A Proof of Goldbach Conjecture Xuan Zhong Ni, Campbell, CA, USA

(July, 2020)

Abstract

In this article, we use method of a modified sieve of Eratosthenes to prove the Goldbach Conjecture.

We use p_{i} for all the primes, $2,3,5,7,11,13, \ldots . ., \mathrm{i}=1,2,3, \ldots .$. ,

We use a modified sieve of Eratosthenes similarly to the method in my paper ${ }^{1}$.

Let $p_{m} \sharp=\prod_{i=1 \ldots m} p_{i}$,

From the paper, we have the following, when sieve upto p_{m}, the total number of the remaining numbers $\left\{R_{j}^{m}\right\}$, inside of $\left(0, p_{m} \sharp\right)$ is $\prod_{i=1 \ldots m}\left(p_{i}-1\right)$,

These remaining numbers can be paired up as ($\mathrm{x}, p_{m} \sharp-\mathrm{x}$), here x is a remaining number.

So there are total $\prod_{i=1 \ldots m}\left(p_{i}-1\right) / 2$ pairs of the remaining number pairs.

In general not all the remaining number pairs are primes. We need to sieve more larger primes to get all primes.

Let p_{M} be the least prime satisfied the $p_{m} \sharp<p_{M}^{2}$, then we sieve upto p_{M} for the period $\left(0, p_{m} \sharp\right)$, then all those still remaining numbers are primes and remaining number pairs are all primes.

From the paper we have the following,

Theorum 1;

For any number d with $\left(\mathrm{d}, p_{m} \sharp\right)=1$, no common factor with $p_{m} \sharp$, when sieve upto p_{m}, the total number of the remaining numbers inside period (0 , $\left.p_{m} \sharp / d\right)$ is equal approximately to $\prod_{i=1 \ldots m}\left(p_{i}-1\right) / \mathrm{d} \pm 1$,

When sieve upto p_{M}, the total number of the remaining numbers inside period $\left(0, p_{m} \sharp\right)$ are those remaining numbers when sieve upto p_{M-1} in the same period $\left(0, p_{m} \sharp\right)$ subtract those remaining numbers when sieve upto p_{M-1} in the period $\left(0, p_{m} \sharp / p_{M}\right)$ multiplied by p_{M}.

We use $\{(a, b)\}^{M}$ to denote those remaining numbers in period (a, b) when sieve upto p_{M}. We have,

$$
\begin{equation*}
\left\{\left(0, p_{m} \sharp\right)\right\}^{M}=\left\{\left(0, p_{m} \sharp\right)\right\}^{M-1}-\left\{\left\{\left(0, p_{m} \sharp / p_{M}\right)\right\}^{M-1} \times p_{M}\right\}, \tag{1}
\end{equation*}
$$

and so on, we have,

$$
\begin{equation*}
\left\{\left(0, p_{m} \sharp\right)\right\}^{M-1}=\left\{\left(0, p_{m} \sharp\right)\right\}^{M-2}-\left\{\left\{\left(0, p_{m} \sharp / p_{M-1}\right)\right\}^{M-2} \times p_{M-1}\right\}, \tag{2}
\end{equation*}
$$

and
$\left\{\left(0, p_{m} \sharp / p_{M}\right)\right\}^{M-1}=\left\{\left(0, p_{m} \sharp / p_{M}\right)\right\}^{M-2}-\left\{\left\{\left(0, p_{m} \sharp / p_{M} p_{M-1}\right)\right\}^{M-2} \times p_{M-1}\right\}$,
and so on and on, we will have,

$$
\begin{equation*}
\left\{\left(0, p_{m} \sharp\right)\right\}^{M}=\sum_{d \mid P} \mu(d)\left\{\left\{\left(0, p_{m} \sharp / d\right)\right\}^{m} \times d\right\}, \tag{4}
\end{equation*}
$$

here $\mathrm{P}=\prod_{i=m+1 \ldots M} p_{i}$.

There are no remaining number in period $\left(0, p_{m} \sharp / d\right)$ when $p_{m} \sharp / d<1$, and only one remaining number, 1 , when $1<p_{m} \sharp / d<p_{m}$,

We have,

$$
\begin{equation*}
\left|\left\{\left(0, p_{m} \sharp\right)\right\}^{M}\right|=\sum_{d \mid P} \mu(d)\left|\left\{\left(0, p_{m} \sharp\right)\right\}^{m}\right| / d \pm E R_{m} \tag{5}
\end{equation*}
$$

we have,

$$
\begin{equation*}
\left|\left\{\left(0, p_{m} \sharp\right)\right\}^{M}\right|=\left[\prod_{i=1 \ldots m}\left(p_{i}-1\right)\right] \times\left[\prod_{i=m+1, \ldots M}\left(1-1 / p_{i}\right)\right] \pm E R_{m} \tag{6}
\end{equation*}
$$

here, the $E R_{m}$ is the possible error,

$$
E R_{m}=\left|\left\{d ; d \mid P, p_{m}<d<p_{m-1} \sharp\right\}\right|,
$$

$$
\begin{gather*}
E R_{m}=\left|\left\{\left(0, p_{m-1} \sharp\right)\right\}^{m}\right|-\left|\left\{\left(0, p_{m-1} \sharp\right)\right\}^{M}\right| \tag{7}\\
E R_{m}=\prod_{i=1 \ldots m}\left(p_{i}-1\right) / p_{m}-\left[\prod_{i=1 \ldots . . m-1}\left(p_{i}-1\right)\right] \times\left[\prod_{i=m, \ldots . M}\left(1-1 / p_{i}\right)\right]+E R_{m-1} \tag{8}
\end{gather*}
$$

We have,

$$
\begin{equation*}
E R_{m}=\sum_{l=1, m}\left[\prod_{i=1 . . . l}\left(p_{i}-1\right) / p_{l}\right] \times\left[1-\prod_{i=l+1, . . M}\left(1-1 / p_{i}\right)\right], \tag{9}
\end{equation*}
$$

Then we have,

Theorum 2;
when sieve upto p_{M} for the $\left(0, p_{m} \sharp\right)$, the total number of the remaining primes inside $\left(0, p_{m} \sharp\right)$ is equal approximately to $\prod_{i=1 \ldots m}\left(p_{i}-1\right) \prod_{j=m+1 \ldots M}(1-$ $\left.1 / p_{j}\right) \pm E R_{m}$,
here $E R_{m}$ as above.
Similarly process is used for the remaining number pairs we have,
here we modify the Eratosthenes sieve as we sieve all the primes, p, of $\left\{p_{m+1}, \ldots p_{M}\right\}$, for each pair, $\left(\mathrm{x}, p_{m} \sharp-\mathrm{x}\right)$, we check both $\mathrm{x}=0$, or $\mathrm{x}=p_{m} \sharp$, \bmod p.

Theorum 3;
when using this modified sieve upto p_{M} for all the former remaining number pairs in the $\left(0, p_{m} \sharp\right)$, the new total number of the remaining number pairs inside $\left(0, p_{m} \sharp\right)$ is equal approximately to $\prod_{i=2 \ldots m}\left(p_{i}-1\right) / 2 \prod_{j=m+1 \ldots M}(1-$ $\left.2 / p_{j}\right) \pm E R_{m}$,
and here $E R_{m}$ is the same as above.

Now we will have at least two remaining number pairs of ($\mathrm{x}, p_{m} \sharp-\mathrm{x}$), and there is at least one prime pair, ($\mathrm{p}, \mathrm{p}^{\prime}$), with $\mathrm{p}+\mathrm{p}^{\prime}=p_{m} \sharp$

In general, a large enough even number, N can be,
$\mathrm{N}=\prod_{i=1, . . m} p_{l_{i}}^{j_{i}}$,
here $j_{i} \geq 1$, with $l_{1}=1$,
Let set P_{1} be $\left\{p_{l_{i}}\right\}$, set P_{2} be $\left\{p ; p<p_{l_{m}}, p \notin P_{1}\right\}$,
As before,
Let p_{M} be the least prime satisfied the $N<p_{M}^{2}$, first we use Eratosthenes sieve to sieve all the p in set P_{1}, for the period $(0, \mathrm{~N})$, the total number of the remaining numbers is equal to $\prod_{i=1, . . m}\left(p_{l_{i}}-1\right) \times N_{0}$,
here, N_{0} is, $\prod_{i=1, . . m} p_{l_{i}}^{\left(j_{i}-1\right)}$
They are in pairs as ($\mathrm{x}, \mathrm{N}-\mathrm{x}$),

Let set $P_{3}=P_{2} \cup\left\{p_{l_{m}+1}, \ldots ., p_{M}\right\}$,

Using modified Eratosthenes sieve as above by checking both $\mathrm{x}=0$, or $\mathrm{x}=\mathrm{N} \bmod \mathrm{p}$, for all $p \in P_{3}$,
sieve all the p of P_{3}, we will have the total number of the remaining number pairs is equal to,
$\prod_{i=1, . . m}\left(p_{l_{i}}-1\right) \times N_{0} / 2 \times \prod_{p \in P_{3}}(1-2 / p) \pm E R$,
Using the same procedure we get the ER as following,

$$
\begin{equation*}
\sum_{k=1, m} \sum_{n=1, . . j_{k}} \prod_{i=1, . . k} p_{l_{i}}^{\left(j_{i}-1\right)} \times\left[\prod_{i=1 . . . k}\left(p_{l_{i}}-1\right) / p_{l_{k}}^{n}\right] \times\left[1-\prod_{i=k+1, . . m}\left(1-1 / p_{l_{i}}\right) \times \prod_{p \in P_{3}}(1-1 / p)\right] \tag{10}
\end{equation*}
$$

It is obvious that for a large enough even N , there are at least two remaining prime pairs of which $(1, \mathrm{~N}-1)$ might be one of them.

So there are at least one prime pair ($\mathrm{p}, \mathrm{p}^{\prime}$) as a remaining pair, and $p+p^{\prime}=N$.

This proves the Goldbach Conjecture.
Reference:

1. Vixra; Xuan Zhong Ni, "Prime and Twin Prime Theory", 2020
