A RELATION BETWEEN SQUARE ROOT AND NATURAL NUMBER

Satyam Roy

UNIVERSITY OF BURDWAN
University Institute of Technology, The University of Burdwan, Department-electronics and communication engineering

Abstract

. discussion about a special relationship between square root and a rational number. the result is only valid in the real domain R , for any natural number N

Keywords: square root, number,mathematics,theory,lemma.

1 Introduction

let a and b are real numbers belongs to set of natural number. and let x is a natural number greater than one then

$$
\begin{equation*}
\frac{a}{b}<\sqrt{x}, \text { provided } \sqrt{x}<\frac{a+b x}{(a+b)} \tag{1}
\end{equation*}
$$

1.1 proof of the inequality

$$
\begin{equation*}
\text { let } \quad c=a / b \quad \text { and } \quad x=y^{2} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\frac{a+b x}{(a+b)}-\sqrt{x}=\frac{c+y^{2}}{(c+1)}-y \tag{3}
\end{equation*}
$$

$$
\frac{1}{(c+1)}\left(\left(c+y^{2}\right)-(c+1) y\right)=\frac{1}{(c+1)}(y(y-c)-(y-c))
$$

$$
\begin{gather*}
\frac{1}{(c+1)}((y-1)(y-c)) \tag{5}\\
\text { nowif } \frac{(a+b x)}{(a+b)}>\sqrt{x} \quad \text { therefore, }\left((\sqrt{x}-1)\left(\sqrt{x}-\frac{a}{b}\right)\right)>0 \tag{6}
\end{gather*}
$$

1.2 references

classic in inequalities is Inequalities by G. H. Hardy, J. E. Littlewood, G. Plya
Geometric Inequalities by Nicholas D. Kazarinoff
Advanced Olympiad Inequalities: Algebraic Geometric Olympiad Inequalities: Alijadallah Belabess

