
Statistical Distance Latent Regulation Loss for Latent Vector Recovery

Jeongik Cho1

jeongik. jo. 01@gmail. com1

Abstract

 Finding a latent vector that can generate

specific data using a generative model is called

latent vector recovery. When performing

gradient descent based latent recovery, the

latent vector being recovered may escape the

train latent distribution. To prevent this, latent

regulation loss or resampling was used in some

papers.

 In this paper, assuming that the generative

model is trained with IID(Independent and

Identically Distributed) random variables, I

propose a statistical distance latent regulation

loss that considers the train latent distribution

as a one-dimensional distribution, the latent

vector as a sample distribution, and the

distance between the two distributions as a

latent regulation loss. The statistical distance

latent regulation loss considers the correlation

between each element of the latent vector, so

better latent vector recovery is possible.

 In addition, I compared the performance of

latent regulation losses and resampling

methods of other papers as well as statistical

distance latent regulation losses using several

statistical distances.

 In conclusion, the performance of

Bhattacharyya latent regulation loss was the

best when the train latent vector followed the

normal distribution, and the Lukaszyk

Karmowski regulation loss showed the best

performance otherwise.

1. Statistical distance latent regulation loss

 The generative model (generator) 𝐺 is trained

to convert the 𝑑𝑧 -dimensional multivariate

random variable 𝑍 ∈ 𝑅𝑑𝑧 following a certain

distribution to the 𝑑𝑥-dimensional multivariate

random variable 𝑋 ∈ 𝑅𝑑𝑥.

 In the case of GAN, usually latent vector

𝑍~𝑈(𝑎, 𝑏)𝑑𝑧 or 𝑍~𝑁(𝜇, 𝜎2)𝑑𝑧 , and in the case of

VAE, each element of latent vector 𝑍 follows a

normal distribution with different means and

variances. Finding the ideal latent vector 𝑧∗

that can generate any data 𝑥 sampled from

data distribution 𝑋 through gradient descent

using pre-trained generator 𝐺 is called latent

vector recovery. There are gradient descent-

based and encoder-based methods for latent

vector recovery. The encoder-based method

requires additional encoder training. In this

paper, only the gradient descent-based method

is covered.

 The gradient descent based latent vector

recovery receives the error between the data

𝐺(𝑧𝑝) generated through the latent vector 𝑧𝑝

and the received data x as loss, and performs

mailto:jeongik.jo.01@gmail.com
mailto:jeongik.jo.01@gmail.com

gradient descent repeatedly for the latent

vector 𝑧𝑝.

 The following function is a function that

performs latent vector recovery based on

gradient descent.

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑙𝑎𝑡𝑒𝑛𝑡_𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦(𝑥𝑝 , 𝐺, 𝑛, 𝑜𝑝𝑡):

 𝑧𝑝 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒()

 𝑟𝑒𝑝𝑒𝑎𝑡 𝑡 𝑡𝑖𝑚𝑒𝑠:

 𝐿 ← 𝑑𝑖𝑓𝑓 (𝑥𝑝, 𝐺(𝑧𝑝))

 𝑧𝑝 ← 𝑧𝑝 − 𝑜𝑝𝑡 (
∆𝐿

∆𝑧𝑝
)

 𝑟𝑒𝑡𝑢𝑟𝑛 𝑧𝑝

 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒is a function that initializes the values

of 𝑧𝑝 . 𝑡 is the number of times to perform

gradient descent. 𝑜𝑝𝑡 is an optimizer. 𝑑𝑖𝑓𝑓 is a

function that measures the difference between

two data. Through the above function, 𝑧𝑝 can

be found that minimizes 𝑑𝑖𝑓𝑓 (𝑥𝑝 , 𝐺(𝑧𝑝)).

 However, when 𝑧𝑝 exists to make

𝑑𝑖𝑓𝑓 (𝑥𝑝, 𝐺(𝑧𝑝)) small enough, the 𝑧𝑝 may not

be the ideal latent vector 𝑧∗ . For example,

suppose in the MNIST handwriting data, 𝑥𝑝 is

the handwriting data of the number “1”, 𝐺(𝑧𝑝)

currently produces the number “0” handwriting

data, and 𝑧𝑝[1] (the first element of 𝑧𝑝)

represents the width of the handwriting data. If

the other elements of 𝑧𝑝 remain unchanged

and 𝑧𝑝[1] becomes extremely low, the width of

the letter becomes very narrow, which can look

like the number 1. However, for 𝑧𝑝 where 𝑧𝑝[1]

is extremely low, 𝑃(𝑍 = 𝑧𝑝) will be very low or

zero. In this case, 𝑧𝑝 cannot be regarded as a

good latent vector that can generate 𝑥𝑝, and

since it has already converged to the local

optima, it is possible that additional gradient

descent may not generate the number 1. That

is, a good latent vector 𝑧𝑝 can be regarded as

a value that minimizes 𝑑𝑖𝑓𝑓 (𝑥𝑝, 𝐺(𝑧𝑝)) while

maximizing 𝑃(𝑍 = 𝑧𝑝).

 To maximize 𝑃(𝑍 = 𝑧𝑝), latent regulation loss

𝐿𝑙𝑟 is added to loss 𝐿 in [3, 4], and some

elements of 𝑧𝑝 are resampling after gradient

descent in [1].

 The latent vector recovery using latent

regulation loss proceeds as follows.

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑙𝑎𝑡𝑒𝑛𝑡_𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦(𝑍, 𝑥𝑝 , 𝐺, 𝑛, 𝑜𝑝𝑡):

 𝑧𝑝 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒()

 𝑟𝑒𝑝𝑒𝑎𝑡 𝑡 𝑡𝑖𝑚𝑒𝑠:

 𝐿 ← 𝑑𝑖𝑓𝑓 (𝑥𝑝, 𝐺(𝑧𝑝)) + λ𝑙𝑟𝐿𝑙𝑟

 𝑧𝑝 ← 𝑧𝑝 − 𝑜𝑝𝑡 (
∆𝐿

∆𝑧𝑝
)

 𝑟𝑒𝑡𝑢𝑟𝑛 𝑧

𝐿𝑙𝑟 is the latent regulation loss weight, and λ𝑙𝑟

is the latent regulation loss weight.

 In this paper, to maximize 𝑃(𝑍 = 𝑧𝑝) ,

assuming that 𝑍 follows a certain IID random

variable 𝐴𝑑𝑧 , I propose a method that uses the

statistical distance between the distribution 𝐴

and the sample distribution {𝑠|𝑠 ∈ 𝑧𝑝} as the

latent regulation loss 𝐿𝑙𝑟 . Since the statistical

distance latent regulation loss can consider the

relationship between each element of 𝑧𝑝 , a

better latent vector 𝑧𝑝 can be found.

𝐿𝑙𝑟 = 𝐷𝑖𝑠𝑡(𝐴, {𝑠|𝑠 ∈ 𝑧𝑝})

 𝐷𝑖𝑠𝑡 is a function that represents the statistical

distance between two distributions. Among

several statistical distances, this paper used four

statistical distances: Bhattacharyya distance,

Wasserstein distance, Energy distance, and

Lukaszyk Karmowski distance.

 The following table shows the required

conditions and features by latent regulation

loss or resampling method.

Table 1. Features by method

Z~ALL in the above table means that 𝑍 can be

used regardless of distribution, and Z~IID

means that 𝑍 can be used when following IID

distribution. The yellow items in the table are

not suggested in other papers. The “trick

discriminator” is the loss proposed in [3]. Z

score square is the loss suggested in [4]. The

logistic cutoff and truncated normal cutoff are

the resampling methods proposed in [5].

Boundary resampling is a resampling method

proposed in [1]. Resampling methods slow

convergence because information loss occurs

when resampling.

2. Experiments

For the experiment, pre-trained GAN using

LSGAN [6] adversarial loss was used. Latent

vector dimension 𝑑𝑧 = 256 . The model was

trained using 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 =

𝐴𝑑𝑎𝑚(𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 10−5), 𝑒𝑝𝑜𝑐ℎ =

200, 𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒 = 32 . MNIST handwriting

dataset [7] was used for training. FID of GAN

trained with 𝑍~𝑁(0,1)𝑑𝑧 was 8.30641, and

𝑍~𝑈(−1,1)𝑑𝑧 was 5.423009.

 For the performance evaluation, I measured

how well the generated data were classified

into a classifier with an accuracy of 99.34%.

Classifier was trained with 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 =

𝐴𝑑𝑎𝑚(𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 10−5), 𝑒𝑝𝑜𝑐ℎ =

50, 𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒 = 32 . 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒() was 𝑧𝑒𝑟𝑜𝑠() .

For 𝑑𝑖𝑓𝑓, the 𝑙1 loss with the best result in [2]

was used. The number of gradient descent

iterations is 𝑡 = 100 and optimizer 𝑜𝑝𝑡 =

𝐴𝑑𝑎𝑚 . For evaluation, only 1000 randomly

selected from 10000 test data were used.

Wasserstein distance, Energy distance, and

Name Z~ALL Z~IID Z~N Z~U Remarks

Bhattacharyya distance O

Wasserstein distance O O O

Energy distance O O O

Lukaszyk Karmowski distance O O O

Trick discriminator O O O O Hard to find hyperparameter, slow speed

Z score square O

Z score absolute O

Logistic cutoff O Information lost

Truncated normal cutoff O Information lost

Boundary resampling O Information lost, no hyperparameter

Lukaszyk Karmowski distance were measured

by sampling enough samples (1000 samples)

from the train latent distribution 𝑍 . Logistic

cutoff and truncated normal cutoff were

excluded from the experiment due to too low

performance and difficult hyperparameter

search.

The following tables show the accuracy of the

classifier according to the learning rate and

hyperparameter when 𝑍~𝑁(0, 12)𝑑𝑧 .

Table 2. Bhattacharyya latent regulation loss accuracy

Table 3. Lukaszyk karmowski latent regulation loss accuracy

Table 4. Z score square latent regulation loss accuracy

Bhattacharyya distance Latent regulation loss weight

No loss 0.010 0.032 0.100 0.320 1.000 3.200 10.000

Optimizer learning rate 0.0010 0.701 0.699 0.716 0.741 0.725 0.715 0.683 0.707

0.0032 0.805 0.816 0.796 0.800 0.814 0.826 0.839 0.812

0.0100 0.798 0.802 0.803 0.802 0.830 0.863 0.907 0.893

0.0320 0.747 0.757 0.770 0.793 0.862 0.906 0.942 0.898

0.1000 0.657 0.650 0.665 0.748 0.891 0.918 0.864 0.735

0.3200 0.540 0.525 0.530 0.535 0.572 0.665 0.707 0.395

1.0000 0.458 0.428 0.408 0.415 0.425 0.465 0.563 0.347

Lukaszyk karmowski Latent regulation loss weight

No loss 0.010 0.032 0.100 0.320 1.000 3.200 10.000

Optimizer learning rate 0.0010 0.701 0.724 0.733 0.720 0.716 0.724 0.702 0.689

0.0032 0.805 0.795 0.820 0.811 0.800 0.822 0.828 0.829

0.0100 0.798 0.809 0.807 0.820 0.834 0.898 0.899 0.852

0.0320 0.747 0.772 0.773 0.805 0.881 0.933 0.930 0.904

0.1000 0.657 0.684 0.701 0.853 0.897 0.896 0.838 0.706

0.3200 0.540 0.583 0.624 0.820 0.872 0.668 0.473 0.374

1.0000 0.458 0.442 0.475 0.720 0.639 0.345 0.261 0.188

Z score square Latent regulation loss weight

No loss 0.010 0.032 0.100 0.320 1.000 3.200 10.000

Optimizer learning rate 0.0010 0.701 0.727 0.689 0.726 0.723 0.713 0.709 0.656

0.0032 0.805 0.812 0.806 0.815 0.803 0.808 0.811 0.756

0.0100 0.798 0.810 0.800 0.830 0.873 0.887 0.890 0.826

0.0320 0.747 0.738 0.793 0.880 0.914 0.912 0.894 0.826

0.1000 0.657 0.725 0.890 0.926 0.889 0.870 0.749 0.625

0.3200 0.540 0.814 0.883 0.865 0.698 0.500 0.383 0.272

1.0000 0.458 0.868 0.765 0.552 0.355 0.264 0.230 0.222

Table 5. Z score absolute latent regulation loss accuracy

Table 6. Wasserstein distance latent regulation loss accuracy

Table 7. Energy distance latent regulation loss accuracy

Table 8. Trick discriminator latent regulation loss accuracy

Z score absolute Latent regulation loss weight

No loss 0.010 0.032 0.100 0.320 1.000 3.200 10.000

Optimizer learning rate 0.0010 0.701 0.755 0.724 0.719 0.719 0.631 0.396 0.237

0.0032 0.805 0.819 0.814 0.828 0.816 0.745 0.535 0.291

0.0100 0.798 0.819 0.833 0.833 0.868 0.856 0.668 0.378

0.0320 0.747 0.767 0.772 0.846 0.898 0.890 0.771 0.502

0.1000 0.657 0.669 0.717 0.882 0.906 0.851 0.750 0.523

0.3200 0.540 0.566 0.622 0.813 0.844 0.696 0.502 0.426

1.0000 0.458 0.451 0.466 0.703 0.682 0.463 0.312 0.301

Wasserstein distance Latent regulation loss weight

No loss 0.010 0.032 0.100 0.320 1.000 3.200 10.000

Optimizer learning rate 0.0010 0.701 0.702 0.713 0.743 0.720 0.676 0.536 0.397

0.0032 0.805 0.803 0.801 0.793 0.777 0.716 0.579 0.388

0.0100 0.798 0.797 0.820 0.797 0.747 0.674 0.611 0.337

0.0320 0.747 0.752 0.731 0.716 0.733 0.705 0.631 0.461

0.1000 0.657 0.651 0.683 0.817 0.879 0.857 0.808 0.636

0.3200 0.540 0.546 0.601 0.816 0.895 0.875 0.875 0.762

1.0000 0.458 0.442 0.471 0.742 0.691 0.517 0.462 0.392

Energy distance Latent regulation loss weight

No loss 0.010 0.032 0.100 0.320 1.000 3.200 10.000

Optimizer learning rate 0.0010 0.701 0.731 0.720 0.747 0.694 0.729 0.667 0.547

0.0032 0.805 0.825 0.826 0.798 0.796 0.759 0.668 0.533

0.0100 0.798 0.827 0.822 0.771 0.783 0.711 0.616 0.484

0.0320 0.747 0.734 0.738 0.734 0.742 0.677 0.648 0.456

0.1000 0.657 0.660 0.689 0.698 0.856 0.873 0.810 0.614

0.3200 0.540 0.563 0.566 0.586 0.711 0.865 0.877 0.835

1.0000 0.458 0.471 0.476 0.442 0.500 0.604 0.660 0.592

Trick discriminator Latent regulation loss weight

No loss 0.010 0.032 0.100 0.320 1.000 3.200 10.000

Optimizer learning rate 0.0010 0.701 0.648 0.484 0.133 0.097 0.111 0.090 0.107

0.0032 0.805 0.786 0.597 0.214 0.111 0.092 0.091 0.084

0.0100 0.798 0.791 0.589 0.242 0.130 0.099 0.095 0.099

0.0320 0.747 0.687 0.496 0.176 0.123 0.115 0.110 0.082

0.1000 0.657 0.586 0.397 0.156 0.102 0.089 0.118 0.108

0.3200 0.540 0.497 0.308 0.122 0.100 0.098 0.093 0.104

1.0000 0.458 0.410 0.275 0.112 0.111 0.093 0.117 0.087

The following tables show the accuracy of the classifier according to the learning rate and

hyperparameter when 𝑍~𝑈(0, 12)𝑑𝑧 . Trick discriminator was excluded due to its low performance

and slow speed. Bhattacharyya distances, Z score absolute, and Z score square were excluded

because they were defined only in 𝑍~𝑁𝑑𝑧 .

Table 9. Lukaszyk Karmowski latent regulation loss accuracy

Table 10. Wasserstein latent regulation loss accuracy

Table 11. Energy latent regulation loss accuracy

Lukaszyk Karmowski distance Latent regulation loss weight

No loss 0.010 0.032 0.100 0.320 1.000 3.200 10.000

Optimizer learning rate 0.0010 0.743 0.756 0.738 0.739 0.736 0.759 0.748 0.743

0.0032 0.828 0.830 0.815 0.801 0.784 0.829 0.830 0.824

0.0100 0.748 0.777 0.772 0.759 0.797 0.874 0.899 0.898

0.0320 0.614 0.657 0.637 0.724 0.849 0.927 0.913 0.883

0.1000 0.515 0.505 0.539 0.633 0.903 0.890 0.788 0.667

0.3200 0.417 0.432 0.396 0.538 0.798 0.642 0.458 0.320

1.0000 0.342 0.340 0.353 0.380 0.629 0.376 0.223 0.202

Wasserstein distance Latent regulation loss weight

No loss 0.010 0.032 0.100 0.320 1.000 3.200 10.000

Optimizer learning rate 0.0010 0.743 0.743 0.766 0.746 0.753 0.738 0.632 0.435

0.0032 0.828 0.818 0.800 0.829 0.770 0.716 0.603 0.437

0.0100 0.748 0.746 0.726 0.719 0.679 0.658 0.570 0.461

0.0320 0.614 0.633 0.672 0.679 0.694 0.689 0.667 0.523

0.1000 0.515 0.514 0.503 0.646 0.856 0.880 0.884 0.829

0.3200 0.417 0.432 0.384 0.533 0.813 0.806 0.772 0.715

1.0000 0.342 0.316 0.335 0.394 0.643 0.450 0.330 0.312

Energy distance Latent regulation loss weight

No loss 0.010 0.032 0.100 0.320 1.000 3.200 10.000

Optimizer learning rate 0.0010 0.743 0.766 0.748 0.751 0.755 0.753 0.686 0.536

0.0032 0.828 0.803 0.814 0.793 0.763 0.722 0.621 0.508

0.0100 0.748 0.734 0.741 0.723 0.684 0.637 0.581 0.457

0.0320 0.614 0.644 0.658 0.686 0.699 0.634 0.576 0.440

0.1000 0.515 0.525 0.497 0.530 0.713 0.877 0.836 0.766

0.3200 0.417 0.419 0.448 0.424 0.450 0.611 0.798 0.825

1.0000 0.342 0.356 0.348 0.343 0.382 0.380 0.460 0.506

Table 12. Boundary resampling accuracy

3. Conclusion

When 𝑍~𝑁𝑑𝑧 , Bhattacharyya latent regulation

loss showed the best performance. However,

when 𝑍~𝑈𝑑𝑧 , Lukaszyk Karmowski regulation

loss showed the best performance. Overall,

performance was good when using statistical

distance latent regulation loss.

4. References

[1] Zachary C. Lipton, Subarna Tripathi,

“Precise Recovery of Latent Vectors from

Generative Adversarial Networks”

https://arxiv.org/abs/1702.04782

[2] Arun Patro ; Vishnu Makkapati ; Jayanta

Mukhopadhyay

Evaluation of Loss Functions for Estimation of

Latent Vectors from GAN

https://ieeexplore.ieee.org/document/8517097/

authors#authors

[3] Raymond A. Yeh, Chen Chen, Teck Yian Lim,

Alexander G. Schwing, Mark Hasegawa-Johnson,

Minh N. Do

Semantic Image Inpainting with Deep

Generative Models

https://arxiv.org/abs/1607.07539

[4] Antonia Creswell, Anil A Bharath

Inverting The Generator Of A Generative

Adversarial Network (II)

https://arxiv.org/abs/1802.05701

[5] Nicholas Egan, Jeffrey Zhang, Kevin Shen

Generalized Latent Variable Recovery for

Generative Adversarial Networks

https://arxiv.org/abs/1810.03764

[6] Xudong Mao, Qing Li, Haoran Xie, Raymond

Boundary resampling

Without resmapling Boundary resampling

Optimizer learning rate 0.0010 0.743 0.767

0.0032 0.828 0.814

0.0100 0.748 0.748

0.0320 0.614 0.781

0.1000 0.515 0.839

0.3200 0.417 0.760

1.0000 0.342 0.611

https://arxiv.org/abs/1702.04782
https://ieeexplore.ieee.org/document/8517097/authors#authors
https://ieeexplore.ieee.org/document/8517097/authors#authors
https://arxiv.org/abs/1607.07539
https://arxiv.org/abs/1802.05701
https://arxiv.org/abs/1810.03764

Y.K. Lau, Zhen Wang, Stephen Paul Smolley

Least Squares Generative Adversarial Networks

https://arxiv.org/abs/1611.04076

[7] Yann LeCun, Corinna Cortes, Christopher J.C.

Burges

THE MNIST DATABASE of handwritten digits

http://yann.lecun.com/exdb/mnist/

https://arxiv.org/abs/1611.04076
http://yann.lecun.com/exdb/mnist/

