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Abstract 

 Finding a latent code that can generate 

specific data by inverting a generative model is 

called latent code recovery (or latent vector 

recovery). When performing gradient descent 

based latent recovery, the probability that the 

recovered latent code was sampled from a 

latent random variable can be very low. To 

prevent this, latent regulation losses or element 

resampling methods have been used in some 

papers. 

 In this paper, when the latent random variable 

is an IID (Independent and Identically 

Distributed) random variable and performing 

gradient descent-based latent code recovery, 

we propose statistical distance latent regulation 

loss to maximize the probability that the latent 

code was sampled from the latent random 

variable. The statistical distance latent 

regulation loss is the distance between the 

discrete uniform distribution, assuming each 

latent code element has the same probability 

and one-dimensional distribution that each 

element of the latent random variable follows 

in common. Since the statistical distance latent 

regulation loss considers all elements 

simultaneously, it maximizes the probability 

that the latent code was sampled from a latent 

random variable. 

 Also, we propose the latent distribution 

goodness of fit test, an additional test that 

verifies whether the latent code is sampled 

from the latent random variable. This additional 

test verifies whether all recovered latent codes’ 

elements’ distribution follows one-dimensional 

distribution that each element of the latent 

random variable follows in common when the 

latent random variable is an IID random variable. 

Passing the latent distribution goodness of fit 

test does not mean that the latent codes are 

recovered correctly, but when the latent codes 

are recovered correctly, the latent distribution 

goodness of fit test should be passed. 

 Compared with other latent regulation losses 

or element resampling methods, only latent 

code recovery using the statistical distance 

latent regulation loss could recover the correct 

latent code with high performance in the 

gradient descent-based latent code recovery. 

 

 

 

 

 

 

 

mailto:jeongik.jo.01@gmail.com
mailto:jeongik.jo.01@gmail.com


1. Introduction 

 Generator 𝐺 of a generative model like GAN 

maps latent random variable 𝑍 to data random 

variable 𝑋. In general, latent random variable 𝑍 

follows a simple probability distribution such as 

𝑈(𝑎, 𝑏)𝑑𝑧  or 𝑁(𝜇, 𝜎2)𝑑𝑧 , and data random 

variable 𝑋 follows the probability distribution 

of the complex data to be trained. 𝑑𝑧 is the 

dimension of a latent random variable. Finding 

the ideal latent code 𝑧∗ that can generate a 

data 𝑥 which is sampled from the data random 

variable 𝑋 by inverting the trained generator 

𝐺  is called latent code recovery (or latent 

vector recovery). 

 In this paper, when the latent random variable 

𝑍 of generator 𝐺 is an IID random variable and 

performing gradient descent-based latent code 

recovery, we propose the statistical distance 

latent regulation loss to maximize the 

probability that the latent code 𝑧𝑝  was 

sampled from the latent random variable 𝑍 . 

The statistical distance latent regulation loss is 

the distance between the discrete uniform 

distribution, assuming that each element of the 

latent code 𝑧𝑝 has the same probability and 

one-dimensional distribution that each element 

of the latent random variable 𝑍  follows in 

common. Since the statistical distance latent 

regulation loss considers all elements 

simultaneously, it maximizes the probability 

that the latent code 𝑧𝑝 was sampled from a 

latent random variable 𝑍. 

 Also, we propose the latent distribution 

goodness of fit test, an additional test that 

verifies whether the latent code 𝑧𝑝 is sampled 

from the latent random variable 𝑍 . This 

additional test verifies whether all recovered 

latent codes’ elements’ distribution follows 

one-dimensional distribution that each element 

of the latent random variable 𝑍  follows in 

common when the latent random variable 𝑍 is 

an IID random variable. Passing the latent 

distribution goodness of fit test does not mean 

that the latent codes are recovered correctly, 

but when the latent codes are recovered 

correctly, the latent distribution goodness of fit 

test should be passed.  

 Compared with other latent regulation losses 

or element resampling methods, only latent 

code recovery using the statistical distance 

latent regulation loss could recover the correct 

latent code with high performance in the 

gradient descent-based latent code recovery. 

 

2. Related Works 

 There are gradient descent-based methods [1, 

2, 3, 4, 5], encoder-based methods [6, 7, 8, 9, 

10], and hybrid methods [19, 20] for latent code 

recovery.  

 The encoder-based method requires 

additional encoder training for latent code 

recovery. Also, when latent code recovery is 

performed on unseen data [24], adversarial 

attacked data [21], or abnormal data [22], the 

encoder-based method may not show good 

performance. Instead, the encoder-based 

method is much faster in inference than the 

gradient descent-based method. 

 The gradient descent-based method is slower 



than the encoder-based method but is more 

robust to unseen data or out-of-distribution 

data such as adversarial attacked data or 

abnormal data. 

 The hybrid method roughly estimates the 

latent code 𝑧𝑝  using an encoder, and then 

estimates the more accurate latent code 𝑧𝑝 

through gradient descent method. 

 Gradient descent-based latent code recovery 

is a method of repeatedly performing gradient 

descent on latent code 𝑧𝑝  to reduce 

reconstruction loss 𝐿𝑟𝑒𝑐 , which is an error 

between generated data 𝐺(𝑧𝑝) and input data 

𝑥. The following function shows the gradient 

descent-based latent code recovery [5] process. 

 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑙𝑎𝑡𝑒𝑛𝑡_𝑐𝑜𝑑𝑒_𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦(𝑥, 𝐺, 𝑛, 𝑜𝑝𝑡):   

    𝑧𝑝 ← 𝑖𝑛𝑖𝑡( ) 

    𝑟𝑒𝑝𝑒𝑎𝑡 𝑛 𝑡𝑖𝑚𝑒𝑠:  

        𝐿𝑟𝑒𝑐 ← 𝑑𝑖𝑓𝑓 (𝑥, 𝐺(𝑧𝑝)) 

 𝐿 ← 𝐿𝑟𝑒𝑐  

        𝑧𝑝 ← 𝑧𝑝 + 𝑜𝑝𝑡 (−
∆𝐿

∆𝑧𝑝
)  

    𝑟𝑒𝑡𝑢𝑟𝑛 𝑧𝑝 

Fig.1 Gradient descent-based latent code 

recovery function 

𝑖𝑛𝑖𝑡 is a function that initializes the values of 

𝑧𝑝 . 𝑛  is the number of times to perform 

gradient descent. 𝑜𝑝𝑡  is an optimizer that 

performs gradient descent. 𝑑𝑖𝑓𝑓 is a function 

that measures the difference between two data. 

In [5], the performance when using different 

𝑑𝑖𝑓𝑓  functions was compared. 𝐿𝑟𝑒𝑐  is the 

reconstruction loss. 𝐿 is the total loss. Through 

the above function, the latent code 𝑧𝑝  that 

minimizes the reconstruction loss 𝐿𝑟𝑒𝑐 for the 

data 𝑥 can be found. 

 However, it cannot be said that the latent code 

𝑧𝑝 found correctly represents data 𝑥, except for 

general problems in gradient descent 

optimization (e.g., local optimum problem). 

Since generator 𝐺 is not trained to generate 

out-of-distribution data, there is always a 

tendency to generate data random variable 𝑋. 

Therefore, 𝑃(𝑍|𝑧𝑝) (the probability that the 

recovered latent code 𝑧𝑝  was sampled from 

the latent random variable 𝑍) can be very low. 

For example, the following figure is an image 

generated by the generator of GAN that trained 

MNIST handwriting data with latent random 

variable 𝑍~𝑈(−1,1)256. 

 

Fig.2 Generated data by GAN trained with 

latent random variable 𝑍~𝑈(−1,1)256 



The FID [11] between the test MNIST images 

and generated images through this GAN is 

5.64053. FID indicates how close the generated 

data random variable 𝐺(𝑍)  and the data 

random variable 𝑋  are. Therefore, if the 

generator 𝐺 generates in-distribution data well, 

it will have a low FID. 

 When 𝑍′~𝑈(−10,10)256  is input to this 

trained generator 𝐺 , the following data is 

generated. 

 

Fig.3 Generated data by GAN with input 

𝑍′~𝑈(−10,10)256 

You can see that many data looks like in-

distribution data. When the input is 

𝑍′~𝑈(−10,10)256 , the FID between the 

generated MNIST image and the test MNIST 

image is 40.521896. That is, generator 𝐺  of 

trained GAN tends to generate in-distribution 

data even for latent code 𝑧𝑘 with low 𝑃(𝑍|𝑧𝑝). 

Therefore, 𝑃(𝑍|𝑧𝑝) can be very low for a latent 

code 𝑧𝑝 that is a local optimum or a global 

optimum that sufficiently minimizes the 

reconstruction loss 𝐿𝑟𝑒𝑐 .  

 Latent code 𝑧𝑝 with low 𝑃(𝑍|𝑧𝑝) cannot be 

considered to represent the data 𝑥 correctly. 

Such latent code 𝑧𝑝  may cause problems in 

performing data interpolation [23] or data edit 

[24] using latent code. Therefore, an additional 

term is needed to maximize 𝑃(𝑍|𝑧𝑝)  when 

performing gradient descent-based latent code 

recovery.  

 To maximize 𝑃(𝑍|𝑧𝑝) , [1, 2] added latent 

regulation loss to loss 𝐿, and [3, 4] resampled 

some elements of latent code 𝑧𝑝  after each 

gradient descent. 

 The following function shows latent code 

recovery using latent regulation loss [1, 2]. 

 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑙𝑎𝑡𝑒𝑛𝑡_𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦(𝑥, 𝐺, 𝑛, 𝑜𝑝𝑡):   

    𝑧𝑝 ← 𝑖𝑛𝑖𝑡( ) 

    𝑟𝑒𝑝𝑒𝑎𝑡 𝑛 𝑡𝑖𝑚𝑒𝑠:  

 𝐿𝑟𝑒𝑐 ← 𝑑𝑖𝑓𝑓 (𝑥, 𝐺(𝑧𝑝))  

        𝐿 ← 𝐿𝑟𝑒𝑐 + λ𝑙𝑟𝐿𝑙𝑟  

        𝑧𝑝 ← 𝑧𝑝 + 𝑜𝑝𝑡 (−
∆𝐿

∆𝑧𝑝
)  

    𝑟𝑒𝑡𝑢𝑟𝑛 𝑧𝑝  

Fig.4 Latent code recovery function with a 

latent regulation loss 

𝐿𝑙𝑟 is the latent regulation loss, and λ𝑙𝑟 is the 

latent regulation loss weight, respectively.  

 In the paper [1], z score square latent 

regulation loss was used when the latent 

random variable 𝑍~𝑁(𝜇, 𝜎2)𝑑𝑧 . 



𝐿𝑙𝑟 = (
𝑧𝑝 − 𝜇

𝜎
)
2

 

However, z score square latent regulation loss 

maximizes not 𝑃(𝑍|𝑧𝑝), but ∑ 𝑃(𝑍[𝑖]|𝑧𝑝[𝑖])
𝑑𝑧
𝑖=1 . 

𝑧𝑝[𝑖]  is 𝑖 -th element of 𝑧𝑝 , and 𝑍[𝑖] is 𝑖 -th 

element of 𝑍 . Therefore, correct latent code 

recovery cannot be achieved with z score 

square latent regulation loss. 

 In the paper [2], the fool discriminator latent 

regulation loss was used. 

𝐿𝑙𝑟 = 𝐿𝑎𝑑𝑣
𝑔

 

𝐿𝑎𝑑𝑣
𝑔

 is the adversarial loss of generator 𝐺. For 

example, if GAN was trained with the 

adversarial loss of LSGAN [13], then 𝐿𝑙𝑟 =

(𝐷 (𝐺(𝑧𝑝)) − 1)
2

. 

𝐷  is a trained discriminator. However, fool 

discriminator latent regulation loss does not 

maximize 𝑃(𝑍|𝑧𝑝), and there is no guarantee 

that that the adversarial loss 𝐿𝑎𝑑𝑣
𝑔

 of generator 

𝐺  is minimized when 𝑃(𝑍|𝑧𝑝)  is maximized. 

Moreover, since discriminator 𝐷  is used to 

calculate the latent regulation loss 𝐿𝑙𝑟 , it 

requires much additional computation. 

 The following function shows latent code 

recovery using element resampling [3, 4]. 

 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑙𝑎𝑡𝑒𝑛𝑡_𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦(𝑥, 𝐺, 𝑛, 𝑜𝑝𝑡):   

    𝑧𝑝 ← 𝑖𝑛𝑖𝑡( ) 

    𝑟𝑒𝑝𝑒𝑎𝑡 𝑛 𝑡𝑖𝑚𝑒𝑠:  

        𝐿𝑟𝑒𝑐 ← 𝑑𝑖𝑓𝑓 (𝑥, 𝐺(𝑧𝑝)) 

 𝐿 ← 𝐿𝑟𝑒𝑐  

        𝑧𝑝 ← 𝑧𝑝 + 𝑜𝑝𝑡 (−
∆𝐿

∆𝑧𝑝
) 

 𝑧𝑝 ← 𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑧𝑝)  

    𝑟𝑒𝑡𝑢𝑟𝑛 𝑧𝑝  

Fig.5 Latent code recovery function with 

element resampling 

𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔  is a function that is resampling 

specific elements of latent code 𝑧𝑝 from latent 

random variable 𝑍. In the paper [3], when latent 

random variable 𝑍~𝑈(𝑎, 𝑏)𝑑𝑧 , boundary 

resampling was proposed in which all elements 

of latent code 𝑧𝑝  out of range [𝑎, 𝑏]  is 

resampled from 𝑈(𝑎, 𝑏)  was proposed. 

However, boundary resampling maximizes 

∑ 𝑃(𝑍[𝑖]|𝑧𝑝[𝑖])
𝑑𝑧
𝑖=1  like z score square, not 

𝑃(𝑍|𝑧𝑝). 

 In the paper [4], when the latent random 

variable 𝑍~𝑁(𝜇, 𝜎2)𝑑𝑧 , stochastic resampling 

was proposed in which each element of the 

latent code 𝑧𝑝 is stochastically resampled from 

𝑁(𝜇, 𝜎2). Each element is resampled according 

to the probability function proposed in the 

paper and the value of 𝑧𝑝[𝑖]. The closer 𝑧𝑝[𝑖] 

to 𝜇, the lower the probability of resampling. 

For stochastic resampling, the following two 

resampling probability functions are used. 

𝑓𝑙𝑐(𝑧𝑝) =
1

1 + 𝑒−𝑎(|𝑧𝑝|−𝑏)
 

𝑓𝑡𝑐(𝑧𝑝) =

{
 

 
 
𝑒−

𝑎2

2

𝑒−
𝑧𝑝
2

2

 𝑖𝑓 |𝑧𝑝| < 𝑎 

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑓𝑙𝑐  is a logistic cutoff function, and 𝑓𝑡𝑐  is a 

truncated normal cutoff function. The output of 

each function is the probability of resampling. 

In the above equation, for convenience, 

𝑍~𝑁(0, 12)𝑑𝑧  is assumed. When 𝑍~𝑁(𝜇, 𝜎2) , 



use 
𝑧𝑝−𝜇

𝜎
 instead of 𝑧𝑝 . Stochastic resampling 

maximizes ∑ 𝑃(𝑍[𝑖]|𝑧𝑝[𝑖])
𝑑𝑧
𝑖=1 but does not 

maximize 𝑃(𝑍|𝑧𝑝) , because the resampling 

probability decreases as each element of the 

latent code 𝑧𝑝 is closer to 𝜇. 

 

3. Statistical distance latent regulation loss  

 In this paper, to maximize 𝑃(𝑍|𝑧𝑝)  , we 

propose a statistical distance latent regulation 

loss, a latent regulation loss that can be used 

when the latent random variable 𝑍 is an IID 

random. The statistical distance latent 

regulation loss is the distance between the one-

dimensional distribution 𝐴 that each element 

of the latent random variable 𝑍  follows in 

common ( 𝑍~𝐴𝑑𝑧 ) and the discrete uniform 

distribution 𝑆 , which assumes that each 

element of the latent code 𝑧𝑝 has the same 

probability. The statistical distance latent 

regulation loss is as follows. 

𝑃𝑆(𝑥) = {

1

𝑑𝑧
 𝑖𝑓 𝑥 ∈ 𝑧𝑝 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝐿𝑙𝑟 = 𝐷𝑖𝑠𝑡(𝑃𝐴, 𝑃𝑆) 

𝐷𝑖𝑠𝑡 is a function that calculates the statistical 

distance between two distributions. 𝑃𝐴 is the 

probability density function of distribution 𝐴 . 

𝑃𝑆  is the probability mass function of the 

discrete uniform distribution created by the 

latent code 𝑧𝑝. 

 Unlike most existing methods that 

independently consider each element of latent 

code 𝑧𝑝 , since statistical distance latent 

regulation loss considers all elements of latent 

code 𝑧𝑝  simultaneously, 𝑃(𝑍|𝑧𝑝)  can be 

maximized. Also, since statistical distance latent 

regulation loss can be used when the latent 

random variable 𝑍 is an IID random variable, it 

can be used when 𝑍~𝑈(𝑎, 𝑏)𝑑𝑧 , 𝑍~𝑁(𝜇, 𝜎2)𝑑𝑧 , 

or any distribution 𝑍~𝐴𝑑𝑧 . 

 The following table.6 summarizes the 

conditions required for each latent regulation 

loss or resampling method. 

 

Table.6 Conditions of 𝑍 required for each latent regulation loss or resampling method

“Z~ALL” in the table above means that the 

latent random variable 𝑍  can be used 

regardless of the distribution and “Z~IID” 

means that it can be used when latent random 

variable 𝑍 is an IID random variable. 

4. Latent distribution goodness of fit test 

 The latent code 𝑧𝑝  with low reconstruction 

loss 𝐿𝑟𝑒𝑐 is not always the ideal latent code 𝑧∗. 

To verify whether the latent code 𝑧𝑝 is sampled 

from the latent random variable 𝑍, we propose 

Z~ALL Z~IID Z~N Z~U

Statistical distance O O O

Z score square O

Fool discriminator O O O O

Boundary resampling O

Stochastic resampling O



latent distribution goodness of fit test. 

Suppose that the latent random variable 𝑍 

follows a specific distribution 𝐴𝑑𝑧  and that 

latent code recovery is ideally performed for 𝑘 

data. At this time, the distribution of all 

elements of all recovered latent codes (𝑘 × 𝑑𝑧 

elements), will follow distribution 𝐴 . Latent 

distribution goodness of fit test verifies whether 

these all elements follow the distribution 𝐴. If 

the distribution of all elements of all latent 

codes does not follow distribution 𝐴, the latent 

code cannot be said to have been recovered 

correctly. 

 However, passing the latent distribution 

goodness of fit test does not mean that the 

latent code has been recovered correctly. For 

example, if latent code recovery is performed 

using a very low learning rate, latent code 𝑧𝑝 

will have little difference from the initial value. 

And if 𝑧𝑝 is initialized with the value sampled 

from the latent random variable 𝑍, it can pass 

the latent goodness of fit test. Therefore, 

reconstruction loss 𝐿𝑟𝑒𝑐  is still essential for 

evaluation. Latent distribution goodness of fit 

test is an additional test whether latent code 𝑧𝑝 

minimizing reconstruction loss 𝐿𝑟𝑒𝑐  has been 

properly recovered. 

 Also, even if the latent random variable 𝑍 is 

not an IID random variable, the latent 

distribution goodness of fit test can be 

performed. Elements with the same index of the 

recovered latent code 𝑧𝑝  should have been 

sampled from the same distribution.  

Therefore, it is possible to perform latent 

distribution goodness of fit test for each 

element’s distribution with the same index. In 

this case, the latent distribution goodness of fit 

test is performed 𝑑𝑧 times. 

 

5. Material and methods 

 We conducted experiments to compare 

gradient descent-based latent code recovery 

performance of latent regulation losses and 

element resampling methods. The MNIST 

handwriting dataset was used for the 

experiment. Each pixel value of data was 

normalized to [−1,1]. In the experiment, the 

process of training the model, performing 

latent code recovery, and evaluating the 

performance was repeated 3 times. All figures 

in section 6. “Experimental results and 

discussion” are averages of three experiments. 

 

5.1 Model train 

 We used GAN as a generative model for the 

experiment. GAN refers to the structure of 

DCGAN [15], and the latent random variable 

dimension 𝑑𝑧 = 256 . GAN was trained using 

LSGAN’s adversarial loss, 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 =

𝐴𝑑𝑎𝑚(𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 10−5), 𝑒𝑝𝑜𝑐ℎ =

200, 𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒 = 32. 

 

5.2 Latent code recovery 

Wasserstein distance [16] and energy distance 

[17] were used as statistical distances for 

statistical distance latent regulation loss. In the 

statistical distance latent regulation loss, 𝑃𝐴 

was approximated by sampling enough 



samples (10000 samples) from 𝐴 when 𝑍~𝐴𝑑𝑧 . 

In the logistic cutoff of stochastic resampling, 

two hyperparameters are required. For a fair 

comparison, 𝑏, one of the two hyperparameters, 

is fixed at 2, which has the best performance in 

[4]. 𝑧𝑝  initialize function 𝑖𝑛𝑖𝑡( )  is 

𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑍) . Sixteen latent codes per data 

were initialized and optimized in parallel, and 

among them, the latent code 𝑧𝑝  with the 

lowest loss 𝐿  is selected. For 𝑑𝑖𝑓𝑓 , mean 

absolute error, which obtained the best result 

in [5], was used. The number of gradient 

descent 𝑛 = 200  and optimizer 𝑜𝑝𝑡 =

𝐴𝑑𝑎𝑚(𝑏𝑒𝑡𝑎_1 = 0.9, 𝑏𝑒𝑡𝑎_2 = 0.999). 

 

5.3 Performance evaluation 

Since the gradient descent-based latent code 

recovery takes a very long time to perform, the 

performance was evaluated by performing 

latent code recovery on only 1000 data 

randomly selected out of 10,000 test data per 

experiment. Classification accuracy, latent 

distribution goodness of fit test, L1 loss, and L2 

loss were used for evaluation. The classifier 

used in the evaluation was trained with 

𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 = 𝐴𝑑𝑎𝑚(𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 =

10−5), 𝑒𝑝𝑜𝑐ℎ = 50, 𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒 = 32 . Two-sided 

KS-test (Kolmogorov–Smirnov test) [18] was 

used as the latent distribution goodness of fit 

test. The null hypothesis 𝐻0 is “all elements of 

all recovered latent code 𝑧𝑝  were sampled 

from the latent distribution”. 

 

6. Experimental results and discussion 

6.1 Latent random variable follows the normal 

distribution 

 This section shows the experimental results 

when latent random variable 𝑍~𝑁(0, 12)256 . 

GAN’s FID is 6.68971, and classifier’s accuracy is 

99.283%. The following table shows the 

difference in performance according to the 

learning rate when performing gradient 

descent-based latent code recovery without any 

regulation term.

 

Table 7. Latent code recovery performance without regulation term  

Latent mean and latent variance in Table 7 represents the mean and variance of latent 

No regulation Learning rate

0.00001 0.0001 0.001 0.01 0.1

Latent mean -0.002 0.001 0.000 0.000 0.006

Latent variance 0.997 0.997 1.001 1.332 19.424

Goodness of fit test p-value1 2.7% 87.9% 65.5% 0.0% 0.0%

Goodness of fit test p-value2 16.5% 14.8% 92.2% 0.0% 0.0%

Goodness of fit test p-value3 72.9% 78.6% 18.7% 0.0% 0.0%

L1 loss 168.398 122.935 37.668 18.596 20.578

L2 loss 248.109 165.683 28.192 7.948 10.088

Classifier accuracy 39.1% 63.9% 96.4% 99.2% 98.2%



codes, respectively. Since 𝑍~𝑁(0, 12)256, if the 

latent code is recovered correctly, the latent 

mean should be close to 0, and the latent 

variance should be close to 1. The goodness of 

fit test p-value is the p-value when the latent 

distribution goodness of fit test is performed 

on the recovered latent codes. The other values 

in the table are the three experiments’ average 

values, but since the average value of the p-

value is not meaningful, the three experiments’ 

results were shown separately. If the 

significance probability is 5%, the null 

hypothesis 𝐻0 (all elements of all recovered 

latent code 𝑧𝑝 were sampled from the latent 

distribution) is rejected when the p-value is less 

than 5% and the alternative hypothesis 𝐻1 (all 

elements of all recovered latent code 𝑧𝑝 were 

not sampled from the latent distribution) is 

rejected when the p-value is above 95%. In the 

table, when the significance probability is 5%, it 

is indicated in red when the null hypothesis 𝐻0 

is rejected, yellow when no hypothesis is 

rejected, and green when the alternative 

hypothesis 𝐻1 is rejected. The L1 loss and L2 

loss represent the L1 loss and L2 loss between 

the test data and the generated data by 

recovered latent code. Classification accuracy is 

the ratio at which the trained classifier correctly 

classifies the generated data 𝐺(𝑧𝑝). 

 In Table 8, it can be seen that when the 

learning rate is too high, the latent code 

distribution is significantly distorted, resulting 

in high variance and low goodness of fit test p-

value. When the learning rate is less than 0.001, 

the latent code is not sufficiently searched, so 

the latent variance is close to 1, and the latent 

distribution goodness of fit p-value is relatively 

high. Therefore, to sufficiently search latent 

code when comparing the performance of 

latent regulation loss or element resamplings, 

we used the 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 0.01. 

The following Table 9-14 shows the latent code 

recovery performance of latent regulation loss 

or element resampling when 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 =

0.01.

 

Table 8. Latent code recovery performance with Wasserstein distance latent regulation loss  

 

Wasserstein distance Latent regulation loss weight

0.001 0.01 0.1 1 10

Latent mean 0.001 0.000 0.000 0.000 0.000

Latent variance 1.314 1.179 0.999 0.995 0.995

Goodness of fit test p-value1 0.0% 0.0% 100.0% 58.8% 56.2%

Goodness of fit test p-value2 0.0% 0.0% 100.0% 58.8% 54.4%

Goodness of fit test p-value3 0.0% 0.0% 100.0% 58.9% 56.3%

L1 loss 18.594 18.554 19.726 28.229 69.082

L2 loss 7.982 7.853 8.531 16.336 74.007

Classifier accuracy 99.1% 98.8% 99.0% 98.5% 85.8%



 

Table 9. Latent code recovery performance with Energy distance latent regulation loss 

 

 

Table 10. Latent code recovery performance with Z score square latent regulation loss  

 

 

Table 11. Latent code recovery performance with fool discriminator latent regulation loss  

 

Energy distance Latent regulation loss weight

0.001 0.01 0.1 1 10

Latent mean 0.001 0.000 0.000 0.000 0.000

Latent variance 1.319 1.228 1.021 0.996 0.996

Goodness of fit test p-value1 0.0% 0.0% 63.8% 99.5% 89.3%

Goodness of fit test p-value2 0.0% 0.0% 62.8% 99.3% 91.6%

Goodness of fit test p-value3 0.0% 0.0% 65.5% 99.3% 91.9%

L1 loss 18.579 18.492 19.421 29.574 81.093

L2 loss 7.881 7.751 8.314 17.660 92.669

Classifier accuracy 99.0% 99.1% 99.3% 98.7% 82.2%

Z score square Latent regulation loss weight

0.001 0.0032 0.0057 0.01 0.1 1 10

Latent mean 0.000 0.001 0.001 0.000 0.000 0.001 0.001

Latent variance 1.261 1.124 0.994 0.813 0.091 0.016 0.005

Goodness of fit test p-value1 0.0% 0.0% 18.3% 0.0% 0.0% 0.0% 0.0%

Goodness of fit test p-value2 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 0.0%

Goodness of fit test p-value3 0.0% 0.0% 32.5% 0.0% 0.0% 0.0% 0.0%

L1 loss 18.584 18.413 18.425 18.204 17.171 22.391 51.088

L2 loss 7.862 7.737 7.751 7.480 6.128 10.173 46.626

Classifier accuracy 99.2% 99.1% 98.9% 98.9% 99.0% 99.1% 96.3%

Fool discriminator Latent regulation loss weight

0.000001 0.0001 0.01 1 100

Latent mean -0.001 -0.001 -0.002 0.002 0.001

Latent variance 1.333 1.329 1.304 1.122 1.119

Goodness of fit test p-value1 0.0% 0.0% 0.0% 0.0% 0.0%

Goodness of fit test p-value2 0.0% 0.0% 0.0% 0.0% 0.0%

Goodness of fit test p-value3 0.0% 0.0% 0.0% 0.0% 0.0%

L1 loss 18.617 18.656 21.297 152.446 180.556

L2 loss 8.000 7.950 10.194 218.759 271.107

Classifier accuracy 99.1% 99.0% 98.8% 45.9% 38.4%



 

Table 12. Latent code recovery performance with logistic cutoff element resampling 

 

 

Table 13. Latent code recovery performance with truncated normal cutoff element resampling 

 When using appropriate latent regulation loss 

weight λ𝑙𝑟 , you can see only the statistical 

distance latent regulation loss (table 8-9) rejects 

the alternative hypothesis 𝐻1  and has a low 

reconstruction loss 𝐿𝑟𝑒𝑐 . The z score square 

latent regulation loss weight was searched 

more closely than the statistical distance latent 

regulation loss weight. In z score square, it was 

possible to find a case where the null 

hypothesis 𝐻0 could not be rejected, but the 

p-value was not high enough to reject the 

alternative hypothesis 𝐻1 . All other methods 

had low reconstruction loss 𝐿𝑟𝑒𝑐 , but did not 

pass the latent goodness of fit test. 

 

6.2 Latent random variable follows the uniform 

distribution 

 The following tables show the performance 

according to the latent regulation loss when the 

latent random variable 𝑍~𝑈(−1,1)𝑑𝑧 . The 

GAN’s FID is 7.71122, and classifier’s accuracy is 

99.310%. 

Logistic cutoff Hyperparameter

2 2.5 3 3.5 4

Latent mean 0.000 0.000 -0.001 -0.001 -0.001

Latent variance 0.330 0.281 0.261 0.265 0.282

Goodness of fit test p-value1 0.0% 0.0% 0.0% 0.0% 0.0%

Goodness of fit test p-value2 0.0% 0.0% 0.0% 0.0% 0.0%

Goodness of fit test p-value3 0.0% 0.0% 0.0% 0.0% 0.0%

L1 loss 99.463 73.065 57.442 46.068 39.747

L2 loss 119.189 74.780 50.483 34.795 26.771

Classifier accuracy 85.3% 93.0% 95.8% 97.6% 98.2%

Truncated Normal cutoff Hyperparameter

2 2.5 3 3.5 4

Latent mean 0.001 0.000 0.001 0.000 0.000

Latent variance 0.528 0.520 0.574 0.732 1.022

Goodness of fit test p-value1 0.0% 0.0% 0.0% 0.0% 0.0%

Goodness of fit test p-value2 0.0% 0.0% 0.0% 0.0% 0.0%

Goodness of fit test p-value3 0.0% 0.0% 0.0% 0.0% 0.0%

L1 loss 154.437 109.289 60.904 35.402 25.230

L2 loss 221.241 136.742 55.400 21.807 12.019

Classifier accuracy 50.4% 79.8% 95.3% 98.5% 99.0%



 

Table 14. Latent code recovery performance without regulation term 

 Since 𝑍~𝑈(−1,1)256 , if the latent code is 

recovered correctly, the latent mean should be 

close to 0, and the latent variance should be 

close to 
1

3
. As when 𝑍~𝑁(0, 12)256 , it can be 

seen that latent variance is close to the ideal 

value, and the p-value is relatively high when 

the learning rate is low. The following Table 15-

18 shows the latent code recovery performance 

of latent regulation loss or element resampling 

when 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 0.01. 

 

Table 15. Latent code recovery performance with Wasserstein latent regulation loss 

No regulation Learning rate

0.00001 0.0001 0.001 0.01 0.1

Latent mean 0.000 0.001 0.001 -0.008 -0.119

Latent variance 0.333 0.333 0.341 0.571 19.105

Goodness of fit test p-value1 45.0% 0.0% 0.0% 0.0% 0.0%

Goodness of fit test p-value2 59.2% 0.0% 0.0% 0.0% 0.0%

Goodness of fit test p-value3 18.9% 0.0% 0.0% 0.0% 0.0%

L1 loss 165.593 101.444 30.046 18.102 23.047

L2 loss 243.748 128.611 19.032 7.321 12.479

Classifier accuracy 42.8% 74.7% 98.0% 99.2% 97.6%

Wasserstein distance Latent regulation loss weight

0.001 0.01 0.1 1 10

Latent mean -0.007 -0.003 0.000 0.000 0.000

Latent variance 0.564 0.500 0.346 0.333 0.333

Goodness of fit test p-value1 0.0% 0.0% 0.0% 99.9% 100.0%

Goodness of fit test p-value2 0.0% 0.0% 0.0% 99.9% 100.0%

Goodness of fit test p-value3 0.0% 0.0% 0.0% 100.0% 100.0%

L1 loss 18.282 18.194 18.357 22.330 40.748

L2 loss 7.530 7.442 7.297 10.489 31.589

Classifier accuracy 99.2% 98.8% 99.2% 98.9% 95.9%



 

Table 16. Latent code recovery performance with energy latent regulation loss 

 

 

Table 17. Latent code recovery performance with fool discriminator latent regulation loss 

 

Table 18. Latent code recovery performance with boundary resampling 

Energy distance Latent regulation loss weight

0.001 0.01 0.1 1 10

Latent mean -0.007 -0.005 0.000 0.000 0.000

Latent variance 0.566 0.514 0.363 0.334 0.333

Goodness of fit test p-value1 0.0% 0.0% 0.0% 62.5% 100.0%

Goodness of fit test p-value2 0.0% 0.0% 0.0% 67.8% 100.0%

Goodness of fit test p-value3 0.0% 0.0% 0.0% 67.6% 100.0%

L1 loss 18.146 17.943 18.126 24.545 56.011

L2 loss 7.473 7.235 7.152 12.511 53.851

Classifier accuracy 98.8% 99.1% 99.4% 98.7% 91.5%

Fool discriminator Latent regulation loss weight

0.000001 0.0001 0.01 1 100

Latent mean -0.007 -0.006 -0.008 -0.003 -0.003

Latent variance 0.572 0.573 0.557 0.450 0.451

Goodness of fit test p-value1 0.0% 0.0% 0.0% 0.0% 0.0%

Goodness of fit test p-value2 0.0% 0.0% 0.0% 0.0% 0.0%

Goodness of fit test p-value3 0.0% 0.0% 0.0% 0.0% 0.0%

L1 loss 18.266 18.155 20.489 160.519 189.300

L2 loss 7.473 7.435 9.367 233.935 287.610

Classifier accuracy 99.1% 99.0% 99.0% 44.7% 35.0%

Boundary resampling Learning rate

0.001 0.01 0.1 1 10

Latent mean 0.002 -0.003 -0.008 -0.005 0.000

Latent variance 0.268 0.247 0.297 0.320 0.333

Goodness of fit test p-value1 0.0% 0.0% 0.0% 0.0% 75.3%

Goodness of fit test p-value2 0.0% 0.0% 0.0% 0.0% 70.1%

Goodness of fit test p-value3 0.0% 0.0% 0.0% 0.0% 62.7%

L1 loss 38.924 22.434 47.876 92.122 176.282

L2 loss 29.258 10.167 37.701 108.229 263.273

Classifier accuracy 97.7% 99.1% 97.0% 83.9% 36.0%



 In boundary resampling, since an additional 

hyperparameter is not required, we searched 

for a learning rate instead.  

 When using appropriate latent regulation loss 

weight λ𝑙𝑟 , as when 𝑍~𝑁(0, 12)256, you can see 

only the statistical distance latent regulation 

loss (table 15-16) rejects the alternative 

hypothesis 𝐻1  and has a low reconstruction 

loss 𝐿𝑟𝑒𝑐 . All other methods had low 

reconstruction loss 𝐿𝑟𝑒𝑐 , but did not pass the 

latent goodness of fit test. In boundary 

resampling, when the learning rate is high, the 

latent code element is almost always 

resampling, so it has a meaningful p-value, but 

𝐿𝑟𝑒𝑐 is too high. 

 

6.3 Latent random variable follows the unique 

distribution 

In this section, to show that the statistical 

distance latent regulation loss can be applied 

even when the latent random variable 𝑍 is any 

IID random variable, we performed latent code 

recovery using statistical distance latent 

regulation loss and generator 𝐺 trained with a 

unique IID random variable (𝑍~𝐴256 ). 𝐴 is a 

half uniform and a half normal distribution. The 

probability density function of 𝐴 is  

𝑃𝐴(𝑥) = {

0 𝑖𝑓 𝑥 < −1

0.5 𝑖𝑓 𝑥 ∈ [−1,0]

1

√2𝜋
𝑒−

𝑥2

2  𝑖𝑓 0 < 𝑥

. 

The following graph shows the graph of the 

probability density function of 𝐴. 

 

Figure 19. The probability density function of half uniform and half normal  

The FID of GAN trained with this unique IID random variable is 6.70161, and the accuracy of 



the classifier is 99.317%.

 

Table 20. Latent code recovery performance without regulation term 

 As in previous experiments, it was impossible 

to recover the latent code to have a low 𝐿𝑟𝑒𝑐 

and a high p-value without a latent regulation 

loss. 

 The following tables 21-22 show the 

performance when using the statistical distance 

latent regulation loss when 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 =

0.01, as in previous experiments.  

 

Table 21. Latent code recovery performance with Wasserstein distance latent regulation loss 

No regulation Learning rate

0.00001 0.0001 0.001 0.01 0.1

Latent mean 0.149 0.146 0.153 0.261 1.725

Latent variance 0.644 0.640 0.647 0.911 17.514

Goodness of fit test p-value1 6.5% 0.0% 0.0% 0.0% 0.0%

Goodness of fit test p-value2 48.7% 0.0% 0.0% 0.0% 0.0%

Goodness of fit test p-value3 23.4% 0.0% 0.0% 0.0% 0.0%

L1 loss 167.302 115.088 35.205 19.238 22.171

L2 loss 245.155 150.954 24.815 8.211 11.007

Classifier accuracy 39.7% 67.1% 97.9% 98.9% 98.8%

Wasserstein distance Latent regulation loss weight

0.001 0.01 0.1 1 10

Latent mean 0.255 0.214 0.146 0.148 0.149

Latent variance 0.902 0.821 0.649 0.642 0.642

Goodness of fit test p-value1 0.0% 0.0% 0.0% 56.6% 56.9%

Goodness of fit test p-value2 0.0% 0.0% 0.0% 56.8% 55.9%

Goodness of fit test p-value3 0.0% 0.0% 0.0% 57.8% 56.1%

L1 loss 19.261 18.927 18.582 25.176 54.512

L2 loss 8.147 7.839 7.352 12.907 50.647

Classifier accuracy 99.1% 99.0% 99.0% 98.7% 92.4%



 

Table 22. Latent code recovery performance with energy distance latent regulation loss 

 When 𝑍~𝐴, the p-value was not high enough 

to reject the alternative hypothesis 𝐻1 as 𝑍~𝑈 

or 𝑍~𝑁 . However, you can see that the 

statistical distance latent regulation loss has a 

sufficiently low reconstruction loss 𝐿𝑟𝑒𝑐 , with a 

p-value high enough that the null hypothesis 

𝐻0 is not rejected. These results show that the 

statistical distance latent regulation loss can 

also be used for latent code recovery of 

generator 𝐺 trained with a unique IID random 

variable 𝑍. 

 

7. Conclusion 

 In this paper, when the latent random variable 

is an IID random variable and performing 

gradient descent-based latent code recovery, 

we proposed statistical distance latent 

regulation loss to maximize 𝑃(𝑍|𝑧𝑝) . Unlike 

other methods that maximize ∑ 𝑃(𝑍[𝑖]|𝑧𝑝[𝑖])
𝑑𝑧
𝑖=1 , 

since statistical distance latent regulation loss 

maximizes 𝑃(𝑍|𝑧𝑝) , it enables correct latent 

code recovery. 

 In this paper, we also proposed the latent 

distribution goodness of fit test, an additional 

test used to evaluate the performance of latent 

code recovery. The latent distribution goodness 

of fit test evaluates whether latent code 

recovery has been performed correctly. 

 Compared with other latent regulation losses 

or element resampling methods, only latent 

code recovery using the statistical distance 

latent regulation loss could recover the correct 

latent code with high performance in the 

gradient descent-based latent code recovery. 
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