
Statistical Distance Latent Regulation Loss for Latent Vector Recovery 

Jeongik Cho1 

jeongik. jo. 01@gmail. com1 

 

Abstract 

 Finding a latent vector that can generate 

specific data by inverting the generative model 

is called latent vector recovery(or latent vector 

projection). When performing gradient descent 

based latent recovery, the latent vector being 

recovered may escape the train latent 

distribution. To prevent this, some papers used 

latent regulation loss or resampling. 

 In this paper, assuming that the generative 

model is trained with IID (Independent and 

Identically Distributed) random variables, I 

propose statistical distance latent regulation 

loss, which uses the distance between 

distribution followed by train latent random 

variables, and discrete uniform distribution, 

which assumes that each element of the latent 

vector has the same probability, as a latent 

regulation loss. The statistical distance latent 

regulation loss considers the correlation 

between each element of the latent vector, so 

better latent vector recovery is possible. 

 In this paper, I compared the performances of 

latent regulation losses and resampling 

methods of other papers as well as statistical 

distance latent regulation losses using several 

statistical distances. 

 In conclusion, the performances of 

Wasserstein distance latent regulation loss and 

Energy distance latent regulation loss were the 

best. 

Also, in this paper, when performing latent 

vector recovery with a generator trained with 

an IID random variable, I propose the latent 

distribution goodness of fit test, an additional 

test to check whether all elements of all 

recovered latent vectors follow the distribution 

of the train latent random variable. 

 

1. Statistical Distance Latent Regulation Loss 

The generative model (generator) 𝐺 is trained 

to convert the 𝑑𝑧 -dimensional multivariate 

random variable 𝑍 ∈ 𝑅𝑑𝑧  following a certain 

distribution to the 𝑑𝑥-dimensional multivariate 

random variable 𝑋 ∈ 𝑅𝑑𝑥 . In case of GAN, 

usually train latent vector 𝑍~𝑈(𝑎, 𝑏)𝑑𝑧  or 

~𝑁(𝜇, 𝜎2)𝑑𝑧 , in case of VAE, each element of 

train latent random variable 𝑍 follows a normal 

distribution with different mean and variance. 

In this case, finding an ideal latent vector 𝑧∗ 

that can generate any data 𝑥 sampled from a 

data random variable 𝑋  using a pre-trained 

generator 𝐺 is called latent vector recovery.  

 There are gradient descent-based and 

encoder-based methods for latent vector 

recovery. The encoder-based method requires 

additional encoder training. In this paper, only 
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the gradient descent-based method is covered. 

 The gradient descent-based latent vector 

recovery receives the error between 𝐺(𝑧𝑝), the 

data generated through latent vector 𝑧𝑝, and 

the received data 𝑥 as reconstruction loss, and 

performs gradient descent repeatedly for the 

latent vector 𝑧𝑝 to reduce reconstruction loss. 

The following function shows the process of 

gradient descent-based latent vector recovery. 

 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑙𝑎𝑡𝑒𝑛𝑡_𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦(𝑥, 𝐺, 𝑡, 𝑜𝑝𝑡):   

    𝑧𝑝 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒( ) 

    𝑟𝑒𝑝𝑒𝑎𝑡 𝑡 𝑡𝑖𝑚𝑒𝑠:  

        𝐿𝑟𝑒𝑐 ← 𝑑𝑖𝑓𝑓 (𝑥, 𝐺(𝑧𝑝)) 

 𝐿 ← 𝐿𝑟𝑒𝑐  

        𝑧𝑝 ← 𝑧𝑝 − 𝑜𝑝𝑡 (
∆𝐿

∆𝑧𝑝
)  

    𝑟𝑒𝑡𝑢𝑟𝑛 𝑧𝑝 

𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 is a function that initializes the values 

of z_p. 𝑡 is the number of times to perform 

gradient descent. 𝑜𝑝𝑡 is an optimizer. 𝑑𝑖𝑓𝑓 is a 

function that measures the difference between 

two data. 𝐿𝑟𝑒𝑐 is reconstruction loss. 𝐿 is the 

total loss. Through the above function, it can be 

found the latent vector 𝑧𝑝  that minimizes 

reconstruction loss 𝐿𝑟𝑒𝑐 . 

 However, when there is a 𝑧𝑝 that minimizes 

reconstruction loss 𝐿𝑟𝑒𝑐 , the obtained 𝑧𝑝 is not 

always an ideal latent vector 𝑧∗. The reason is 

that there is a possibility that 𝑧𝑝  is a latent 

vector sampled from the unexpected latent 

random variable 𝐾 ≁ 𝑍. 

 For example, suppose that in the MNIST 

handwriting data, 𝑥 is the handwriting data of 

the number one, 𝐺(𝑧𝑝) currently produces the 

number zero, and 𝑧𝑝[1], the first element of 𝑧𝑝, 

represents the width of the letter. If the other 

elements of the latent vector 𝑧𝑝  remain 

unchanged and 𝑧𝑝[1] becomes extremely low, 

the width of the character becomes very narrow, 

so it may look like the number one. The latent 

vector 𝑧𝑝 at this time is a local optima with a 

sufficiently low reconstruction loss 𝐿𝑟𝑒𝑐 . 

 However, 𝑧𝑝  at this time is a latent vector 

sampled from the unexpected latent random 

variable 𝐾 ≁ 𝑍 . Also, since the generative 

model 𝐺  is not trained to generate out-of-

distribution data, there is always a tendency to 

generate data distribution 𝑋 . Therefore, the 

generative model 𝐺  tends to convert 

unexpected latent random variable 𝐾 ≁ 𝑍  to 

data distribution 𝑋 . Therefore, there may be 

several global optima latent vector 𝑧𝑝  that 

minimize reconstruction loss 𝐿𝑟𝑒𝑐 . However, 

among the latent vector 𝑧𝑝 , the 𝑧𝑝  sampled 

from the unexpected latent random variable 𝐾, 

not the train latent random variable 𝑍, cannot 

be the ideal latent vector 𝑧∗. This means that 

an additional term is needed so that 𝑃(𝑍 = 𝑧𝑝) 

can be maximized. 

 To maximize 𝑃(𝑍 = 𝑧𝑝), latent regulation loss 

was added to loss 𝐿 in the paper [3, 4], and 

part of the element of 𝑧𝑝 was resampling in the 

paper [5, 1] after gradient descent. The 

following function shows latent vector recovery 

using latent regulation loss. 

  

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑙𝑎𝑡𝑒𝑛𝑡_𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦(𝑥, 𝐺, 𝑡, 𝑜𝑝𝑡):   



    𝑧𝑝 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒( ) 

    𝑟𝑒𝑝𝑒𝑎𝑡 𝑡 𝑡𝑖𝑚𝑒𝑠:  

        𝐿 ← 𝑑𝑖𝑓𝑓 (𝑥, 𝐺(𝑧𝑝)) + λ𝑙𝑟𝐿𝑙𝑟  

        𝑧𝑝 ← 𝑧𝑝 − 𝑜𝑝𝑡 (
∆𝐿

∆𝑧𝑝
)  

    𝑟𝑒𝑡𝑢𝑟𝑛 𝑧𝑝  

𝐿𝑙𝑟 is the latent regulation loss weight, and λ𝑙𝑟 

is the latent regulation loss weight. 

 In this paper, assuming that the generative 

model 𝐺 is trained with IID random variables 

𝑍, I propose statistical distance latent regulation 

loss, which uses the distance between any 

distribution 𝐴 followed by train latent random 

variables 𝑍~𝐴𝑑𝑧 , and discrete uniform 

distribution 𝑆 , which assumes that each 

element of the latent vector 𝑧𝑝 has the same 

probability (probability mass function 𝑃𝑆(𝑥) =

{
1

𝑑𝑧
 𝑖𝑓 𝑥 ∈ 𝑧𝑝

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
), as a latent regulation loss 𝐿𝑙𝑟 . 

Since the statistical distance latent regulation 

loss can consider the relationship between each 

element of 𝑧𝑝, a better latent vector 𝑧𝑝 can be 

found. The statistical distance latent regulation 

loss is as follows. 

𝐿𝑙𝑟 = 𝐷𝑖𝑠𝑡(𝑃𝐴, 𝑃𝑆) 

𝐷𝑖𝑠𝑡 is a function that represents the statistical 

distance between two distributions. 𝑃𝐴 is the 

probability density function of distribution 𝐴 . 

𝑃𝑆  is the probability mass function of the 

discrete even distribution made from latent 

vector 𝑧𝑝. 

 Among the various statistical distances, this 

paper used four statistical distances: 

Bhattacharyya distance, Wasserstein distance, 

Energy distance, and Lukaszyk Karmowski 

distance. The following table shows the 

required conditions and features by latent 

regulation loss or resampling method. 

 

Table 1. Features by method 

Z~ALL in the above table means that the train 

latent vector 𝑍 can be used regardless of any 

distribution, and Z~IID means that 𝑍 can be 

used when following the IID distribution. The 

yellow items in the table are not suggested in 

other papers. The “trick discriminator” is the 

loss proposed in [3]. Z score square is the loss 

suggested in [4]. The logistic cutoff and 

truncated normal cutoff are the resampling 

methods proposed in [5]. Boundary resampling 

Name Z~ALL Z~IID Z~N Z~U Remarks

Bhattacharyya distance O

Wasserstein distance O O O

Energy distance O O O

Lukaszyk Karmowski distance O O O

Trick discriminator O O O O Hard to find hyperparameter, slow speed

Z score square O

Z score absolute O

Logistic cutoff O Information lost

Truncated normal cutoff O Information lost

Boundary resampling O Information lost, no hyperparameter



is a resampling method proposed in [1]. 

Resampling schemes cause information loss 

when resampling and convergence is slowed 

down. 

 

2. Latent distribution goodness of fit test 

As explained previously, latent vector 𝑧𝑝 with 

low reconstruction loss 𝐿𝑟𝑒𝑐 is not always the 

ideal latent vector 𝑧∗ . To check whether the 

latent vector 𝑧𝑝  was sampled from the train 

latent random variable 𝑍, this paper proposes 

a latent distribution goodness of fit test. 

 In [8], the goodness of fit test was used to 

evaluate the GAN, but in this paper, it is used 

to verify that the correct latent vector has been 

recovered.  

 Assuming that the train latent random variable 

𝑍 is an IID random variable that follows the 

random distribution 𝐴𝑑𝑧 , the distribution of all 

elements of the recovered latent vector z_p will 

follow distribution A. Latent goodness of fit test 

verifies that the distribution of all elements of 

all recovered latent vectors follows distribution 

𝐴. If the latent vectors do not pass the latent 

goodness of fit test, the latent vectors are not 

considered to have been properly recovered. 

However, passing the Latent distribution 

goodness of fit test does not indicate that 

latent vectors have been properly recovered. 

Reconstruction loss 𝐿𝑟𝑒𝑐  is still important. 

Latent distribution goodness of fit test is an 

additional test to ensure that latent vector 𝑧𝑝, 

which minimizes reconstruction loss 𝐿𝑟𝑒𝑐 , is 

correctly recovered. 

3. Experiments 

For the experiment, pre-trained GAN using 

adversarial loss of LSGAN [6] was used. latent 

vector dimension 𝑑𝑧=256. MNIST handwriting 

dataset was used. For evaluation, a latent 

distribution goodness of fit test, L1 loss, L2 loss, 

and a classifier classification test with an 

accuracy of 99.3% were used. 𝑧𝑝  initialize 

function 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒( )  is 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑍) . The 

latent vector 𝑧𝑝  with the lowest loss L was 

selected by initializing and optimizing 16 latent 

vectors per data in parallel. For 𝑑𝑖𝑓𝑓, the 𝑙1 𝑙𝑜𝑠𝑠 

s with the best result in [2] was used. The 

gradient descent iteration number 𝑡 = 200 and 

optimizer 𝑜𝑝𝑡 = 𝐴𝑑𝑎𝑚 . For evaluation, only 

1000 randomly selected from 10000 test data 

were used. As the latent distribution goodness 

of fit test, KS-test (Kolmogorov–Smirnov test) 

was used. Test is a two-sided test and a 

𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒 𝑙𝑒𝑣𝑒𝑙 = 0.05. Wasserstein distance, 

Energy distance, and Lukaszyk Karmowski 

distance were measured by sampling enough 

samples (10000) from the train latent random 

variable 𝑍. 

 Logistic cutoff and truncated normal cutoff 

were excluded from the experiment due to too 

low performance and difficult hyperparameter 

search. Trick discriminator was also excluded 

due to its low performance and slow speed. The 

following tables show the performance 

according to latent regulation loss when train 

latent random variable 𝑍~𝑁(0, 12)𝑑𝑧 . GAN's FID 

is 6.135317. 

 



 

Table 2. Without regulation loss 

When the 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 0.001 𝑜𝑟 0.01, the latent vector was not significantly different from the 

initial latent vector due to the learning rate that was too low, so the Goodness of fit test passed, 

but the L1 loss and L2 loss were high, and classifier accuracy was low. That means 𝐿𝑟𝑒𝑐 is too large. 

When 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 0.01 𝑜𝑟 0.1, 𝐿𝑟𝑒𝑐 is considered to be sufficiently low because L1 loss, L2 loss, 

and classifier accuracy are low, but it is difficult to say that latent vector recovery was properly 

performed because it failed in the latent distribution goodness of fit test. 

 Because latent regulation loss lowers latent variance, subsequent experiments experimented with 

a 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 0.01 where a latent variance slightly greater than 1 was measured. 

 

 

Table 3. Wasserstein latent regulation loss results 

 

No regulation Learning rate

0.0001 0.001 0.01 0.1

Goodness of fit test Pass Pass Fail Fail

Latent mean 0.000777 0.002972 -0.00437 -0.04643

Latent variance 0.989036 1.000564 1.326683 19.93552

L1 loss per pixel 121.0421 39.07714 18.789 20.72877

L2 loss per pixel 12.22913 5.106534 2.63666 2.876963

Classifier accuracy 0.652 0.958 0.987 0.979

Wasserstein distance Regulation loss weight

0.001 0.01 0.1 1 10

Goodness of fit test Fail Fail Pass Pass Pass

Latent mean 0.0010 -0.0039 0.0000 0.0000 -0.0003

Latent variance 1.3077 1.1791 0.9996 0.9946 0.9951

L1 loss per pixel 18.8311 18.8883 20.0490 27.5913 71.3795

L2 loss per pixel 2.6464 2.6462 2.7840 3.7509 8.2979

Classifier accuracy 0.9930 0.9920 0.9930 0.9840 0.8500



 

Table 4. Energy latent regulation loss results 

Wasserstein latent regulation loss and energy latent regulation loss passed the latent distribution 

goodness of fit test and showed good performance. 

 

 

Table 5. Z score square latent regulation loss results 

 

 

Table 6. Bhattacharyya latent regulation loss results 

 

Energy distance Regulation loss weight

0.01 0.1 1 10

Goodness of fit test Fail Pass Pass Pass

Latent mean -0.0042 0.0003 -0.0001 0.0002

Latent variance 1.2611 1.0353 0.9971 0.9953

L1 loss per pixel 18.8818 18.9611 26.8357 66.9098

L2 loss per pixel 2.6472 2.6427 3.6495 7.9251

Classifier accuracy 0.9940 0.9890 0.9870 0.8870

Z score square Regulation loss weight

0.001 0.0032 0.0057 0.01

Goodness of fit test Fail Fail Fail Fail

Latent mean -0.0035 -0.0022 -0.0033 -0.0039

Latent variance 1.2639 1.1299 0.9932 0.8159

L1 loss per pixel 18.7818 19.0186 18.5449 18.1677

L2 loss per pixel 2.6250 2.6467 2.5950 2.5443

Classifier accuracy 0.9870 0.9880 0.9870 0.9880

Bhattacharyya distance Regulation loss weight

0.01 0.032 0.038 0.043 0.057 0.1

Goodness of fit test Fail Fail Fail Fail Fail Fail

Latent mean 0.0001 -0.0038 -0.0001 0.0014 -0.0025 -0.0028

Latent variance 1.2353 1.054062 1.011107 0.9768 0.893201 0.667697

L1 loss per pixel 18.4579 18.7139 18.6379 18.3467 18.58446 17.82391

L2 loss per pixel 2.5823 2.6216 2.5896 2.5807 2.58473 2.461706

Classifier accuracy 0.9890 0.9880 0.9870 0.9910 0.991 0.983



 

Table 7. Lukaszyk karmowski distance latent regulation loss results 

 

 

Table 8. Z score absolute latent regulation loss results 

On the other hand, all other latent regulation losses did not pass the latent distribution goodness 

of fit test, although the latent regulation loss weight was properly adjusted so that the latent mean 

was 0 and the latent variance was 1. This means that the Wasserstein latent regulation loss or energy 

latent regulation loss should be used as the latent regulation loss. 

 The following tables show the performance according to latent regulation loss when train latent 

random variable 𝑍~𝑈(−1,1)𝑑𝑧 . GAN's FID is 5.693037. 

 

Lukaszyk karmowski distance Regulation loss weight

0.01 0.018 0.032 0.1

Goodness of fit test Fail Fail Fail Fail

Latent mean -0.0068 -0.0016 -0.0012 0.0012

Latent variance 1.1528 1.033803 0.847241 0.3438

L1 loss per pixel 18.5023 18.2469 18.0396 18.1837

L2 loss per pixel 2.5925 2.5601 2.5294 2.5047

Classifier accuracy 0.9910 0.9920 0.9930 0.9860

Z score absolute Regulation loss weight

0.01 0.014 0.018 0.032 0.1

Goodness of fit test Fail Fail Fail Fail Fail

Latent mean 0.0000 0.0011 -0.0015 -0.0003 8.17E-04

Latent variance 1.0946 1.020341 0.936547 0.7215 0.215937

L1 loss per pixel 18.3825 18.6775 18.4642 18.9814 20.91224

L2 loss per pixel 2.5955 2.6094 2.5748 2.6310 2.825397

Classifier accuracy 0.9970 0.9880 0.9900 0.9900 0.993



 

Table 9. Wasserstein latent regulation loss results 

 

 

Table 10. Energy latent regulation loss results 
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