Date of publication 04, 2018.

Dynamic and System Agnostic Malware
Detection Via Machine Learning

Michael Sgroi', Doug Jacobson®

Department of Electrical and Computer Engineering, lowa State University, Ames, IA 50010 USA
2 Department of Electrical and Computer Engineering, lowa State University, Ames, 1A 50010 USA

Corresponding author: Michael Sgroi (e-mail: mcsgroi @iastate.edu, mesgroi321@gmail.com).

ABSTRACT This paper discusses malware detection in personal computers. Current malware detection
solutions are static. Antiviruses rely on lists of malicious signatures that are then used in file scanning.
These antiviruses are also very dependent on the operating system, requiring different solutions for different
systems. This paper presents a solution that detects malware based on runtime attributes. It also emphasizes
that these attributes are easily accessible and fairly generic meaning that it functions across systems and
without specialized information. The attributes are used in a machine learning system that makes it flexible
for retraining if necessary, but capable of handling new variants without needing to modify the solution. It
can also be run quickly which allows for detection to be achieved before the malware gets too far.

INDEX TERMS Malware, Machine Learning

I. INTRODUCTION

Malware is a large problem in modern technology. It causes
many issues for people individually, as well as companies.
This becomes more of an issue when you take into account
the fact that malware is constantly evolving. As can be
imagined, this makes it an incredibly difficult problem to
solve. Antivirus hasn’t changed much at all over the past 20
years for this reason. The solutions we employ are still
fairly static. They rely on the antivirus publisher collecting
samples continuously. These samples have to be analyzed
to generate a signature that can then be used in detection.
This is challenging for antivirus developers because they
have to find ways of obtaining these samples and they have
to invest resources in analyzing them. The signatures
obtained have to be added to a list that is pushed to clients.
From a client’s perspective this means constant updates and
slow response to new malware variants.

When new malware strains are introduced or the
malware is obfuscated the antivirus becomes completely
ineffective. This leaves clients vulnerable to attacks, maybe
even more so than without the antivirus because they
assume it will keep them safe.

This is where the solution | am proposing comes into
play. It seems self-evident that malware should be
detectable based on runtime attributes. These would be

aspects of malware that on some high level would never
change.

The other issue that this paper aims to solve is that
antivirus is effectively in itself malware that requires itself
to be tightly coupled with the machine and incredibly
specialized. This means that it needs to be designed
specifically for each operating system and requires a large
amount of information to function.

What this paper proposes is a dynamic model that utilizes
easily accessible runtime attributes in a generalizable way
such that it can be extended between operating systems.
These attributes are correlated in a statistically meaningful
way by using machine learning.

In this paper, | will outline what previous research has
been done in this area. | will then detail the proposed
solution after which the testing implementation will be laid
out. There will then be discussion on the results of these
tests. Lastly, the accomplishments of this paper and ideas
for future work in this area will be summarized.

1. PREVIOUS RESEARCH

It is quickly becoming common knowledge that existing
antivirus solutions are inadequate. There are even articles
appearing in common technical magazines outlining the idea

1

mailto:mcsgroi@iastate.edu
mailto:mcsgroi321@gmail.com

of changing from static analysis methods to dynamic
methods [1]. The technical ideas supporting this change of
thought are slightly sparser and this is due to the technical
challenge involved in implementation. This is due to the fact
that antivirus must be incredibly accurate and minimize false
positives. This works in favor of static analysis, which will
only positively flag malware if it is an exact match for known
malware. Dynamic systems will always have more false
positives since they are dependent on behavior that cannot be
hard coded.

There are a few dynamic solutions that have been
proposed, but none of them match the criteria | have outlined
here.

Liu et al. [2] proposed an algorithm that takes into account
malware behavior features and outputs a judgment based on
these features. This doesn’t utilize a machine learning model
as they created a custom predictor. The solution they
proposed is also tied into Windows and requires low level
information from the operating system.

Wijnands [5] also proposed a very similar algorithm taking
into account malware behavior features such as filesystem,
registry, process creation/exiting, and thread creation/exiting.
This compared feature sets by utilizing a matrix to calculate
distance between nodes. This was also tied in with Windows.

Aubrey-Jones [3] suggests intercepting API calls or using
a virtualized environment to capture low level calls.
Unfortunately, this only suggests a concept and provides no
implementation or proof of concept.

Tobiyama et al. [4] builds on this concept of intercepting
API calls and adds the idea of using a Markov chain to
construct behavior patterns for processes. These behavior
patterns can then be labeled as malicious or benign. This
also, only works on Windows, however. Xie et al. [6] also
proposes using a Markov chain detection method, but this
implementation is based on user behavior/interaction so that
it can determine anomalous behavior. This implementation is
specific to Android systems though.

Shahzad et al. [7] uses low level process information such
as page frames and context switches along with more general

information like launcher size. This implementation is
specific to Linux.

Ferrante et al. [8] suggests using system calls as well as
CPU and memory usage. This is more similar to the attribute
set that is used in the solution proposed in this paper, but still
requires low level attributes, has a fairly limited number of
features and is specific to Android.

Gheorghe et al. [9] is very similar in that it also utilizes
CPU and memory usage, but instead of system calls, it uses
system settings such as WiFi enabling/disabling and
Bluetooth enabling/disabling. As can be surmised, this
couples it to the operating system again - Android in this
case.

Milosevic et al. [10] is effectively the same attribute set
that is used in this paper and does, in fact, use much of the
same analysis process. The notable difference is that their
solution is tied to Android.

It is quite noticeable that the implementations in existence
currently are very low level and require a tight knit coupling
with the specific operating system in use. The solution
proposed here is similar to most of these solutions, but
significantly more generalized.

Ill. SOLUTION

Based on the problem statement outlined in the introduction,
the solution that is being proposed here is a machine learning
model that utilizes process statistics to flag malicious
programs. The process statistics that are being utilized are
similar to what would come from a “top” or “ps” command
on a Unix based system.

Since the goal of this system is to be cross platform, it is
important that the method of obtaining these process statistics
is easily portable. With this in mind, a program call SIGAR
[11] was selected. This is a Java library that captures process
information using a DLL or shared object library file. The list
of operating systems this supports is shown in Figure 1.
While it is not completely universal, it is close and could be
extended to support other operating systems as needed.

File Language Description Required

libsigar-universal-macosx.dylib Mac OS X PowerPCllntel 32-bit *

libsigar-universal64-macosx.dylib Mac OS X PowerPC/Intel 64-bit *
libsigar-x&6-freebsd-5.50 FreeBSD 5.x AMD/Intel 32-bit *

libsigar-x86-freebsd-6.s0 FreeBSD 6.x AMD/Intel 64-bit *

sigarjar Java Java API Yes (for Java only)
logdj jar Java Java logging API Nao
libsigar-x86-linux.so c Linux AMD/Intel 32-bit "
libsigar-amdé&4-linux.so c Linux AMD/Intel 64-bit *
libsigar-ppc-linux.so c Linux PowerPC 32-bit "
libsigar-ppcéd-linux.so c Linux PowerPC 64-bit *
libsigar-iab4-linux.so c Linux Itanium 64-bit "
libsigar-s390x-linux.so c Linux zSeries 64-bit *
sigar-x86-winnt.dll c Windows AMD/Intel 32-bit "
sigar-amd&4-winnt.dll c Windows AMD/Intel 64-bit *
libsigar-ppc-aix-5.so c AIX PowerPC 32-bit "
libsigar-ppctd-aix-5.s0 c AlX PowerPC 64-bit *
libsigar-pa-hpux-11.sl c HP-UX PA-RISC 32-bit *
libsigar-iaG4-hpux-11.sl c HP-UX ltanium 64-bt "
libsigar-sparc-solaris so c Solaris Sparc 32-bit *
libsigar-sparcG4-solaris.so c Solaris Sparc 64-bit "
libsigar-x86-solaris so c Solaris AMD/Intel 32-bit *
libsigar-amd64-solaris.so c Solaris AMD/Intel 64-bit "

c

c

c

c

c

libsigar-amdé4-freebsd-6.s0 FreeBSD 6.x AMD/Intel 64-bit *

FIGURE 1. List of possible SIGAR library files by operating system.

This library is used in a script that outputs to either the
terminal or a text file about all process information it can
capture as frequently as possible. Note that this means that
benign and malicious processes are both logged to the same
file since all processes are captured. The features that are
captured are shown in Table 1.

These features and the classification are organized in a flat
text CSV file in entries like the following:

TABLE |

SIGAR PROCESS ATTRIBUTE LIST [11]

Attribute Type Description
pid STRING Process ID
mem_size NUMERIC Total process virtual
memory
mem_resident NUMERIC Total process
resident memory
mem_share NUMERIC Total process shared
memory
mem_minor_faults NUMERIC Non I/0 page faults
mem_major_faults NUMERIC 1/0 page faults
mem_page_faults NUMERIC Total number of
page faults
cpu_percent NUMERIC Process cpu usage
cpu_total NUMERIC Process cpu time
(sum of user and
kernel time)
cpu_system NUMERIC Process cpu time
(kernel time)
proc_name STRING Name of process
executable
proc_file_descriptors NUMERIC Total number of
open file descriptors
proc_threads NUMERIC Number of active
threads
proc_state STRING Process state
(Running, Zombie,
etc.)
proc_time NUMERIC Process cpu time

(sum of user and
kernel)

29736960, 5009408, -1, -1, -1, 1635, -1, -1, -1, -1', 117, 8, 'R’, -1, "WmiPrvSE', ‘clean’

67579904, 5136384, -1, -1, -1, 2236, 0.0, 187, 156,
'C:\Users\michael\AppData\Roaming\sktoeys.exe', 57, 2, 'R, 187,
'C:\Users\michael\AppData\Roaming\sktoeys.exe', ‘infected’

1441792, 233472, -1, -1, -1,12491, -1, -1, -1, -1', 328, 65, 'R, -1, 'System’, 'clean’

These CSV files are then mapped to ARFF files and the
malicious data labeled using the identified malicious EXE
with string attributes removed. The reason that string
attributes are removed is that they limit the number of model
types that can be used and don’t really provide any
meaningful data unless parsed for specific pieces of content.
For the purposes of this paper, it was unnecessary to keep
this information, but could potentially be used in future
implementations. ARFF files are the proprietary data format
of the machine learning library WEKA [12]. This was chosen
here due to its simplicity of implementation, vast feature
selection, and data visualization tools.

Once a model is generated, it can be used in correlation
with the script that captures data to classify processes as
malicious or not.

IV. TESTING IMPLEMENTATION

There were three steps in setting up the testing for this. These
were the selection of datasets, features, and machine learning
model types.

A. DATASETS

For testing purposes there were a few malware instances
from theZoo malware database [13] whose runtime attributes
were sampled. Note that these datasets include both benign
and malicious data even though they are the dataset for a
specific malware, but that they are labeled benign/malicious
appropriately. There was also a large dataset of just clean
data for false positive testing. These are all listed in Table 2.

Once the data was collected it was segregated into 4
training and 4 testing sets.

3

TABLE 2

DATASETS

Malware Name Malicious EXE Malware Type Number of Data Entries
Waski.Upatre utilview.exe Trojan 23,150 malicious, 1,523,816 clean
Win32.Alina.3.4.B jucheck.exe Trojan 13,047 malicious, 881,478 clean
EquationDrug EquationDrug_4556 CESEB007AF1DESBD3B457F0B2 Trojan 769 malicious, 10,936,625 clean

16D.exe
ZeusVM dwm.exe Botnet 11,473 malicious, 1,203,780 clean
IllusionBot BOTBINARY.EXE Botnet 249,050 malicious, 14,292,470 clean
Teslacrypt sktoeys.exe Ransomware 53 malicious, 2,247 clean
Jigsaw drpbx.exe Ransomware 114 malicious, 4,562 clean
Locky svchost.exe Ransomware 80 malicious, 4,525 clean
Clean Clean Data 12,093,240 clean

The first set was for Trojan testing. For this, the
Waski.Upatre and Win32.Alina.3.4.B datasets were used for
training and the EquationDrug dataset was used for testing.

The second set was for botnet testing. For this, the
IllusionBot dataset was used for training and the ZeusVM
dataset was used for testing.

The third set was for ransomware testing. For this, the
Jigsaw and Locky datasets were used for training and the
Teslacrypt dataset was used for testing.

The last set was an aggregation of all of these malware
variants and used combined training and testing sets. In other
words, the training dataset was Waski.Upatre,
Win32.Alina.3.4.B, lllusionBot, Jigsaw, and Locky. The
testing dataset consisted of EquationDrug, ZeusVM,
Teslacrypt, and the purely clean data.

B. FEATURE SELECTION

Three feature selection algorithms in Weka were used to
determine which of the acquired process attributes should be
used in model training and testing. The algorithms used were
CfsSubsetEval, CorrelationAttributeEval, and
InfoGainAttributeEval.

1) CFSSUBSETEVAL

This is a means of evaluating the value of a subset of
attributes by comparing the value of an attribute with how
redundant it is with other attributes in the subset. It utilized
BestFirst which searches via greedy hillclimbing with
backtracking.

2) CORRELATIONATTRIBUTEEVAL

This picks the most relevant attributes based on how likely a
class is for that specific variable. This utilized Ranker which
simply organizes by the highest values achieved by attribute
evaluators such as entropy.

3) INFOGAINATTRIBUTEEVAL

This evaluates an attribute based on how much class
information is gained from it. This also utilized Ranker.

4) FINAL FEATURES

After running the above feature selection algorithms, the
attribute rankings and what they represented were used to
construct a list of the most valuable attributes for each of the
4 test datasets.

The attributes chosen were as follows:

e Trojan datasets:
o mem_size
o mem_resident
o proc_file_descriptors
o proc_threads

e Botnet datasets:
o mem_page faults
o mem_size
o proc_file_descriptors
o proc_threads

e Ransomware datasets:
o proc_file_descriptors
o mem_resident
o mem_size

e Aggregate datasets:
o proc_file_descriptors
o mem_size
o mem_resident
o mem_page_faults

C. MODELS

There were six Weka machine learning models chosen for
testing. These are as follows:

e Decision Table
o This is a simple Decision Table majority
classifier. It utilizes a grid to map features
to the likeliest classification.
e Logistic
o Thisis a Logistic Regression model which
includes a ridge estimator.
o NaiveBayes
o This is a NaiveBayes implementation
using estimator classes. The estimator uses
a precision that is based on the input data.
e PART
o This is a decision list based on tree data.
Effectively it constructs partial C4.5
decision trees and makes the best leaf from
each into a rule in the list.
o REPTree
o This is a fast regression tree that uses
information gain for tree derivation and is
pruned. It sorts the attributes once and if
anything needs to be added splits existing
instances.
e Voted Perceptron
o This is a voting system where weight
vectors are used with a set number of
nodes to vote on data. This is supposed to
be similar to SVM except faster.

For all of these models, the default parameters specified in
Weka were used, except for Voted Perceptron where the
number of nodes was changed from 10000 to 3000.

V. RESULTS

First each training set was used to create each of the 6
classifiers. Each of these classifiers was evaluated in two
ways, using 10 fold cross validation and via the test dataset
outlined previously.

A. 10 FOLD CROSS VALIDATION RESULTS

When the classifier was being made, 10 fold cross validation
was performed. This means that the data is split into 10

pieces and for each of those pieces one piece is used for
testing while the other 9 are used for training. This generated
the results outlined in Figures 2 - 25.

1) TROJAN

As can be seen in Figures 2 - 7, the Decision Table,
NaiveBayes, PART, and REPTree perform about equally and
have near perfect accuracy.

2) BOTNET

As can be seen in Figures 8 - 13, all of the classifiers have
near perfect accuracy with the exception of Voted
Perceptron.

3) RANSOMWARE

According to Figures 14 - 19, the Decision Table, PART, and
REPTree have near perfect accuracy and the NaiveBayes and
Logistic have moderate performance.

4) COMBINED

As can be seen in Figures 20 - 25, the Decision Table, PART,
and REPTree perform extremely well. The NaiveBayes also
performs fairly well, but has an increased false positive rate.

5) EVALUATION

This shows that the classifiers would work for moderately
similar data, but are at least fairly extensible. The only
consistently bad classifier was the Voted Perceptron which
consistently missed identification of malware.

B. TEST RESULTS

The next step then was to analyze completely unseen
malware samples’ runtime attributes. This was where the
classifiers just generated were then tested using the test data
outlined in the previous section. The results of this are shown
in Figures 26 - 49.

1) TROJAN

As can be seen in Figures 26- 31, none of the classifiers
correctly identify a single malware sample.

2) BOTNET

This demonstrates that the logistic classifier at least starts to
identify the malicious samples as shown in Figure 33. Even
so, it only classifies a small portion of the samples and all of
the other classifiers fail completely in malicious
identification as shown in Figures 32 - 37.

5

FIGURE 2. Trojan
Decision Table, 10
Fold Cross

Ci tly C1 ified Inst 2441343 99 _9539 % . .
orrectly assifie nstances Validation Results

Incorrectly Classified Instances l4g 0.00el %
Eappa statistic 0.5573

Mean absolute error 0.0005

Boot mean sguared error o.go08

Relative absolute error 1.64599 %

Root relative sgquared error E.6327 %

Total Number of Instances 2441451

== Detailed Rccuracy By Class =——
TP Rate FP Rate DPrecision Recall F-Measure MCC ROC Area DPRC Rrea Class
0.955 0.000 0.997 0.5939 0.55e 0.958 1.000 1.000 infected
H H H i1.000 0.00L1 1.000 1l.000 1l.000 0.958 1.000 1.000 clean
Weighted Awvg. l.000 o.001 1.000 l.000 l.000 0.958 1l.000 1l.000

=== Confusion Matrix ===

<== classified as

b
11 a = infected
7

| b = clean

FIGURE 3. Trojan,
Logistic, 10 Fold
Cross Validation

Correctly Classified Instances 52 98.5174 %
Results.

Incorrectly Classified Instances 1.482¢ %
Eappa statistic

Mean absolute error 0.02%9

Hoot mean sguared error 0.1207

Relative absolute error 95 .3472

Boot relatiwe sgquared error 99 _8€31

Total WNumber of Instances 2441451

== Detailed Accuracy By Class =——

TP Rate FP Rate Precision Recall F-Heasure MCC PRC Rrea Class
0.000 0.000 0.0o00 0.000 o.oo0 0.000 o.oze infected
i 1.000 1.000 0.885 1.000 0.953 0.000 0.59%€ clean
0.585 0.985 0.871 0.985 a.a78 0.000 0.%81

Weightedlhvg
Confusion Matrix —
a b <—— classified as

a 3€1a7 | a = infected
0 2405234 | b = clean

Summary === FIGURE 4. Trojan,
NaiveBayes, 10

Correctly Classified Imstances 95 _431¢ % Fold Cross
Incorrectly Classified Instances 0.5684 % Validation Results
Eappa statistic 0.8347
Mean absolute error 0.0os8
Boot mean squared error 0.0755
Belatiwve absolute error 2Zo.0218
Hoot relative sguared error g82.511¢
Total Number of Instances 2441451

=== Detailed Accuracy By Class ==

{ TP Rate FP Rate Precision Recall F-Measure ROC Area PRC Area Class
0.588 0.008 0.727 0.588 0.237 0.559%9 0.97e infected
0,954 o.01z2 1.000 0.594 0.937 0.59939 1.000 clean
0.954 0.01z2 0.95¢ 0.994 0.9495 0.99%9 1.000

Weighted Awg
== Confusion Matrix —
classified as

a = infected
b = clean

Correctly Classified Imstances
Incorrectly Classified Imstances
Fappa statistic

Mean absolute error

Root mean sgquared error

Relative absolute error

Root relative sguared error
Total Number of Instances

Detailed Bccuracy By Class
TP Rate
1.000

i1.000
1.000

FP Rate
0.00o
0.00o
0.00o

Neigﬁted.hvg:

== Confusion Matrixz —
b -

b = clean

2441451

24414351

Precision

classified as
a = infected

Recall
1.000 1.
1.000 1.
1.000 1.

MCC

1.000
1.000
1.000

ROC Area
1.000
1.000
1.000

F-Measure
1.000
1.000
1.000

aoo
aoo
aoo

PRC Area
1.000
1.000
1.000

Class
infected
clean

Correctly Classified Instances
Incorrectly Classified Instances
Eappa statistic

Mean absolute error

Root mean squared error

RBelatiwve absolute error

Boot relative sgquared error
Total Number of Instances

== Detailed Accuracy By Class ——

FP Rate
0.000
0.000
0.0oo

Weighted Bwg. 1.000

Confusion Matrix =——

b = clean

2441433

0.000%

0.0042

0.748%
2441451

Precision

1.000 1

classified as
a = infected

Recall
1.000 1.
1.000 1.
-0oao

99.99535 %
00001 %

MCC

1.000
1.000
1.000

ROC Area
1.000
l.000
1.000

F-Heasure
1.000
1l.000
1.000

ooo
aoo

PRC Area
1.000
1l.000
1.000

Class
infected
clean

Correctly Classified Instances
Incorrectly Classified Instances
Eappa statistic

Mean absolute error

Foot mean sguared error

Relative absolute error

Boot relatiwve sguared error
Total Number of Instances

Detailed RAccuracy By Class
TP Rate
0.000

i1.000
0.985

FP Rate

0.0o00
1.000

Weighted Avg. 0.585

Confusion Matrix

b -
57 | a =

b = clean

0.0148
0.1218
50.7517
100.7459¢€
2441451

Precision
o000 [a]
0.525 1
0.571 [a]

classified as
infected

Recall
.0og
.0og
.985

ROC Area
0.500
0.500
0.500

F-Measure
0.000
0.953
o.s78

PRC Area
0.0158
0.%5858
0.571

Class
infected
clean

FIGURE 5. Trojan,
PART, 10 Fold
Cross Validation
Results.

FIGURE 6. Trojan,
REPTree, 10 Fold
Cross Validation
Results.

FIGURE 7. Trojan,
Voted Perceptron,
10 Fold Cross

Validation Results.

FIGURE 8. Botnet,
Decision Table, 10
14541519 Fold Cross

Correctly Classified Instances h A
Validation Results.

Incorrectly Classified Imnstances 1
Eappa statistic 1
Mean absolute error a
Boot mean sguared error 00003
Relative absolute error 0.0022
Root relative sguared error 0.2025
Total Number of Instances 14541520

=== Detailed Accuracy By Class =—=

TP Rate FP Rate Precision Recall F-Measure MCC BOC Area PRC Rrea (Class
1.000 a.0ao 1.00a0 1.000 1.000 1.000 1.000 1.000 infected
;l_DDD a.0ao 1.00a0 1.000 1.000 1.000 1.000 1.000 clean
1.000 a.0ao 1.000 1.000 1.000 1.000 1.000 1.000

Weighted-hvg
== Confusion Matrix —
b <—— classified as

2435050 o1 a = infected
1l 142524€5 | b = clean

FIGURE 9. Botnet,
Logistic, 10 Fold
Correctly Classified Instances 14521485 Cross Validation
Incorrectly Classified Instances 10035 Results
Fappa statistic
Mean absolute error
Foot mean sguared error
Relative absolute error 13.
Root relative sguared error 4.
Total Humber of Instances 14541520

== Detailed Rocuracy By Class ——
TP Rate Precision BRecall F-Measure ROC BArea PRC Area Class

1.000 . 0.5l 1.000 0.520 0.555 0.501 infected
50_555 . 1.00a0a 0.5959%5 1.000 0.55%5 1.000 clean

Heighted-ﬁvg: 0.95%9 - 0._95%9 0.95%%9 0_5%% 0.59%%9 0._958

=== Confusion Matrixz ===

<—— glassified as
243050 a a = infected
10035 14282435 b = clean

FIGURE 10.
Botnet,
Correctly Classified Instances 14537350 99.9713 % NaiveBayes, 10
Incorrectly Classified Instances 4170 0.0287 % Fold Cross

Eappa statistic 0.9914 Validation Results
Mean absolute error 00003
Root mean squared error 0.01les
Belatiwve absolute error 0.8514 %
Boot relative sgquared error 13.04€8 %
Total Number of Instances 14541520

== Detailed Accuracy By Class ——

FP Rate Precision Recall F-Heasure PRC Rrea Class
0.000 1.000 0.983 0.932 1l.000 infected
0.017 1.000 1.000 1.000 1.000 clean
0.01e 1.000 1.000 1.000 1.000

Weigﬁtedlkvg
= Confusion Matrix =——
b <—— classified as

244380 4170 | a = infected
0 14252470 | b = clean

FIGURE 11.
Botnet, PART, 10
Correctly Classified Imstances 14541520 Fold Cross
Incorrectly Classified Imnstances Validation Results
Eappa statistic

Mean absolute error

BEoot mean sguared error

Relative absolute error

Root relative sguared error

Total Number of Instances 14541520

== Detailed Accuracy By Class =——

TP Rate FP Rate DPrecision Recall F-Measure MCC ROC Area DPRC RArea Class
1.000 .ooo 1.000 1.000 1.000 1.000 1.000 1.000 infected

H H él_DDD .ooo 1.000 1.000 1.000 1.000 1.000 1.000 clean
Weighted RAwg. 1.000 .ooo 1.000 1.000 1.000 1.000 1.000 1.000

== Confusion Matrixz —

<== classified as
2459050 a | a = infected
0 14252470 b = clean

FIGURE 12.
Botnet, REPTree,
Correctly Classified Instances 14541520 10 Fold Cross
Incorrectly Classified Instances Validation Results
Eappa statistic

Mean absolute error

Boot mean sgquared error
Relative absolute error
Boot relative sguared error
Total Mumber of Instances

== Detailed Accuracy By Class ——

FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class
a._000 1.000 1.000 1.000 1.000 1.000 infected
H a._000 1.000 1.000 1.000 1.000 1.000
1.000 a._000 1.000 1.000 1.000 1.000 1.000 1.000

Weigﬁted.hvg
Confusion Matrix ——
b <—— classified as

(| a = infected
0 14252470 | b = clean

Summary =— FIGURE 13.
Botnet, Voted
Correctly Classified Instances 14252470 Perceptron, 10
Incorrectly Classified Instances 245050 Fold Cross

Fappa statistic 0 Validation Results.
Mean absolute error 0.0171
Boot mean sguared error 0.130%
Relative absolute error 50.8712
Root relative sguared error 100.8€75
Total Number of Instances 14541520

=== Detailed Accuracy By Class =——

TP Bate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class
0.00o o._0oo ? 0.000 K ? 0_500 0.017 infected

H H i1.000 1.000 0.523 1.000 0.951 ? 0.500 0.583 clean
Weighted Avg. 0.583 0.983 ? 0.583 2 ? 0.500 0.96€

=== Confusion Matrix ===
a b <== classified as

a 2438050 a = infected
0 14252470 | b = clean

Correctly Classified Instances
Incorrectly Classified Instances
Eappa statistic

Mean absolute error

BEoot mean sguared error

Relative absolute error

Boot relatiwve sguared error
Total Number of Instances

=== Detailed Accuracy By Class =—=

TP Rate
0.585
£1.000
1.000

FP Rate
o.0ao
0.015
0.015

Weighted.hvg:

=== Confusion Matrix ===

b “—— classified as
3 a = infected
7| b = clean

9278
3
0.952
0.0014
0.018%5
3.342
12.5352
5281

Recall
0.585
1.000
1.000

F-Measure
0.552
1.000
1.000

Precision
1.000
1.000
1.000

ROC Area
1.000
1.000
1.000

PRC Area
0.552
1.000
1.000

Class
infected
clean

Correctly Classified Instances
Incorrectly Classified Instances
Eappa statistic

Mean absolute error

Hoot mean sguared error

Relative absolute error

Boot relatiwve sguared error
Total Number of Instances

=== Detailed Rccuracy By Class =—=

TP Rate
0.588
i1.000
0.%51

FP Rate
a.0ao
0.412
0.404

Heigﬁted-ﬁvg
== Confusion Matrix —
a b <—— classified as

114 80 | a = infected
0 5087 | b = clean

Recall
0.588
1.000
0.551

F-Measure
0.740
0.595¢
0.%50

Precision
1.000
a_53l1
0.531

ROC Area
0_533
0_533
0.53%9

PRC Area
0.764
1.000
0.%555

Class
infected
clean

Correctly Classified Imstances
Incorrectly Classified Imstances
Eappa statistic

Mean absolute error

Hoot mean sguared error

Relative absolute error

Boot relatiwve sgquared error
Total Number of Instances

== Detailed Rccuracy By Class =——

TP Rate
0.s88
i1.000
0.551

FP Rate
0.0o00
0.412
0.404

Weighted.hvg
== Confusion Matrixz —
a b <—— glassified as

114 80 | a = infected
0 s087 | b = clean

9201

=1]
0.7362
0.02591
0.1058
T0.8308
73.595%598

4281

Recall
0.588
l.000
0.551

F-Measure
0.740
0.9%¢
0.550

Precision
1.000
0.5939l
a._53l1

ROC Area
0.502
0.902
0._502

DPRC Area
0.€le
0.5998
0.5390

Class
infected
clean

FIGURE 14.
Ransomware,
Decision Table, 10
Fold Cross
Validation Results.

FIGURE 15.
Ransomware,
Logistic, 10 Fold
Cross Validation
Results.

FIGURE 16.
Ransomware,
NaiveBayes, 10
Fold Cross
Validation Results.

Correctly Classified Instances
Incorrectly Classified Imstances
Eappa statistic

Mean absolute error

Boot mean sguared error

Relative absolute error

Boot relative sguared error
Total MNumber of Instances

Detailed Accuracy By Class
FP Rate
0.00o
0.00o
0.00o

0.9%5
1.000
1.000

Heighted.ﬁvgl

== Confusion Matrixz =——

b <=-- classified as
a a = infected

1 S02s clean

Precision

9280

1
0.9574
0.0001

Becall
1.
1.
1.

9%_5352 %
0.0108 %

ROC Rrea PRC RArea
0.9%585
1.000

1.000

F-Measure
0._5597
1.000
1.000

ago
ago

ago 1.000

Class
infected
clean

Correctly Classified Instances
Incorrectly Classified Instances
Fappa statistic

Mean absolute error

Root mean sgquared error

BEelative absolute error

Root relatiwve sguared error
Total Number of Instances

Detailed Accuracy By Class
TP Rate
0.%5585

i1.000
1.040

FP Rate
o_0og
a._00s
a._0as

0.955
! i i 1.000
[Weighted RAwg. 1.000

Confusion Matrix ===
b <—— classified as

11 a = infected

€ | b = clean

Precision

Recall
0.
1.
1.

99 _9785 %
0.0215 %

ROC Area
1.000
1.000
1.000

PRC Area
0.554
1.000
1.000

F-Measure
0.9%585
1.000
1.000

885
aoo
aoo

Class
infected
clean

S0
Incorrectly Classified Instances 1
Eappa statistic

Mean absolute error

Root mean sgquared error

Belative absolute error

Boot relatiwve sguared error 1
Total Mumber of Instances 92

Correctly Classified Instances

== Detailed Accuracy By Class =——=

TP Rate
0.00o
i1.000
0.978

FP Rate
0.00o
1.000
0.578

Preci
0.000

H 0.597%
Weighted Awvg. 0.55%

Confusion Matrix ==
a b <—— classified as
o 134 | a = infected

a o087 | b = clean

87
54
1]
0.020%
0.144¢
50.5307
01 _0€1%
=h

sion
a
1
[a]

Becall
-aaoag
.0og
.97%

S97.59037 %
2.0503 %

MCC ROC Area
a._ooo 0.500
o.0o00 0.s00
o.0o00 0.s00

PRC Area
0.021
0.578
0.958

F-Measure
0_0oag
0.529
0.59e59

Class
infected
clean

FIGURE 17.
Ransomware,
PART, 10 Fold
Cross Validation
Results.

FIGURE 18.
Ransomware,
REPTree, 10 Fold
Cross Validation
Results.

FIGURE 19.
Ransomware,
Voted Perceptron,
10 Fold Cross
Validation Results.

Correctly Classified Instances
Incorrectly Classified Instances
Fappa statistic

Mean absolute error

Root mean sgquared error

Relative absolute error

Root relative sguared error
Total Number of Instances

=== Detailed Rccuracy By Class
{ TP Rate
0.55%9
i1._000
1.000

FP Rate
o000
i H H o_0olL
[Weighted Awg. 0._00l1

== Confusion Matrixz =——

a=
b =

1659159359
353

Recall
0.958
1.000
1.000

Precision
1.000
1._000
1._000

<—— classified as
inf
clean

ected

99_9979 %
0.0021 %

F-Measure
0.958
1.000
1.000

MCC

0.959
0.95%9
0.95%9

ROC Area
1.000
1.000
1.000

DPRC Area
1.000

1.

Class
infected
clean

Correctly Classified Instances
Incorrectly Classified Instances
Eappa statistic

Mean absolute error

Boot mean sguared error

Relative absolute error

Root relative sguared error
Total Number of Instances

=== Detailed Accuracy By Class
TP Rate
d.0d0
i1.000
0.583

FP Hate
d.0d0
1.000
0.583

Weighted.Avgl
Confusion Matrix =——

L

b =

96_510%
95.259594
16952292

Precision Recall
2 0.0d0
0.583 1.000
2 0.%83

classified as
a = infected
clean

F-Heasure
2

0.552

2

BOC Area
0.855
0.855
0.855

PRC RArea
0.084
0.558
0.583

Class
infected
clean

Correctly Classified Instances
Incorrectly Classified Instances
Fappa statistic

Mean absolute error

Root mean sguared error

Relative absolute error

Root relative sguared error
Total Number of Instances

== Detailed Accuracy By Class ——

TP Rate
0.%E8
i0.8€7
0.2&8

FP Rate
0.133
0.032
0.034

Weighted.nvgl

== Confusion Matrix =
a b

304 3137 a

111 14475740 b

Recall
0.%E8
0.8€7
0.2e8

Precision
a.11a
0_5585%
0.584

classified as
infected
clean

86.8337 %
13.1663 %

F-Measure
0.13&
0.528
0.51€

MCC

0.303
0.303
0.302

ROC Area
0.%81
0.%80
0.580

PRC Area
0_g&88
1.000
0.552

Class
infected
clean

FIGURE 20.
Combined,
Decision Table, 10
Fold Cross
Validation Results.

FIGURE 21.
Combined,
Logistic, 10 Fold
Cross Validation
Results.

FIGURE 22.
Combined,
NaiveBayes, 10
Fold Cross
Validation Results.

Correctly Classified Instances
Incorrectly Classified Instances
Fappa statistic

Mean absolute error

Root mean sguared error

Relative absolute error

Root relative sguared error
Total Number of Instances

== Detailed Accuracy By Class ——

TP Rate
1.000
i1.000
1.000

FP Rate
0.0d0
0.0d0
0.0d0

Neighted.hvg

Confusion Matrix

s——

b
Z |
2

2 1leT70c24E | b =

Precision
1.000
1.000
1.000

ROC Area
1.000
1.000
1.000

Recall
1.000
1.000
1.000

MCC

1.000
1.000
1.000

F-Measure
1.000
1.000
1.000

classified as
a = infected
clean

PRC Area
1.000
1.000
1.000

Class
infected
clean

Correctly Classified Instances
Incorrectly Classified Instances
Eappa statistic

Mean absolute error

Hoot mean sguared error

Relative absolute error

Boot relative sguared error
Total Number of Instances

=== Detailed Accuracy By Class
FP Rate
0.0d0
i i 0.0d0
Weighted Awvg. 0._000
== Confusion Matrix =——

b <
11 | a =
8 1€70€843 | b =

9%_5953 %
0.0001 %

0.00L1

0.0047 %

0.8071 %
leg52292

ROC Area
1.000
1.000
1.000

Recall
1.000
1.000
1.000 1.

MCC

1.000
1.000
1.000

F-MHeasure
1.000

Precision
1.000
1.000
1.000

classified as
infected
clean

PRC Area
1.000

1.000

Class
infected
clean

Correctly Classified Instances
Incorrectly Classified Imstances
Eappa statistic

Mean absolute error

Root mean sgquared error

Relative absolute error

Boot relative sguared error
Total Number of Instances

=== Detailed Accuracy By Class
TP Rate
o.0ooo0
i1.000
0.523

FP Rate

0.000
1.000

Weighted Awvg. 0.523

Confusion Matrix ——

50.8542
1l00.850¢6
lessz2232

ROC Area
.500
.500
.500

Precision Recall F-Measure
2 0.000 ?

0.983 1.000 0.5992

2 0.583 ?

ed as
= infected
clean

PRC Area
0.017
0.983
0.987

Class
infected
clean

FIGURE 23.
Combined, PART,
10 Fold Cross
Validation Results.

FIGURE 24.
Combined,
REPTree, 10 Fold
Cross Validation
Results.

FIGURE 25.
Combined, Voted
Perceptron, 10
Fold Cross
Validation Results.

FIGURE 26.
Trojan, Decision
Table, Testing

Correctly Classified Instances 10530507
Results.

Incorrectly Classified Instances €887
Eappa statistic —-0.0001
Mean absolute error 0.002%
Boot mean sguared error 0.0203
Total MNumber of Instances 10537354

=== Detailed Accuracy By Class =—=

TP Rate FP Rate Precision Recall F-Measure MCC ROC Rrea PRC Area Class

o.0ooo0 0.001 0.000 0.000 [ululs] —0.000 0.281 0.oo0 infected
: : i 0.59% 1.000 1.000 0.55%9 —0.000 0.281 1.000 clean

Weighted Awvg. 0.5955 1.000 1.000 0.55%5 - —0._00oa0 0.281 1.000

Confusion Matrixz =——

b “—— classified as
3 | a = infected
71 b = clean

a
o] Te
€118 1053050

Correctly Classified Instances 99_.9593 % FKSURE 27: .
Incorrectly Classified Instances 0.007 Trman,LOQBUC
Kappa statistic Testing Results
Mean absolute error 0.0134

Foot mean sguared error 0.0151

Total Number of Instances 10537354

=== Detailed Accuracy By Class =—=

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

0.000 0.000 0.000 0.000 0.000 0.0o0 0.578 0.00e infected
: : : 1.000 1.000 1.000 1.000 0.0o0 0.578 1.000 clean

Weighted Avg. - 1.000 1.000 1.000 1.000 0.0o0 0.578 1.000

Confusion Matrix
classified as

a = infected
b = clean

Correctly Classified Instances 10508€45
Incorrectly Classified Instances 287458
Fappa statistic -0.0001
Mean absolute error 0.0032
Eoot mean sguared error 0.044
Total Number of Instances 109373594

FIGURE 28.
Trojan,
NaiveBayes,
Testing Results.

=== Detailed Accuracy By Class =—=

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

0.000 0.0032 o.0o0 0.000 0.000 -0.000 0.437 o.000 infected
H H i 0.5937 1.000 1.000 0.957 0.599%5 -0.000 0.470 1.000 clean

Weighted Avg. 0.957 1.000 1.000 0.957 0.599%5 -0.000 0.470 1.000

onfusion Matrix ——
Conf HMat
<=— glassified as

2] Te a = infected
27580 1050864 b = clean

Correctly Classified Instances
Incorrectly Classified Instances

Eappa statistic

Mean absolute error

Boot mean sguared error

Total MNumber of

Heighted.nvg:

Instances

Detailed Accuracy By Class

TP Rate
0,000
i0.9384
0.984

-0o0ol1

-01sl

0.1271
105373594

BOC Area
0.452
0.452
0.452

FP Hate
0.01€
1.000
1.000

Becall
0.000
0.584
0.584

MCC

-0.001
—-0.001
—-0.001

F-Heasure
0.000
0.992
0.992

Precision
0.000
l.000
l.000

Confusion Matrix ==

<—— classified as

a = infected

b = clean

PRC RArea
0.0o00

1.000

Class
infected
clean

Correctly Classified Instances
Incorrectly Classified Instances
Eappa statistic

Mean absolute error

Boot mean sguared error

Total Number of Instances 10537
== Detailed Rccuracy By Class =——

Preci
a._aaa
1._00d
1._00d

TP Rate FP Rate
0.00o 0.01e

i i i0.584 1.000
Weighted Awg. 0.584 1.000
Confusion Matrixz =—

a <—— classified as

a

7 infected
174001 107626

| a =
| b =

b
&5
24

clean

98_4021 %
1.597% %
-0_0001
0.01&
0.1264
354

Becall
0.0d0
0.5384
0.5384

=

-0.001
-0.001
-0.001

ROC Area
0.452
0.452
0.452

F-Measure
0.00o
0.552
0.552

sion

PREC Area
0.0d0
1.000
1.000

Class
infected
clean

Correctly Classified Instances
Incorrectly Classified Instances
Eappa statistic

Mean absolute error

Hoot mean sguared error

Total Number of Instances 10937

Detailed Accuracy By Class
TP Rate
o.0o00

i1.000
1l.000

FP Rate
0.000
1.000
1.000

Preci
0.000

H i i 1.000
Weighted Awvg. 1.000
== Confusion Matrix ——

classified as

959_992 §
0,007 %

0.0001
0.00824
354

Recall
0.000
1.000
1.000

MCC ROC Area
o.0o00 0.s00
o.0o00 0.s00
o.0o00 0.s00

F-Measure
o000
1.000
1.000

sion

a = infected

b = clean

DPRC Area
0.000
1.000
1.000

Class
infected
clean

FIGURE 29.
Trojan, PART,
Testing Results.

FIGURE 30.
Trojan, REPTree,
Testing Results.

FIGURE 31.
Trojan, Voted
Perceptron,
Testing Results.

Correctly Classified Instances
Incorrectly Classified Instances
Fappa statistic

fean absolute error

Foot mean sguared error

Total MNumber of Instances

Detailed Rccuracy By Class
TP Rate
0.0d0

i1.000
0.5591

FP Rate
a.0oo
1.000
0.951

Heighted.ﬁvg

Confusion Matrix =——

a b
a 11473 | a =
0 1203780 | b = clean

C——

1203780

11473

u}
0.00%4
0.0s72

1215253

9% _055% %
0.944]1 %

Recall
0.00o
l.000
0.951

F-Heasure
a._aaa
0.995
0.53¢

Precision
0.0da
0.551
0.581

classified as
infected

ROC Area
0.387
0.387
0.387

PEC Area
0._00%
0.588
0.57%9

Class
infected
clean

Summary
Correctly Classified Instances
Incorrectly Classified Instances
Fappa statistic

Mean absolute error

Root mean sguared error

Total Number of Instances

== Detailed Accuracy By Class =——=

TP Rate
0.003
i0.378
0.9&8

FP Rate
0.022
0.557
[Weighted RAwvg. o.5Be8
Confusion Matrix —

-

b = clean

117&783

32470
-0_011%
0.0351
0.17&5

1215253

Recall
0.003
0.978
0.9&8

MCC

-0.013
-0.013
-0.01l3

F-Measure
0.002
0.984
0.575

Precision
0.001
0.950
0.%81

classified as
a = infected

ROC Area
0.1€1
0.355
0.353

PRC Area
0.010
0.987
0.578

Class
infected
clean

Correctly Classified Imstances
Incorrectly Classified Instances
Fappa statistic

Mean absolute error

Root mean squared error

Total Number of Instances

Detailed RAcocuracy By Class
TP Rate
0._000
i1.000
0.551

FP Rate
0._000
1.00a
0.5591

Weighted Awg
Confusion Matrix ——
a b

[a] 11472 |
0 1203780 |

L

clean

b =

599 0559 &
0.5441 %

1203780

11473

o]
0.00%94

Becall
0._000
1.000
0.551

MCC

a._ooo
a_ooo
a._ooo

F-Heasure
0._000
0._585
0_58&

Precision
0._000
0.5391
0.531

classified as
a = infected

ROC ALrea
o.372
a_500
0._45%

PRC RLrea
o._oo7
a.551
0.581

Class
infected
clean

FIGURE 32.
Botnet, Decision
Table, Testing
Results.

FIGURE 33.
Botnet, Logistic,
Testing Results.

FIGURE 34.
Botnet,
NaiveBayes,
Testing Results.

FIGURE 35.
Botnet, PART,
Testing Results.

== Summary =——

Correctly Classified Imstances 1203780 5959 _055% %
Incorrectly Classified Instances 11473 0.59441 %
Fappa statistic [a}

Mean absolute error

Root mean sguared error

Total Number of Instances

== Detailed Accuracy By Class =——=

| TP Rate FP Rate DPrecision Recall F-Heasure MCC ROC Rrea PRC Area Class

i0.Qoo o.0o00 0.000 0.000 0.0o0 o.0oo0 0.500 0.00%9 infected
i i ?l.ﬂﬂﬂ 1.000 0.551 1.000 0.535 o.000 0.500 0.5391 clean

Weighted Rwg. 0.551 0.5581 0.5881 0.%5391 0.53¢ o._0oo 0.500 0.%81

Confusion Matrixz =—=

a b <-- glassified as
[u] 11473 | a = infected
0 1203780 | b = clean

Summary ==

FIGURE 36.
Botnet, REPTree,
Testing Results.

Correctly Classified Instances 1203780 55.05559 %
Incorrectly Classified Instances 11473 0.5441 %
Eappa statistic [u}

Mean absolute error

Hoot mean sguared error

Total Number of Instances

=== Detailed Rccuracy By Class =—=

{ TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

io.ooo0 0.00a 0.00a o._0oo 0.000 0.00a -500 0._00% infected
i i El_DDD 1.000 0.%31 1.000 0.58385 0.00a -500 a._531 clean

Weighted Awg. 0.551 0.551 0.581 a.551 0.58¢ 0.0aa -500 a.581

Confusion Matrix —
a b “<—— classified as

a 11473 | a = infected
0 1203780 | b = clean

Correctly Classified Imstances 1203780 95 _0555 %
Incorrectly Classified Instances 11473 0.9441 %
Eappa statistic [u}

Mean absolute error

Boot mean sguared error a

Total Number of Instances

FIGURE 37.
Botnet, Voted
Perceptron,
Testing Results.

== Detailed Rccuracy By Class =——

{ TP Rate FP Rate DPrecision Recall F-Measure MCC ROC Area PRC Area Class

0.000 0.000 0.000 0.000 0.000 0000 0.500 0.00s infected
H i El.ﬂﬂﬂ l.000 0.5991 1.000 0.59595 o.000 0.500 0.551 clean

Weighted Awvg. 0.551 0.5591 0.531 0.551 0_58& o_0oo 0_500 0.581

Confusion Matrix =—=
a b <—- glassified as

1] 11473 | a = infected
0 1203780 | b clean

Correctly Classified Instances
Incorrectly Classified Instances
Eappa statistic

Mean absolute error

Boot mean sguared error

Total Number of Instances

=== Detailed Accuracy By Class =—=

TP Rate FP Rate Precision Recall F-Measure
0.000 0.000 o.000 o.0o0 0.000

i H H i 1.000 1l.000 0.877 1.000 0.528
Weighted Avg. 0.%77 0.877 0_554 oa.877 0_56€

Confusion Matrix ——
<—— classified as

a = infected
b = clean

0,000
0,000
0.000

ROC Area
0.247
0.247
0.347

PRC Area
o.oz2z
0.9&5
0.548

FIGURE 38.
Ransomware,
Decision Table,
Testing Results.

Class
infected
clean

Summary ==

Correctly Classified Instances
Incorrectly Classified Instances
Fappa statistic

Mean absolute error

Root mean sgquared error

Total Number of Instances

=== Detailed Rccuracy By Class =—=

TP BRate FP Rate Precision Recall F-Measure
0.000 0.000 0.000 0.000 0.000

i H i i1.000 1.000 0.5877 1.000 0.588
Weighted Awg. 0.877 0.577 0.554 0.577 0_5686

Confusion Matrix =
“—— classified as

a = infected
b = clean

ROC RArea
0.853
0.853
0_853

PRC Area
0.048
0.5590
0.%98%9

FIGURE 39.
Ransomware,
Logistic, Testing
Results.

Class
infected
clean

Summary ==

Correctly Classified Instances
Incorrectly Classified Instances
Fappa statistic

Mean absolute error

Foot mean sgquared error

Total Number of Instances

=== Detailed Rccuracy By Class =—=

TP Rate FP Rate Precision Recall F-Measure
0._000 o_0oo0 0.000 0.00a 0.00a
i i i 1.000 a.877 1.00a0 0.558
Weighted RAwvg. 0.577 0.554 0.577 0.5c€

== Confusion Matrix ——
Conf Mat
“—— classified as

a = infected
b = clean

0000

DRC Area
0.114
0.5390
0.570

FIGURE 40.
Ransomware,
NaiveBayes,
Testing Results.

Class
infected
clean

Correctly Classified Instances

Incorrectly Classified Instances

Fappa statistic]
Mean absolute error 0.023
Root mean sguared error 0.1518
Total Number of Instances 2300

=== Detailed Accuracy By Class =—=

FP Rate
0. 0.000
i1.000 1.000
0.877 a.877

Recall
0.000
1.000
0.877

MCC

0.000
0.000
0.000

F-Heasure
0.000
0.%88
O_SEE

Precision
0.000

H H H 0.877
Weighted Rwg. 0.554
Confusion Matrix ==

<—— classified as

a = infected
b = clean

ROC Area
0.500
0.500
0.500

PRC Area
o.o02z
0.8797
0.%555

FIGURE 41.
Ransomware,
PART, Testing
Results.

Class
infected
clean

Correctly Classified Instances

Incorrectly Classified Instances 53
Fappa statistic a
Mean absolute error 0.023
Root mean sguared error 0.1518
Total Number of Instances 2300

=== Detailed Accuracy By Class =—=

TP Rate
0.0aa
1,000
0.877

FP Rate
a.000
1.000
0.5877

Recall
0.0aa
l.000
0.877

MCC

0_oo00
0.000
0._0o0g

F-Measure
a.000
o.5es
0.5%e6

Precision
0._aoo
0.3977
0.554

Heigﬁted-ﬁvgl

Confusion Matrix =
<—— rclassified as
= infected
clean

ROC Area
0.500
0.500
0.500

PRC Area
0.023
0.5797
0.955

FIGURE 42.
Ransomware,
REPTree, Testing
Results.

Class
infected
clean

Summary ==

Correctly Classified Instances

Incorrectly Classified Instances 53
Fappa statistic a
Mean absolute error 0.023
Root mean sguared error 0.1518
Total Number of Instances 2300

Detailed Accuracy By Class =——
TP Rate
0.0an

i l.000
0.877

FP Rate
a.000
1.000
0.5877

Recall
0.0an
1.000
0.877

MCC

0._000
0000
0._0o0g

F-Measure
a.000
0.5es
0.5%e6

Precision
0._0oo
0.577
0.554

Heighted-ﬁvg
== Confusion Hatrix =—

<—— classified as
a = infected

b = clean

ROC Lrea
0.500
0.500
0.500

PRC Area
0.023
0.577
0.955

FIGURE 43.
Ransomware,
Voted Perceptron,
Testing Results.

Class
infected
clean

FIGURE 44.
Combined,
Decision Table,

Correctly Classified Instances 959_892¢ % Testing Results

Incorrectly Classified Instances 0.1074 %
Fappa statistic 0.345%5

Mean absolute error 0.004

Root mean sguared error 0_0Zed

Total Number of Instances 24248187

== Detailed Accuracy By Class ——

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

0.571 0.001 0.253 0.571 0_350 0.37% 0.59c4 0.520 infected
H H i 0.9335 0_425 1.000 0.59%5% 0.55%5 0.37% 0.5964 1.000 clean

[Weighted Awvg. 0.99% 0.42%5 0.99% 0.99% 0.599%5 0.37% 0.9c4 1.000

Confusion Matrix =——

classified as
a = infected
b = clean

Summary

FIGURE 45.
Combined,
Logistic, Testing
Results.

Correctly Classified Instances 24218030 99 _875¢€ %
Incorrectly Classified Instances 30157 0.1244 %
Eappa statistic 0.002e

Mean absolute error 0.0125

Boot mean sguared error 0.0432

Total Number of Instances 24242137

== Detailed Accuracy By Class =——

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

0.004 0.001 0.003 a_004 0.003 0.003 0.83¢ a.002 infected
H i i 0.995 0.9%9€ 0.593 0,559 0.953 0.0032 0.23¢ 1.000 clean

Weighted RAwvg. 0.9539 0.59%9€ 0.59%5 0.55%9 0.9539 0.0032 0.23¢ 0.55%9

Confusion Matrix —

classified as

a = infected
b = clean

Correctly Classified Instances 20487840 g94_.4523 %

Incorrectly Classified Instances 3760347 15.5077 % FIGURE 46
Eappa statistic 0.0011 Combined,
Mean absoclute error 0.154%5 vaeBaye&
Root mean sguared error 0.37¢6 Testing Results
Total Number of Instances 24242137

=== Detailed RAccuracy By Class =——

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

0.321 0.155 0.001 0.321 o.ooz2 0.010 0.7580 o.001 infected
H H i0.845 0.&75 1.00a0 0._545 0.51€ 0.01a 0.780 1.000 clean

Weighted Avg. 0.245 0.&7%9 0.593 0.245 0.915 0.010 0.780 0,559

Confusion Matrix —
a b classified as

3545 8346 a = infected
3752001 20483851 b clean

=—= Summary =—

24185517

58&70

Correctly Classified Imstances
Incorrectly Classified Instances
Eappa statistic

Mean absolute error

Boot mean sguared error

Total Number of Instances 24243187
== Detailed Rccuracy By Class =——

| TP Rate
0.831

. 0.5393
0.998

FP Rate
0.002
0_0&5
0.0&3

Precision
0_1&5
1.000
1.000

Weighted RAvg
= Confusion Matrix =——
a b <-— classified as

11443 s52 a = infected
57818 24178074 b = clean

Recall
0.531
a.558
0.59593

55.758 %
0_242

F-Measure
0.281
0.55%
0.5958

ROC Rrea
0_59c4
0_5c4
0.9c4

PRC Rrea
0.154
1.000
1.000

FIGURE 47.
Combined, PART,
Testing Results

Class
infected
clean

Summary ===

23535550

262237

Correctly Classified Instances
Incorrectly Classified Instances

Total Number of Instances 24242187

=== Detailed Accuracy By Class =—=

{ TP Rate
0.931
i0.98%
0.983

FP Rate
0.011
0_08e%
0.0es

Precision
0.042
1.000
0.559%

Weightedllvg

=== Confusion Matrix ===

; a b <—- classified as
11443 252 | a = infected
2E1385 23574507 | b = clean

Fappa statistic 0.0754
Hean absolute error 0.0108
Root mean sguared error 0.104

Recall
0.5931
0.58%
0.58%

58.59185 %
1.0215

F-Measure
o.o80
0.%595
0.594

%

ROC Area
0.9&0
0.%5&0
0.5&0

PRC Area
0.03%
1.000
0.595

FIGURE 48.
Combined,
REPTree, Testing
Results.

Class
infected
clean

Correctly Classified Instances
Incorrectly Classified Instances
Eappa statistic

Mean absolute error

Boot mean sguared error .
Total Number of Instances 24248187
== Detailed Accuracy By Class ——

TP Rate
0.000
1.000
0.335

FP Rate Precision
o.0o00 ?

1.000 0.95%9
0_55% Ed

Weighted.hvg
Confusion Matrix =
a b

o] 12255 |
0 24235852 |

<—— classified as
a = infected
b = clean

Becall
o.000
1.000
0_55%

9%.54393 %
0.0a507

F-Measure
?

1.000

Ed

%

PRC Lrea
0.001
0.5959%
0._%39%

FIGURE 49.
Combined, Voted
Perceptron,
Testing Results

Class
infected
clean

3) RANSOMWARE

As can be seen in Figures 38 - 43, none of the classifiers
correctly identify a single malware sample.

4) COMBINED

As shown in Figures 44 - 49, the combined data models start
to correctly classify samples. In particular the PART and
REPTree models perform very well with a relatively small
number of false positives. The NaiveBayes and Decision
Table perform reasonably as well.

5) EVALUATION

The test datasets provide an interesting outcome. You’ll note
that these performed incredibly poorly except for the
combined dataset which succeeded with certain classifiers.
This seems to be due to the lower amounts of data in the
training sets. Since there is less data, there is less process
diversity. This process diversity does not seem to be related
to malware types, e.g. botnets, ransomware, or trojans, either.
It seems that malware tends to share traits across families and
variants and training across these spreads provides a level of
robustness to the system that is demonstrated in the
combined data testing.

Note that the important factor here is low false positives.
The malicious samples are repeatedly taken which means
that even if a malware process is missed the first time, it can
be caught in the future. This means that even if the rate of
flagging malware correctly is low, it doesn’t mean that it
wouldn’t perform well in practice as long as its false positive
rate is low.

Another point to make is that over the course of the testing
there were two models that performed consistently better
than the other models. These were the PART and REPTree
classifiers. It is worth noting that these are both tree based
classifiers which shows that trees can be used for simple
identification of malicious process attributes. The other win
here is that trees are fairly efficient meaning that in an
identification system, they would not add much overhead.

C. PERFORMANCE

The last point to address here is the speed performance. The
process monitor script was run on an Intel Core i7-6700k
4GHz processor. The machine was running 385 processes
and the average time to iterate over all of these processes in
the script was 24.748 seconds. This means that the overhead
to run the process capture script is roughly 64 ms per process
running on a given machine. This would of course be added

to the amount of time necessary to classify a given instance.
This would be dependent on the machine learning algorithm
chosen, but would be fairly insignificant. This means that this
system could be run repeatedly and quite frequently to ensure
that malware is caught almost immediately upon entering a
system.

In addition, the models themselves are anywhere from 2 to
10 kilobytes meaning that the memory needed to use them
for classification is fairly low. This means that it could be run
on low memory systems as well.

VI. SUMMARY

This section provides a brief summary of what was
accomplished in this paper. First, a system was proposed that
allows for cross platform evaluation of malicious process
behavior. While this was tested on a Windows system, the
solution only relies on a system’s ability to support the
process statistics gathering library SIGAR and Java, both of
which are widely supported. The malware flagging system is
also fairly low power and can be run as often as needed so it
can be run more frequently to catch malware more quickly or
can be run less frequently for better performance which
would allow it to work on IOT and Android devices as well
as personal computers.

The second contribution was that it evaluated multiple
machine learning models on 4 different datasets and showed
which models performed the best. This demonstration
showed that tree based models seem to provide the most
accurate classification method for this data.

It also showed that this identification could be performed
quickly and efficiently. Due to the statistics being gathered
being fairly accessible and the simplicity of the solution, it
doesn’t cause a large amount of overhead on the system. This
means that the classification can be done as often as needed.

Lastly, it showed that having malicious data spread across
different variants and families provides a robust system
capable of flagging a wide variety of malware. This was
shown based on the inaccuracy of the classifiers when used
on individual malware families when compared with the
success of the classifiers when trained on cross family
malware datasets and evaluated on diverse variants. It also
had fairly low false positive rates indicating that the attributes
chosen in the data were fairly indicative of malicious
processes and had little overfitting.

VII. FUTURE WORK

22

A few ideas will now be proposed for how to increase the
effectiveness of this malware detection system.

The first is taking into account some standard telltale signs
of malware. For instance, malware is typically installed to the
“AppData” or “tmp” folder and provides a decent estimator
of malicious behavior. It was not included in this
implementation since it is operating system specific. That
said it could be used in future implementations by simply
checking a variety of different common malware installation
folder paths. Another example would be utilizing processes’
tree structures. Malware typically spins off multiple
processes to accomplish its goals so using the tree structure
as part of the input to the classifier may help. Both these and
other signs could be used as part of the dataset that the model
is trained on to increase accuracy.

The second improvement that could be made is the usage
of behavior over time. This system simply checks a process’
statistics at a given time. This could be made significantly
more robust by taking multiple samples for regression
classification. This modifies the machine learning to account
for time. Another possible implementation of time based
behavior identification that wouldn’t require modification of
the existing classifier would be to check for sequential flags
on a process. In other words, if a process is flagged as
malicious by the model multiple times in succession, there is
a high likelihood of it being malicious. This modification of
the system would reduce the likelihood of false positives.
This could be used to balance false positives with malware
identification.

Lastly, this paper was designed on the prospect of making
adaptable dynamic systems that are cross platform
compatible. The reality, though, is that most platforms
already have static systems in place. It might be beneficial to
tie into these systems and leverage their abilities with the
strengths of a dynamic system. The dynamic system could
also be used to find potentially malicious processes to send
samples of to the antivirus manufacturer for addition to the
malware signature list. This would be a means of obtaining a
large number of malicious samples that would take less time
to process due to the high malicious classification accuracy
of the dynamic system.

REFERENCES

[1] Cloonan, J. (2018). Advanced Malware Detection - Signatures vs.
Behavior Analysis. [online] Infosecurity Magazine. Available at:
https://www.infosecurity-magazine.com/opinions/malware-
detection-signatures/ [Accessed 10 Apr. 2018].

[2] leeexplore.ieee.org. (2018). Behavior-Based Malware Analysis and
Detection - IEEE Conference Publication. [online] Available at:
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6128413&ta
g=1 [Accessed 10 Apr. 2018].

[3] Pdfs.semanticscholar.org. (2018). Behaviour Based Malware
Detection. [online] Available at:
https://pdfs.semanticscholar.org/08ec/24106e9218c3a65bc3e16dd8
8dea2693e933.pdf [Accessed 10 Apr. 2018].

[4] leeexplore.ieee.org. (2018). Malware Detection with Deep Neural
Network Using Process Behavior - IEEE Conference Publication.
[online] Available at:
https://ieeexplore.ieee.org/document/7552276/ [Accessed 10 Apr.
2018].

[5] TUDelft. (2018). Using endpoints process information for malicious
behavior detection. [online] Available at:
https://repository.tudelft.nl/islandora/object/uuid:e1678077-9056-
47ac-82e6-2762bfb40a63?collection=education [Accessed 10 Apr.
2018].

[6] Cse.psu.edu. (2018). pBMDS: A Behavior-based Malware Detection
System for Cellphone Devices. [online] Available at:
http://www.cse.psu.edu/~sxz16/papers/pBMDS.pdf [Accessed 10
Apr. 2018].

[7] Pdfs.semanticscholar.org. (2018). In-execution dynamic malware
analysis and detection by mining information in process control
blocks of Linux OS. [online] Available at:
https://pdfs.semanticscholar.org/6¢c0e/9f196a82098804ed8f95a6fbe
1a3886f15ch.pdf [Accessed 10 Apr. 2018].

[8] Arts.units.it. (2018). Spotting the Malicious Moment: Characterizing
Malware Behavior Using Dynamic Features. [online] Available at:
https://arts.units.it/retrieve/handle/11368/2889183/137832/2016-
IWSMA-SpottingMaliciousMoment.pdf [Accessed 10 Apr. 2018].

[9] Onlinelibrary.wiley.com. (2018). Smart malware detection on Android.
[online] Available at:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/sec.1340 [Accessed
10 Apr. 2018].

[10] Milosevic, J., Malek, M. and Ferrante, A. (2018). A Friend or a Foe?
Detecting Malware using Memory and CPU Features. [online]
Scitepress.org. Available at:
http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?I
D=+yi+YAt4Z80=&t=1 [Accessed 10 Apr. 2018].

[11] Hyperic SIGAR. (2018). SIGAR. [online] Available at:
https://github.com/AlexYaruki/sigar [Accessed 10 Apr. 2018].

[12] Cs.waikato.ac.nz. (2018). Weka 3 - Data Mining with Open Source
Machine Learning Software in Java. [online] Available at:
https://www.cs.waikato.ac.nz/ml/weka/ [Accessed 10 Apr. 2018].

[13] GitHub. (2018). ytisf/theZoo. [online] Available at:
https://github.com/ytisf/theZoo [Accessed 11 Apr. 2018].

23

