiers.

This seems to be due to the lower amounts of data in the

training sets. Since there is less data, there is less process

diversity. This process diversity does not seem to be related

to malware types, e.g. botnets, ransomware, or trojans, either.

It seems that malware tends to share traits across families and

variants and training across these spreads provides a level of

robustness to the system that is demonstrated in the

combined data testing.

 Note that the important factor here is low false positives.

The malicious samples are repeatedly taken which means

that even if a malware process is missed the first time, it can

be caught in the future. This means that even if the rate of

flagging malware correctly is low, it doesn’t mean that it

wouldn’t perform well in practice as long as its false positive

rate is low.

Another point to make is that over the course of the testing

there were two models that performed consistently better

than the other models. These were the PART and REPTree

classifiers. It is worth noting that these are both tree based

classifiers which shows that trees can be used for simple

identification of malicious process attributes. The other win

here is that trees are fairly efficient meaning that in an

identification system, they would not add much overhead.

C. PERFORMANCE

The last point to address here is the speed performance. The

process monitor script was run on an Intel Core i7-6700k

4GHz processor. The machine was running 385 processes

and the average time to iterate over all of these processes in

the script was 24.748 seconds. This means that the overhead

to run the process capture script is roughly 64 ms per process

running on a given machine. This would of course be added

to the amount of time necessary to classify a given instance.

This would be dependent on the machine learning algorithm

chosen, but would be fairly insignificant. This means that this

system could be run repeatedly and quite frequently to ensure

that malware is caught almost immediately upon entering a

system.

In addition, the models themselves are anywhere from 2 to

10 kilobytes meaning that the memory needed to use them

for classification is fairly low. This means that it could be run

on low memory systems as well.

VI. SUMMARY

This section provides a brief summary of what was

accomplished in this paper. First, a system was proposed that

allows for cross platform evaluation of malicious process

behavior. While this was tested on a Windows system, the

solution only relies on a system’s ability to support the

process statistics gathering library SIGAR and Java, both of

which are widely supported. The malware flagging system is

also fairly low power and can be run as often as needed so it

can be run more frequently to catch malware more quickly or

can be run less frequently for better performance which

would allow it to work on IOT and Android devices as well

as personal computers.

The second contribution was that it evaluated multiple

machine learning models on 4 different datasets and showed

which models performed the best. This demonstration

showed that tree based models seem to provide the most

accurate classification method for this data.

It also showed that this identification could be performed

quickly and efficiently. Due to the statistics being gathered

being fairly accessible and the simplicity of the solution, it

doesn’t cause a large amount of overhead on the system. This

means that the classification can be done as often as needed.

Lastly, it showed that having malicious data spread across

different variants and families provides a robust system

capable of flagging a wide variety of malware. This was

shown based on the inaccuracy of the classifiers when used

on individual malware families when compared with the

success of the classifiers when trained on cross family

malware datasets and evaluated on diverse variants. It also

had fairly low false positive rates indicating that the attributes

chosen in the data were fairly indicative of malicious

processes and had little overfitting.

VII. FUTURE WORK

23

A few ideas will now be proposed for how to increase the

effectiveness of this malware detection system.

The first is taking into account some standard telltale signs

of malware. For instance, malware is typically installed to the

“AppData” or “tmp” folder and provides a decent estimator

of malicious behavior. It was not included in this

implementation since it is operating system specific. That

said it could be used in future implementations by simply

checking a variety of different common malware installation

folder paths. Another example would be utilizing processes’

tree structures. Malware typically spins off multiple

processes to accomplish its goals so using the tree structure

as part of the input to the classifier may help. Both these and

other signs could be used as part of the dataset that the model

is trained on to increase accuracy.

The second improvement that could be made is the usage

of behavior over time. This system simply checks a process’

statistics at a given time. This could be made significantly

more robust by taking multiple samples for regression

classification. This modifies the machine learning to account

for time. Another possible implementation of time based

behavior identification that wouldn’t require modification of

the existing classifier would be to check for sequential flags

on a process. In other words, if a process is flagged as

malicious by the model multiple times in succession, there is

a high likelihood of it being malicious. This modification of

the system would reduce the likelihood of false positives.

This could be used to balance false positives with malware

identification.

Lastly, this paper was designed on the prospect of making

adaptable dynamic systems that are cross platform

compatible. The reality, though, is that most platforms

already have static systems in place. It might be beneficial to

tie into these systems and leverage their abilities with the

strengths of a dynamic system. The dynamic system could

also be used to find potentially malicious processes to send

samples of to the antivirus manufacturer for addition to the

malware signature list. This would be a means of obtaining a

large number of malicious samples that would take less time

to process due to the high malicious classification accuracy

of the dynamic system.

REFERENCES
[1] Cloonan, J. (2018). Advanced Malware Detection - Signatures vs.

Behavior Analysis. [online] Infosecurity Magazine. Available at:
https://www.infosecurity-magazine.com/opinions/malware-

detection-signatures/ [Accessed 10 Apr. 2018].

[2] Ieeexplore.ieee.org. (2018). Behavior-Based Malware Analysis and
Detection - IEEE Conference Publication. [online] Available at:

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6128413&ta

g=1 [Accessed 10 Apr. 2018].

[3] Pdfs.semanticscholar.org. (2018). Behaviour Based Malware
Detection. [online] Available at:

https://pdfs.semanticscholar.org/08ec/24106e9218c3a65bc3e16dd8

8dea2693e933.pdf [Accessed 10 Apr. 2018].

[4] Ieeexplore.ieee.org. (2018). Malware Detection with Deep Neural

Network Using Process Behavior - IEEE Conference Publication.

[online] Available at:
https://ieeexplore.ieee.org/document/7552276/ [Accessed 10 Apr.

2018].

[5] TUDelft. (2018). Using endpoints process information for malicious
behavior detection. [online] Available at:

https://repository.tudelft.nl/islandora/object/uuid:e1678077-9056-

47ac-82e6-2762bfb40a63?collection=education [Accessed 10 Apr.
2018].

[6] Cse.psu.edu. (2018). pBMDS: A Behavior-based Malware Detection

System for Cellphone Devices. [online] Available at:
http://www.cse.psu.edu/~sxz16/papers/pBMDS.pdf [Accessed 10

Apr. 2018].

[7] Pdfs.semanticscholar.org. (2018). In-execution dynamic malware
analysis and detection by mining information in process control

blocks of Linux OS. [online] Available at:

https://pdfs.semanticscholar.org/6c0e/9f196a82098804ed8f95a6fbe
1a3886f15cb.pdf [Accessed 10 Apr. 2018].

[8] Arts.units.it. (2018). Spotting the Malicious Moment: Characterizing

Malware Behavior Using Dynamic Features. [online] Available at:
https://arts.units.it/retrieve/handle/11368/2889183/137832/2016-

IWSMA-SpottingMaliciousMoment.pdf [Accessed 10 Apr. 2018].

[9] Onlinelibrary.wiley.com. (2018). Smart malware detection on Android.

[online] Available at:

https://onlinelibrary.wiley.com/doi/pdf/10.1002/sec.1340 [Accessed
10 Apr. 2018].

[10] Milosevic, J., Malek, M. and Ferrante, A. (2018). A Friend or a Foe?

Detecting Malware using Memory and CPU Features. [online]
Scitepress.org. Available at:

http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?I

D=+yi+YAt4Z8o=&t=1 [Accessed 10 Apr. 2018].

[11] Hyperic SIGAR. (2018). SIGAR. [online] Available at:

https://github.com/AlexYaruki/sigar [Accessed 10 Apr. 2018].

[12] Cs.waikato.ac.nz. (2018). Weka 3 - Data Mining with Open Source
Machine Learning Software in Java. [online] Available at:

https://www.cs.waikato.ac.nz/ml/weka/ [Accessed 10 Apr. 2018].

[13] GitHub. (2018). ytisf/theZoo. [online] Available at:
https://github.com/ytisf/theZoo [Accessed 11 Apr. 2018].

