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Abstract 

 Finding a latent vector that can generate 

specific data using a generative model is called 

latent vector recovery. When performing 

gradient descent based latent recovery, the 

latent vector being recovered may escape the 

train latent distribution. To prevent this, latent 

regulation loss or resampling was used in some 

papers. 

 In this paper, assuming that the generative 

model is trained with IID(Independent and 

Identically Distributed) random variables, I 

propose a statistical distance latent regulation 

loss that considers the train latent distribution 

as a one-dimensional distribution, the latent 

vector as a sample distribution, and the 

distance between the two distributions as a 

latent regulation loss. The statistical distance 

latent regulation loss considers the correlation 

between each element of the latent vector, so 

better latent vector recovery is possible. 

 In addition, I compared the performance of 

latent regulation losses and resampling 

methods of other papers as well as statistical 

distance latent regulation losses using several 

statistical distances. 

 In conclusion, the performance of 

Bhattacharyya latent regulation loss was the 

best when the train latent vector followed the 

normal distribution, and the Lukaszyk 

Karmowski regulation loss showed the best 

performance otherwise. 

 

1. Statistical distance latent regulation loss 

 The generative model (generator) 𝐺 is trained 

to convert the 𝑑𝑧 -dimensional multivariate 

random variable 𝑍 ∈ 𝑅𝑑𝑧  following a certain 

distribution to the 𝑑𝑥-dimensional multivariate 

random variable 𝑋 ∈ 𝑅𝑑𝑥. 

 In the case of GAN, usually latent vector 

𝑍~𝑈(𝑎, 𝑏)𝑑𝑧 or 𝑍~𝑁(𝜇, 𝜎2)𝑑𝑧 , and in the case of 

VAE, each element of latent vector 𝑍 follows a 

normal distribution with different means and 

variances. Finding the ideal latent vector 𝑧∗ 

that can generate any data 𝑥  sampled from 

data distribution 𝑋 through gradient descent 

using pre-trained generator 𝐺 is called latent 

vector recovery. There are gradient descent-

based and encoder-based methods for latent 

vector recovery. The encoder-based method 

requires additional encoder training. In this 

paper, only the gradient descent-based method 

is covered. 

 The gradient descent based latent vector 

recovery receives the error between the data 

𝐺(𝑧𝑝) generated through the latent vector 𝑧𝑝 

and the received data x as loss, and performs 
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gradient descent repeatedly for the latent 

vector 𝑧𝑝. 

 The following function is a function that 

performs latent vector recovery based on 

gradient descent. 

 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑙𝑎𝑡𝑒𝑛𝑡_𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦(𝑥𝑝 , 𝐺, 𝑛, 𝑜𝑝𝑡):   

    𝑧𝑝 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒( ) 

    𝑟𝑒𝑝𝑒𝑎𝑡 𝑡 𝑡𝑖𝑚𝑒𝑠:  

        𝐿 ← 𝑑𝑖𝑓𝑓 (𝑥𝑝, 𝐺(𝑧𝑝))  

        𝑧𝑝 ← 𝑧𝑝 − 𝑜𝑝𝑡 (
∆𝐿

∆𝑧𝑝
)  

    𝑟𝑒𝑡𝑢𝑟𝑛 𝑧𝑝 

 

 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒is a function that initializes the values 

of 𝑧𝑝 . 𝑡  is the number of times to perform 

gradient descent. 𝑜𝑝𝑡 is an optimizer. 𝑑𝑖𝑓𝑓 is a 

function that measures the difference between 

two data. Through the above function, 𝑧𝑝 can 

be found that minimizes 𝑑𝑖𝑓𝑓 (𝑥𝑝 , 𝐺(𝑧𝑝)).  

 However, when 𝑧𝑝  exists to make 

𝑑𝑖𝑓𝑓 (𝑥𝑝, 𝐺(𝑧𝑝)) small enough, the 𝑧𝑝 may not 

be the ideal latent vector 𝑧∗ . For example, 

suppose in the MNIST handwriting data, 𝑥𝑝 is 

the handwriting data of the number “1”, 𝐺(𝑧𝑝) 

currently produces the number “0” handwriting 

data, and 𝑧𝑝[1]  (the first element of 𝑧𝑝 ) 

represents the width of the handwriting data. If 

the other elements of 𝑧𝑝  remain unchanged 

and 𝑧𝑝[1] becomes extremely low, the width of 

the letter becomes very narrow, which can look 

like the number 1. However, for 𝑧𝑝 where 𝑧𝑝[1] 

is extremely low, 𝑃(𝑍 = 𝑧𝑝) will be very low or 

zero. In this case, 𝑧𝑝 cannot be regarded as a 

good latent vector that can generate 𝑥𝑝, and 

since it has already converged to the local 

optima, it is possible that additional gradient 

descent may not generate the number 1. That 

is, a good latent vector 𝑧𝑝 can be regarded as 

a value that minimizes 𝑑𝑖𝑓𝑓 (𝑥𝑝, 𝐺(𝑧𝑝)) while 

maximizing 𝑃(𝑍 = 𝑧𝑝).  

 To maximize 𝑃(𝑍 = 𝑧𝑝), latent regulation loss 

𝐿𝑙𝑟  is added to loss 𝐿  in [3, 4], and some 

elements of 𝑧𝑝 are resampling after gradient 

descent in [1].  

 The latent vector recovery using latent 

regulation loss proceeds as follows. 

  

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑙𝑎𝑡𝑒𝑛𝑡_𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦(𝑍, 𝑥𝑝 , 𝐺, 𝑛, 𝑜𝑝𝑡):   

    𝑧𝑝 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒( ) 

    𝑟𝑒𝑝𝑒𝑎𝑡 𝑡 𝑡𝑖𝑚𝑒𝑠:  

        𝐿 ← 𝑑𝑖𝑓𝑓 (𝑥𝑝, 𝐺(𝑧𝑝)) + λ𝑙𝑟𝐿𝑙𝑟  

        𝑧𝑝 ← 𝑧𝑝 − 𝑜𝑝𝑡 (
∆𝐿

∆𝑧𝑝
)  

    𝑟𝑒𝑡𝑢𝑟𝑛 𝑧  

 

𝐿𝑙𝑟 is the latent regulation loss weight, and λ𝑙𝑟 

is the latent regulation loss weight.  

 In this paper, to maximize 𝑃(𝑍 = 𝑧𝑝) , 

assuming that 𝑍 follows a certain IID random 

variable 𝐴𝑑𝑧 , I propose a method that uses the 

statistical distance between the distribution 𝐴 

and the sample distribution {𝑠|𝑠 ∈ 𝑧𝑝} as the 

latent regulation loss 𝐿𝑙𝑟 . Since the statistical 

distance latent regulation loss can consider the 

relationship between each element of 𝑧𝑝 , a 



better latent vector 𝑧𝑝 can be found. 

𝐿𝑙𝑟 = 𝐷𝑖𝑠𝑡(𝐴, {𝑠|𝑠 ∈ 𝑧𝑝}) 

 𝐷𝑖𝑠𝑡 is a function that represents the statistical 

distance between two distributions. Among 

several statistical distances, this paper used four 

statistical distances: Bhattacharyya distance, 

Wasserstein distance, Energy distance, and 

Lukaszyk Karmowski distance. 

 The following table shows the required 

conditions and features by latent regulation 

loss or resampling method. 

 

 

Table 1. Features by method 

Z~ALL in the above table means that 𝑍 can be 

used regardless of distribution, and Z~IID 

means that 𝑍 can be used when following IID 

distribution. The yellow items in the table are 

not suggested in other papers. The “trick 

discriminator” is the loss proposed in [3]. Z 

score square is the loss suggested in [4]. The 

logistic cutoff and truncated normal cutoff are 

the resampling methods proposed in [5]. 

Boundary resampling is a resampling method 

proposed in [1]. Resampling methods slow 

convergence because information loss occurs 

when resampling. 

 

2. Experiments 

For the experiment, pre-trained GAN using 

LSGAN [6] adversarial loss was used. Latent 

vector dimension 𝑑𝑧 = 256 . The model was 

trained using 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 =

𝐴𝑑𝑎𝑚(𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 10−5), 𝑒𝑝𝑜𝑐ℎ =

200, 𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒 = 32 . MNIST handwriting 

dataset [7] was used for training. FID of GAN 

trained with 𝑍~𝑁(0,1)𝑑𝑧  was 8.30641, and 

𝑍~𝑈(−1,1)𝑑𝑧 was 5.423009. 

 For the performance evaluation, I measured 

how well the generated data were classified 

into a classifier with an accuracy of 99.34%. 

Classifier was trained with 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 =

𝐴𝑑𝑎𝑚(𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 10−5), 𝑒𝑝𝑜𝑐ℎ =

50, 𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒 = 32 . 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒( )  was 𝑧𝑒𝑟𝑜𝑠( ) . 

For 𝑑𝑖𝑓𝑓, the 𝑙1 loss with the best result in [2] 

was used. The number of gradient descent 

iterations is 𝑡 = 100  and optimizer 𝑜𝑝𝑡 =

𝐴𝑑𝑎𝑚 . For evaluation, only 1000 randomly 

selected from 10000 test data were used. 

Wasserstein distance, Energy distance, and 

Name Z~ALL Z~IID Z~N Z~U Remarks

Bhattacharyya distance O

Wasserstein distance O O O

Energy distance O O O

Lukaszyk Karmowski distance O O O

Trick discriminator O O O O Hard to find hyperparameter, slow speed

Z score square O

Z score absolute O

Logistic cutoff O Information lost

Truncated normal cutoff O Information lost

Boundary resampling O Information lost, no hyperparameter



Lukaszyk Karmowski distance were measured 

by sampling enough samples (1000 samples) 

from the train latent distribution 𝑍 . Logistic 

cutoff and truncated normal cutoff were 

excluded from the experiment due to too low 

performance and difficult hyperparameter 

search. 

The following tables show the accuracy of the 

classifier according to the learning rate and 

hyperparameter when 𝑍~𝑁(0, 12)𝑑𝑧 . 

 

Table 2. Bhattacharyya latent regulation loss accuracy 

 

 

Table 3. Lukaszyk karmowski latent regulation loss accuracy 

 

 

Table 4. Z score square latent regulation loss accuracy 

Bhattacharyya distance Latent regulation loss weight

No loss 0.010 0.032 0.100 0.320 1.000 3.200 10.000

Optimizer learning rate 0.0010 0.701 0.699 0.716 0.741 0.725 0.715 0.683 0.707

0.0032 0.805 0.816 0.796 0.800 0.814 0.826 0.839 0.812

0.0100 0.798 0.802 0.803 0.802 0.830 0.863 0.907 0.893

0.0320 0.747 0.757 0.770 0.793 0.862 0.906 0.942 0.898

0.1000 0.657 0.650 0.665 0.748 0.891 0.918 0.864 0.735

0.3200 0.540 0.525 0.530 0.535 0.572 0.665 0.707 0.395

1.0000 0.458 0.428 0.408 0.415 0.425 0.465 0.563 0.347

Lukaszyk karmowski Latent regulation loss weight

No loss 0.010 0.032 0.100 0.320 1.000 3.200 10.000

Optimizer learning rate 0.0010 0.701 0.724 0.733 0.720 0.716 0.724 0.702 0.689

0.0032 0.805 0.795 0.820 0.811 0.800 0.822 0.828 0.829

0.0100 0.798 0.809 0.807 0.820 0.834 0.898 0.899 0.852

0.0320 0.747 0.772 0.773 0.805 0.881 0.933 0.930 0.904

0.1000 0.657 0.684 0.701 0.853 0.897 0.896 0.838 0.706

0.3200 0.540 0.583 0.624 0.820 0.872 0.668 0.473 0.374

1.0000 0.458 0.442 0.475 0.720 0.639 0.345 0.261 0.188

Z score square Latent regulation loss weight

No loss 0.010 0.032 0.100 0.320 1.000 3.200 10.000

Optimizer learning rate 0.0010 0.701 0.727 0.689 0.726 0.723 0.713 0.709 0.656

0.0032 0.805 0.812 0.806 0.815 0.803 0.808 0.811 0.756

0.0100 0.798 0.810 0.800 0.830 0.873 0.887 0.890 0.826

0.0320 0.747 0.738 0.793 0.880 0.914 0.912 0.894 0.826

0.1000 0.657 0.725 0.890 0.926 0.889 0.870 0.749 0.625

0.3200 0.540 0.814 0.883 0.865 0.698 0.500 0.383 0.272

1.0000 0.458 0.868 0.765 0.552 0.355 0.264 0.230 0.222



 

Table 5. Z score absolute latent regulation loss accuracy 

 

 

Table 6. Wasserstein distance latent regulation loss accuracy 

 

 

Table 7. Energy distance latent regulation loss accuracy 

 

 

Table 8. Trick discriminator latent regulation loss accuracy 

Z score absolute Latent regulation loss weight

No loss 0.010 0.032 0.100 0.320 1.000 3.200 10.000

Optimizer learning rate 0.0010 0.701 0.755 0.724 0.719 0.719 0.631 0.396 0.237

0.0032 0.805 0.819 0.814 0.828 0.816 0.745 0.535 0.291

0.0100 0.798 0.819 0.833 0.833 0.868 0.856 0.668 0.378

0.0320 0.747 0.767 0.772 0.846 0.898 0.890 0.771 0.502

0.1000 0.657 0.669 0.717 0.882 0.906 0.851 0.750 0.523

0.3200 0.540 0.566 0.622 0.813 0.844 0.696 0.502 0.426

1.0000 0.458 0.451 0.466 0.703 0.682 0.463 0.312 0.301

Wasserstein distance Latent regulation loss weight

No loss 0.010 0.032 0.100 0.320 1.000 3.200 10.000

Optimizer learning rate 0.0010 0.701 0.702 0.713 0.743 0.720 0.676 0.536 0.397

0.0032 0.805 0.803 0.801 0.793 0.777 0.716 0.579 0.388

0.0100 0.798 0.797 0.820 0.797 0.747 0.674 0.611 0.337

0.0320 0.747 0.752 0.731 0.716 0.733 0.705 0.631 0.461

0.1000 0.657 0.651 0.683 0.817 0.879 0.857 0.808 0.636

0.3200 0.540 0.546 0.601 0.816 0.895 0.875 0.875 0.762

1.0000 0.458 0.442 0.471 0.742 0.691 0.517 0.462 0.392

Energy distance Latent regulation loss weight

No loss 0.010 0.032 0.100 0.320 1.000 3.200 10.000

Optimizer learning rate 0.0010 0.701 0.731 0.720 0.747 0.694 0.729 0.667 0.547

0.0032 0.805 0.825 0.826 0.798 0.796 0.759 0.668 0.533

0.0100 0.798 0.827 0.822 0.771 0.783 0.711 0.616 0.484

0.0320 0.747 0.734 0.738 0.734 0.742 0.677 0.648 0.456

0.1000 0.657 0.660 0.689 0.698 0.856 0.873 0.810 0.614

0.3200 0.540 0.563 0.566 0.586 0.711 0.865 0.877 0.835

1.0000 0.458 0.471 0.476 0.442 0.500 0.604 0.660 0.592

Trick discriminator Latent regulation loss weight

No loss 0.010 0.032 0.100 0.320 1.000 3.200 10.000

Optimizer learning rate 0.0010 0.701 0.648 0.484 0.133 0.097 0.111 0.090 0.107

0.0032 0.805 0.786 0.597 0.214 0.111 0.092 0.091 0.084

0.0100 0.798 0.791 0.589 0.242 0.130 0.099 0.095 0.099

0.0320 0.747 0.687 0.496 0.176 0.123 0.115 0.110 0.082

0.1000 0.657 0.586 0.397 0.156 0.102 0.089 0.118 0.108

0.3200 0.540 0.497 0.308 0.122 0.100 0.098 0.093 0.104

1.0000 0.458 0.410 0.275 0.112 0.111 0.093 0.117 0.087



The following tables show the accuracy of the classifier according to the learning rate and 

hyperparameter when 𝑍~𝑈(0, 12)𝑑𝑧 . Trick discriminator was excluded due to its low performance 

and slow speed. Bhattacharyya distances, Z score absolute, and Z score square were excluded 

because they were defined only in 𝑍~𝑁𝑑𝑧 . 

 

 

Table 9. Lukaszyk Karmowski latent regulation loss accuracy 

 

 

Table 10. Wasserstein latent regulation loss accuracy 

 

 

Table 11. Energy latent regulation loss accuracy 

 

Lukaszyk Karmowski distance Latent regulation loss weight

No loss 0.010 0.032 0.100 0.320 1.000 3.200 10.000

Optimizer learning rate 0.0010 0.743 0.756 0.738 0.739 0.736 0.759 0.748 0.743

0.0032 0.828 0.830 0.815 0.801 0.784 0.829 0.830 0.824

0.0100 0.748 0.777 0.772 0.759 0.797 0.874 0.899 0.898

0.0320 0.614 0.657 0.637 0.724 0.849 0.927 0.913 0.883

0.1000 0.515 0.505 0.539 0.633 0.903 0.890 0.788 0.667

0.3200 0.417 0.432 0.396 0.538 0.798 0.642 0.458 0.320

1.0000 0.342 0.340 0.353 0.380 0.629 0.376 0.223 0.202

Wasserstein distance Latent regulation loss weight

No loss 0.010 0.032 0.100 0.320 1.000 3.200 10.000

Optimizer learning rate 0.0010 0.743 0.743 0.766 0.746 0.753 0.738 0.632 0.435

0.0032 0.828 0.818 0.800 0.829 0.770 0.716 0.603 0.437

0.0100 0.748 0.746 0.726 0.719 0.679 0.658 0.570 0.461

0.0320 0.614 0.633 0.672 0.679 0.694 0.689 0.667 0.523

0.1000 0.515 0.514 0.503 0.646 0.856 0.880 0.884 0.829

0.3200 0.417 0.432 0.384 0.533 0.813 0.806 0.772 0.715

1.0000 0.342 0.316 0.335 0.394 0.643 0.450 0.330 0.312

Energy distance Latent regulation loss weight

No loss 0.010 0.032 0.100 0.320 1.000 3.200 10.000

Optimizer learning rate 0.0010 0.743 0.766 0.748 0.751 0.755 0.753 0.686 0.536

0.0032 0.828 0.803 0.814 0.793 0.763 0.722 0.621 0.508

0.0100 0.748 0.734 0.741 0.723 0.684 0.637 0.581 0.457

0.0320 0.614 0.644 0.658 0.686 0.699 0.634 0.576 0.440

0.1000 0.515 0.525 0.497 0.530 0.713 0.877 0.836 0.766

0.3200 0.417 0.419 0.448 0.424 0.450 0.611 0.798 0.825

1.0000 0.342 0.356 0.348 0.343 0.382 0.380 0.460 0.506



 

Table 12. Boundary resampling accuracy 

 

3. Conclusion 

When 𝑍~𝑁𝑑𝑧 , Bhattacharyya latent regulation 

loss showed the best performance. However, 

when 𝑍~𝑈𝑑𝑧 , Lukaszyk Karmowski regulation 

loss showed the best performance. Overall, 

performance was good when using statistical 

distance latent regulation loss. 
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