On the relationship between prime numbers and double factorials

Juan Moreno Borrallo

June 25, 2020
email: juan.morenoborrallo@gmail.com

Abstract

In this paper it is studied the relationship between prime numbers and double factorials, obtaining some new theorems regarding the caracterization of prime numbers.

1 Introduction

One of the oldest and most famous theorems regarding the characterization of prime numbers is Wilson's theorem, which states that a natural number $n>1$ is a prime number if and only if the product of all the positive integers less than n is one less than a multiple of n. That is, if we denote as $(n-1)$! the mentioned product, and with P the set of prime numbers, Wilson's theorem states that

$$
n \in P \Leftrightarrow(n-1)!\equiv-1(\bmod n)
$$

In this paper, we expose some interesting results regarding the relationship between prime numbers and double factorials, which leads to a better characterization of prime numbers $p \equiv 1(\bmod 4)$ and $p \equiv 3(\bmod 4)$.

2 Prime numbers and double factorials

Double factorial or semifactorial of a positive integer n (denoted by $n!!$) is the product of all the integers up to n that have the same parity (odd or even) as n; that is,

$$
n!!=n(n-2)(n-4) \ldots
$$

Once defined double factorials, we can expose the first theorem of this paper:

Theorem 1. Let it be $n=4 k+3$ some positive integer; then, we can affirm that

$$
n \in P, n \equiv 3(\bmod 4) \Leftrightarrow\left\{\begin{array}{c}
(n-1)!!\equiv \pm 1(\bmod n) \tag{1}\\
\text { and } \\
(n-2)!!\equiv \pm 1(\bmod n)
\end{array}\right\}
$$

Proof.

Let it be some odd positive integer $n=2 k+1$.

For the shake of clarity, from now on we will establish the following change of variables:

- $a=(n-1)!$!
- $b=(n-2)!$!

To express that some positive integer n divides some other positive integer m, we will use the notation $n \mid m$.

From the definitions of factorials and double factorials, it can be seen that

$$
(n-1)!=a b
$$

Therefore, from Wilson's theorem we get that for every $n \in P$

$$
n \mid a b+1
$$

Other hand, expanding $(n-1)!!$, and grouping under $P(n)$ all the terms divisible by n, we have that

$$
(n-1)!!=(n-1)(n-3)(n-5) \ldots=P(n)+(-1)^{\frac{n-1}{2}}(n-2)!!
$$

Therefore, for all odd positive integers it holds that

- $n \mid a-b$ for odd positive integers $n=4 k+1$
- $n \mid a+b$ for odd positive integers $n=4 k+3$

Other hand, by Wilson's theorem, if $n \in P$, then $n \mid a b+1$. Therefore, if $n \in P$ and $n \equiv 3(\bmod 4)$, we have that

$$
\begin{aligned}
& n \mid a b-a-b+1 \\
& n \mid a b+a+b+1
\end{aligned}
$$

As

$$
\begin{aligned}
& a b-a-b+1=(a-1)(b-1) \\
& a b+a+b+1=(a+1)(b+1)
\end{aligned}
$$

We get that if $n \in P$ and $n=4 k+3$, then $n \mid a-1$ or $n \mid b-1$, and $n \mid a+1$ or $n \mid b+1$. In fact, as $n \mid a+b$, if $n \mid a-1$, then it follows that $n \mid b+1$; and if $n \mid b-1$, then it follows that $n \mid a+1$.

The biconditionality derives from the fact that, if n is some odd composite number, then $(n-1)!!\equiv(n-2)!!\equiv 0(\bmod n)$. A proof can be found in Aebi et al.[1].

It can be known if $n \mid a-1$ or $n \mid b-1$ based on the fact that if $n \in P$ and $n \equiv 3(\bmod 4)$, then $(p-1)!!\equiv(-1)^{v}(\bmod p)$, where v denotes the number of nonquadratic residues j with $2<j<\frac{p}{2}$, as showed in Aebi et al[2].

It follows from Theorem 1 that

$$
\begin{equation*}
(p-2)!!\equiv(-1)^{v-1}(\bmod p) \tag{2}
\end{equation*}
$$

Taking into account Theorem 1, we can derive the second theorem of this paper:

Theorem 2.

$$
n \in P, n \equiv 1(\bmod 4) \Leftrightarrow\left\{\begin{array}{cl}
(n-1)!!\equiv k(\bmod n) & |k|>1 \tag{3}\\
\text { and } & \\
(n-2)!!\equiv k(\bmod n) & |k|>1
\end{array}\right\}
$$

Proof.

If $n \in P$ and $n \equiv 1(\bmod 4)$ we have that $a \equiv-k(\bmod n)$, or which is the same, $n \mid a+k$. As $n \mid a-b$, we get that $n \mid b+k$. Subsequently, if $n \in P$ and $n \equiv 1(\bmod 4)$,

$$
\begin{equation*}
(n-1)!!\equiv(n-2)!!\equiv-k(\bmod n) \tag{4}
\end{equation*}
$$

Also, if $n \in P$ and $n \equiv 1(\bmod 4)$ we have by Wilson's theorem that $n \mid a b+1$, and thus we have that $n \nmid a$; other hand, if n is some odd composite number, then, as already mentioned, $a \equiv b \equiv 0(\bmod n)$; subsequently, and taking into account Theorem 1, we guarantee the biconditionality of Theorem 2.

References

[1] Aebi, C. and Cairns, G., "Wilson theorems for double-,hyper-, and superfactorials" (2013). p.7, Theorem 6.
[2] Aebi, C. and Cairns, G., "Wilson theorems for double-,hyper-, and superfactorials" (2013). p.5, Theorem 3.

