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Abstract. The paper presents a theorem when a prime number is not a
congruent number. This theorem does not add to the present knowledge of
congruent primes since all primes fulfilling the conditions of the theorem
can already be classified into congruent and noncongruent numbers, but
the proof of the theorem has certain own interest and this is why I decided

to write it into a paper.
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1 Introduction

Consider an elliptic curve of the form:
vy’ =2 —d’z (1)

where d is an integer. A rational solution (z,y) to the elliptic curve (1) is a solution
where = and y are rational numbers.

The substitution z = d(a + b) /b, y = 2d*(a + ¢)/b* changes y? = 2> — d?z to
a? + b? = ¢? with ab = 2d. Then 4d? = a®(c?> — a?). Integers d that give rational
number solutions to a? + b? = ¢2, ab = 2d are called congruent numbers. If d is
a congruent number the elliptic curve (1) has a rational solution where y is not
zero. In that case it has infinitely many rational solutions.

If there is a solution for d = s2, then there is a solution for d = 1 because
2

the substitution y = s3y', x = s%z' changes y2 = 2% — d?z to y'? = 2 — 2'. It



is known that every d = s2 is a congruent number. The case where d is a prime
number is amost solved.

For notations the following concepts suffice: The condition that the integer a
divides integer b is written as a|b. If p > 2 is a prime, the cyclic group of integers

modulo p is denoted by Z, and Z; = {1,...,p— 1}. The set of quadratic residues

modulo p is the set
QR, = {z € Z}|3y € Z} such that y* = z (mod p)}.
The set of quadratic nonresidues modulo p is the set
QNR, = {z € Zjle ¢ QRy}.

Let us start by two very simple lemmas.

Lemma 1. Let ¢ =a? +b%, a,b,c € Z, then Ih,m, e € IN such that
1 1
a=them , b= iih(m2 —e?), c= iih(m2 + e%).

Proof. Without loss of generality we can assume that a,b,c € N. We can write
2 — b = (c—b)(c+b) =a> Let h = ged(c+ b,c — b). Then there exists m and
e, m > e, ged(m,e) = 1, such that ¢ + b= hm?, ¢ — b = he?. The claim follows. o

With Lemma 1 we can characterize congruent numbers.

Lemma 2. Letd € Z, d > 0. Rational solutions (x,y) with x # 0,y # 0 to

are of the form




where k,j,e,m € N, m > e, ged(m,e) = 1, gcd(k,j) = 1, satisfy
kE\Zm?— e
- (2_) . @)
j em

Proof. Leta:,yEQ,x#O,y#O.Letuswriteaz%+1€Q,B=%GQ.

Solving (10) for = and solving z from the definition of a yields

B d

T - a-1

Writing 8 = f for some k,j € N gives

1 k2 (2d]2)2 + (k2)2
2= aod 722d '

)

Asy #0, k # 0. By Lemma 1, a1 2 € @ if and only if there exist h,e,m € N,
ged(e,m) = 1, m > e, such that

2

1 . 1 .
k% = hem , 2dj% = §h( —-€e%), ¢c= §h(m2 + ).

If em = 0, then k = 0 and y = 0. This solution gives j = 2dj?

22 i e =20 =0
a12 = 2d]2_ , A1 = 4,2 = U,

but we have excluded this case in the assumptions. Since em # 0, let us write

b=k Eliminating h yields

em

d= <£)2m2—e :
2j em

2
c= %(m2 +e?).



Simplifying a; 2 yields

_ 2 2 2 2
a1,2—m2_62 (m e’ —2em £ (m +e)),
le.,
2m 2e
o = Qg = —
m+e’ m—e
d m+e m—e
Tl = =d ,$2:—d )
o —1 m-—e m+e

k em

2
_ 2_ (FY _
y=a .= (%) —aa_" .

This gives the claim. o

As two examples of Lemma, 2

3 \%92-12
d_5_(ﬁ) 9-1

2 1p2 2
d—7— (24) 167 -9
2-5 16-9

are both congruent numbers. Notice that ged(k,j) = 1 but it is allowed that 2|k.

If d is a square, there are no rational solutions to (1) with y # 0. There are
the three solutions (0,0), (d,0), (—d,0) to (1), so the number of rational solutions
of (1) is finite, the rank of the elliptic curve is zero.

In the next theorem gives a set of values where d is a prime number and (1)
has no rational solutions, i.e., the elliptic curve has rank zero. The case of prime
numbers d is rather well known: if p = 5 (mod d) or p = 7 (mod d) the number
d is a congruent number and there are solutions to (1). If p = 3 (mod d) there
are no solutions and d is not a congruent number. The only case remaining is
p=1 (mod d). For that case it is known that e.g. p = 41 is a congruent number,
while e.g. p = 17 is not.

The next theorem does not solve the problem for any prime p that is one

modulo eight because if p =1 (mod 8) it is necessarily true that —1 € QR,, i.e.,



—1 € @R, is equivalent with the condition that 4|(p — 1) and if p = 1 (mod d),
then 8/(p — 1). The theorem does prove e.g. that p = 19 is not a congruent
number, but as 19 = 3 (mod d) this is known. Yet, the method of this proof
seemed interesting enough to me in order to be written down. The method may
generalize to other numbers than primes. The primality condition is used only in

a few places. The main idea is to exclude branches from a recursion.

Theorem 1. Let d > 3 be a prime such that —1 € QN Ry and 2 € QRNj.
The equation (2) in Lemma 2 does not have solutions k,j,m,e € IN where

ged(m,e) =1, ged(k,j) =1, m > e > 0.

Proof. We write (2) with my, e;

d:(’“)”ﬁ“ff 3)

2_j ermq

If dlm; then dle; and ged(ma,e1) # 1, thus d fmq and d fe;. If d|k? then since d
is a prime d|k. It follows that k = dk; and as gcd(k,2j) = 1 holds d f2j. Thus

(2j)*mye; = dki(m?T — €})

which is not possible as the left side is not divisible by d. Thus d fk*. Therefore
djm? — €3.

If 2 fk we convert (3) into the form

k\> st
d={-] —— 4
(5) = g
by the substitution m; = m+e, e; =m—e,i.e., 2m =mi +e1, 26 = m; —e;y. As
mie; = (m+e)(m—e) = m*—e? holds em = L(my +e1)(m1 —ey). As 4|(m? —e})
in (3) if 2 fk it follows that one of my + e; or my — e; is even. If so, they are

both even and 2|m; + e1, 2|m; — e; and m,e are integers. As ged(my,e;) = 1,



ged(my +e1,my —er) = 2. Then ged(m, e) = ged(((m1+e1)/2)((m1—e1)/2)) = 1.

Since m1 > e; > 0 holds m > e > 0.

If 2|k then the substitution is m = my +e;1, e = my —e;. Then m, e are integers
and m > e > 0. In this case 2 /j gecause gcd(k,j) = 1. Therefore 2 f(m? — €3.
It follows that gdc(m,e) = ged(my + e1,m1 — e1) = 1. We get the same form (4)

since me = m? — €2 and m? — e? = 4mye;.

Then d|em and j2|em. Let us write (4) as

§i2(m + e)(m — e)d = k*me. (5)

Since ged(m,e) = 1 it follows that ged(m + e,m) = 1. Indeed, if m + e = 7,

m = cor for some r, ¢y, co € IN, then

c1eor = cam + coe = cym = (¢ — cz)m = tege

= m|cy = Ja € IN such that ¢ = am
>m=amr =>ar=1=r=1.

Similarly, ged(m +e,e) = 1.

Since ged(k, j) = 1 it follows from (4) that k2 = m?2 — e2. Therefore (4) implies
that dj2 = em. As dj? = em and gcd(e,m) = 1 there is one of the cases: either

2

m = ds?, e = t* for some s,t > 0 or m = 52, e = dt’.

As k2 = (m + e)(m — e) and ged((m + €)(m — €)) < 2 we have two cases
cases: either m + e = ¢? and m — e = ¢2 for some c1,c2 > 0 or m + e = 2¢? and
m—e=2c.

We have four cases in total.

Casel.m=ds®>,e=t*, m+e=c}, m—e=c} Then

m—e=s’d—t>=c.



The equation yields —1 = (c2t™!)? (mod d) which is impossible since —1 €

QNR,.

Case 2. m =ds®, e =t?, m+e=2c?, m — e = 2c3. Then

s2d+t2 =2¢2 | s%d—t? = 2c2.

Multiplying the modular equations

t? = 2¢} (mod d) ,—t* = 2¢5 (mod d)

yields —1 = (2c1c2t2)? (mod d) which is impossible since —1 € QN Ry.

2 2

Case3. m=s% e=dt?, m+e=c?, m—e=c3. Then

s2+t?d=c?, s> —t*d=c3.

Thus

2_ 2 2
25 =ci + ¢

SO

45% = cf + 2c1co + cg + c% —2c160 + cg
(25)2 = (c1 + 2)? + (c1 — e2)%.

It follows from Lemma 1 that 3h',e’,m' € IN, ged(m',e') = 1 such that
[y . 1 ! 2 2
cl—l—czzhem,cl—cQ:ih(m —e),

1
25 = Eh'(m'2 +e?).

Solving ¢y, ¢, s yields

1
= Zh'(Ze'm' +ml2 _ 6'2),



1
co = Zh'(Ze'm' +el2 _ ml2)’

1 ! 2 12

s=—h'(m" + €').
4

Since
2t’d = — 3 = (¢1 — ¢2)(c1 + ¢2)
we get

1
d= Eh'ze'm'(m& _ 612)

i.e.

e (h'e’m')2 (m/2 _ 6'2)

2t e'm’
Removing the greatest common divisor of h'e'm’ and ¢ this equation can be written

as

2551 €i+1Mit1

d= ( ki1 )2 (m3y, — €§+1)_ ®)

As ged(m’,e') = 1 and we made ged(k,j) = 1, equation (8) is is of the same form

g (FY mi—ed) _ (k) (mi-e})
245 €;m; 25 exmy

We have a recursion that in each step reduces the numbers m;,e; to numbers

as (3)

m;y1,€;4+1 that are of the order of square root of m;,e;.

Case 4. m = 5%, e = dt?, m+e = 2¢?, m — e = 2c3. We can select ¢; > ¢z > 0.
Then

2 +t2d =2c} , s* — t?d = 2c3.

Thus

sP=c+ck dt*> =c2 —c5 = (c; — c2)(c1 + ). 9)

Let us notice that m + e = 2¢2 and

1 = ged(m + e, €) = ged(2¢2, dt?) = ged(cy,t) = 1, ged(2,t) =1



1 = ged(m — e, €) = ged(2¢3, dt?) = ged(ca,t) = 1.

First we exclude one case in the second equation of (9). If t > 1 and ¢; + ¢o =

ait and ¢; — ¢o = agt for some a;, a2 € IN, then

2¢1 = (a1 + )t =>t=1,2¢; = a1 + ag,

202 = (Oél —az)t=>t= 1,201 =01 — Q9.

Thus, dt? = ¢2 — 3 = ajast?. Tt follows that d = ajas and as d is prime and
necessarily a; > as it follows that oy =d, as = 1. Then ¢y =d+1and ¢co =d—1.
Consequently s? = ¢ + ¢2 = 2(d? — 1) is even, so m is even. Since s2 + dt> = 2¢?
it would follow that ¢ is also even as d is odd, but ¢ = 1 in this case. We have a

contradiction.

Thus, in (9) must be one of the three cases

t2|(01 +e)=> @ —c)ld=>a—-—c=d=> 2 =c¢1 + ¢,

or

t2|(Cl —02) = (Cl +C2)|d=> c1+cp = d= t2 = —Co,

or

In the first case

200 =2 +d>0, 2co =t2—d > 0.

In the second case

20, =d+t2>0, 2co=d—t*> > 0.
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In both of these two cases we can derive in a similar way:
s2=c+c2 = (25)% = (2¢1)% + (2¢2)?

yields
(25)* = (d+t*)? + (d — t*)%. (10)

By Lemma, 2 there exist h',e’,m’' € IN such that
d+t*=hem' , d—t* = %h'(m'2 —e'?).
The first equation implies that d fh'. Thus
4d = B'((m' +¢')* — 2¢"?)
ie,as ' Z 0 (mod d)
2= (m'"? +¢€?)%e/? (mod d) (11)

which is a contradiction since 2 € QN R,4. There remains the case ¢t = 1. Then

2¢? = 5% +d, 2¢3 = s? — d. Instead of (10) we get
(26 = (d+ ) + (d = )7

The contradiction (11) comes in the same way with ¢ replaced by s. This means

that Case 4 is not possible.

Because Cases 1, 2 and 4 are not possible, only Case 3 is left. Case 3 gives a

recursion formula. The values h',m’, e’ in Lemma 1 satisfy

e a _c—b
m' b+ec a
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h =ged(d+c,b—c)

giving a? = ¢? — b2. The numbers h/,m’, e’ can be chosen to be positive and on
the order of a, b, ¢. Thus, h',m/', e’ in (8) are of the order ¢, c2. The numbers ¢y, co
are of the order v/m, 1/e. Therefore in each step the numbers m;, e; get smaller,
they are reduced to the order of their square roots. Consider the problem when

the recursion stops.
Let us look at an example of d = 5. Then
2 g2 2
-1
doso (B) e
2-2 9-1
We have m; = 9,e; = 1,k = 3,5 = 2. We can do the first step and find m =

3\* 5-4
1=5=(3) 5o

Identifying k2 =32 =52-42=9,j2d=4-5=20=5-4=me, m = ds> = 5-12,

5,e =4 and

e=t2=22  m+e=5+4=32=c and m —e =5—4 =12 = ¢} shows that
the logic in the lemma is correct. We have Case 1, but for d = 5 the conditions
of the lemma are not fulfilled: —1 € QN Rs. This is why Case 1 does not give a
contradiction. What happens in Case 1 is that when we remove the term dt? in a

case resembling (6) we do not get (6) but
2t = ¢ — &

Therefore we do not get (7) which can be inserted to the equation to Lemma 1

for calculation of the numbers h',m/, e’

Let us look at another example, that of d = 7. Here —1 € QN R; and the Case

24 \? 162 — 92
d:7:<_) 16" - 9°

is not 1.

2.5 16-9
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We have m; = 16,e1 =9,k =24, =5. Wefindm =16+9=25,e=16—-9=17.

2
d=7=(H) BT
5) 227

Thus

Here k2 = 242 = 576 = 252 — 72 =m?2 — €2, j2d = 25-7=175=25-7 = me,
m=3s52=5%e=dt?=7-12,, m+e=25+7=232=2-42 = 2¢2 and
m—e=25—7=18 = 2-32 = 2¢. The Case is 4. We notice that t> = 1 and
c1 =4, co = 3, thus we have the case t = 1. Then s?+d = 5247 = 32 = 242 = 2¢?
and 82 —d =152 —-7=18=2-32 = 2c2. We get

(25)> =100 = 64+ 36 = (2¢1)> + (2c2)> = (B> + 7)2 + (52 — 7)°

and therefore find the numbers h’,m’,e’ for 102 = 82 + 62. The numbers are

h' = ged(10 46,10 — 6) = 4, ¢’ = 1, m’ = 2. Thus
1
d+t*=Hem' =T+1=8,d—1"=h(m"”—€%) =6

are true and

4d = h'((m' +€')* — 2¢/?) =28 = 4- (32 - 2).

We get the modular equation 32 = 2 mod (7), which violates the assumption

2 € QN Ry, but indeed 2 € Q R;. Therefore for d = 7 we do not get a contradiction.

The way the lemma works is that in (2) the numbers m; and e; must be
squares m; = s2, e; = t3 so that k? can cancel them. The condition —1 € QN Ry

excludes the larger branch (s3 +t7) of
mi —ei = (s1 +17)(s7 — t7)

by (s2 +t?) =0 (mod d) being impossible.
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Therefore 4d|(m? —e?) leads to 4d|(s? —t2). The condition 2 € QN R, excludes
Case 4 and leaves only Case 3 which gives a recursion. Thus, the numbers m;, e;

get smaller.

If there is a congruent number d with —1 € QN Ry, the recursion must continue
until it stops in some way and not to a contradiction, but the recursion does not
stop and continues to a contradiction. At each stage 4d|(m? — €?) or d|(m? — €?)
depending on if k; is odd or even. The numbers m; and e; become smaller on each

step. Finally we must have 4d = m? — e? or d = m? — e?.

Changing variables in (2) to m = (m; +€;)/2, e = (m; —e;)/2 if k is odd and
m =m; + e;, e = m; — e; if k is even we get
k*  me

= or_e (12)

When the recursion has reached 4d = m? — e? or d = m? — €2 the number j = 1.
In (12) necessarily k> = m?e? and consequently d = me. As d is prime either
m=d,e=1orm =1, e =d. As in Cases 1 and 2 the choice m = d leads to
—1 € QR and is impossible. Thus m = 1 and ¢t = d, but then m? —e2 < 0 and

d > 0 is negative. This is a contradiction. The recursion leads to a contradiction

and the claim of the lemma follows. o

There are primes d filling the conditions of the lemma: for d = 19 holds
—1€ QNng and 2 € QNng.

While working with the Birch and Swinnerton-Dyer conjecture in 2010 T de-
rived in [1] a theorem of congruent primes. The theorem (Lemma 11) in [1] was
never needed for the result it gives to primes, but as an easy case of the proof
method that I hoped to generalize to other d. Now I have rewritten the 2010 paper
and do not use the method of Lemma 11. Yet, it has some own interest in the
proof method. Therefore I moved it into this short paper. There were some typos

in [1] in the proof of Lemmas 10 and 11, which are Lemma 2 and Theorem 1 in
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this paper. Now the errors are fixed. The method of the proof does work. Maybe

some application for the method will be found later.
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