On the relationship between prime numbers and double factorials

Juan Moreno Borrallo

June 25, 2020

email: juan.morenoborrallo@gmail.com

Abstract

In this paper it is studied the relationship between prime numbers and double factorials, obtaining some new theorems regarding the caracterization of prime numbers.

1 Introduction

One of the oldest and most famous theorems regarding the characterization of prime numbers is Wilson's theorem, which states that a natural number n > 1 is a prime number if and only if the product of all the positive integers less than n is one less than a multiple of n. That is, if we denote as (n-1)! the mentioned product, and with P the set of prime numbers, Wilson's theorem states that

 $n \in P \Leftrightarrow (n-1)! \equiv -1 \, (mod \, n)$

In this paper, we expose some interesting results regarding the relationship between prime numbers and double factorials, which leads to a better characterization of prime numbers $p \equiv 1 \pmod{4}$ and $p \equiv 3 \pmod{4}$.

2 Prime numbers and double factorials

Double factorial or semifactorial of a positive integer n (denoted by n!!) is the product of all the integers up to n that have the same parity (odd or even) as n; that is,

$$n!! = n(n-2)(n-4)...$$

Once defined double factorials, we can expose the first theorem of this paper:

Theorem 1. Let it be n = 4k + 3 some positive integer; then, we can affirm that

$$n \in P, n \equiv 3 \pmod{4} \Leftrightarrow \left\{ \begin{array}{c} (n-1)!! \equiv \pm 1 \pmod{n} \\ and \\ (n-2)!! \equiv \pm 1 \pmod{n} \end{array} \right\}$$
(1)

Proof.

Let it be some odd positive integer n = 2k + 1.

For the shake of clarity, from now on we will establish the following change of variables:

- a = (n-1)!!
- b = (n-2)!!

To express that some positive integer n divides some other positive integer m, we will use the notation $n \mid m$.

From the definitions of factorials and double factorials, it can be seen that

$$(n-1)! = ab$$

Therefore, from Wilson's theorem we get that for every $n \in P$

$$n \mid ab+1$$

Other hand, expanding (n-1)!!, and grouping under P(n) all the terms divisible by n, we have that

$$(n-1)!! = (n-1)(n-3)(n-5)\dots = P(n) + (-1)^{\frac{n-1}{2}}(n-2)!!$$

Therefore, for all odd positive integers it holds that

- $n \mid a b$ for odd positive integers n = 4k + 1
- $n \mid a + b$ for odd positive integers n = 4k + 3

Other hand, by Wilson's theorem, if $n \in P$, then $n \mid ab+1$. Therefore, if $n \in P$ and $n \equiv 3 \pmod{4}$, we have that

$$n \mid ab - a - b + 1$$

$$n \mid ab + a + b + 1$$

$$ab - a - b + 1 = (a - 1)(b - 1)$$

 $ab + a + b + 1 = (a + 1)(b + 1)$

We get that if $n \in P$ and n = 4k + 3, then $n \mid a - 1$ or $n \mid b - 1$, and $n \mid a + 1$ or $n \mid b + 1$. In fact, as $n \mid a + b$, if $n \mid a - 1$, then it follows that $n \mid b + 1$; and if $n \mid b - 1$, then it follows that $n \mid a + 1$.

The biconditionality derives from the fact that, if n is some odd composite number, then $(n-1)!! \equiv (n-2)!! \equiv 0 \pmod{n}$. A proof can be found in Aebi et al.[1].

It can be known if $n \mid a-1$ or $n \mid b-1$ based on the fact that if $n \in P$ and $n \equiv 3 \pmod{4}$, then $(p-1)!! \equiv (-1)^v \pmod{p}$, where v denotes the number of nonquadratic residues j with $2 < j < \frac{p}{2}$, as showed in Aebi et al[2].

It follows from Theorem 1 that

$$(p-2)!! \equiv (-1)^{\nu-1} \, (mod \, p) \tag{2}$$

Taking into account Theorem 1, we can derive the second theorem of this paper:

Theorem 2.

$$n \in P, n \equiv 1 \pmod{4} \Leftrightarrow \left\{ \begin{array}{ccc} (n-1)!! \equiv k \pmod{n} & \mid k \mid > 1 \\ and & \\ (n-2)!! \equiv k \pmod{n} & \mid k \mid > 1 \end{array} \right\}$$
(3)

Proof.

If $n \in P$ and $n \equiv 1 \pmod{4}$ we have that $a \equiv -k \pmod{n}$, or which is the same, $n \mid a + k$. As $n \mid a - b$, we get that $n \mid b + k$. Subsequently, if $n \in P$ and $n \equiv 1 \pmod{4}$,

$$(n-1)!! \equiv (n-2)!! \equiv -k \pmod{n}$$
 (4)

 \mathbf{As}

Also, if $n \in P$ and $n \equiv 1 \pmod{4}$ we have by Wilson's theorem that $n \mid ab + 1$, and thus we have that $n \nmid a$; other hand, if n is some odd composite number, then, as already mentioned, $a \equiv b \equiv 0 \pmod{n}$; subsequently, and taking into account Theorem 1, we guarantee the biconditionality of Theorem 2.

References

- Aebi, C. and Cairns, G., "Wilson theorems for double-, hyper-, and superfactorials" (2013). p.7, Theorem 6.
- [2] Aebi, C. and Cairns, G., "Wilson theorems for double-, hyper-, and superfactorials" (2013). p.5, Theorem 3.