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Abstract 

Finding a latent vector that can generate 

specific data using a generative model is called 

latent vector recovery. When performing 

gradient descent based latent recovery, the 

latent vector being recovered may escape the 

train latent vector distribution. To prevent this, 

latent regulation loss has been used in many 

papers. In this paper, I propose a Wasserstein 

latent regulation loss to improve the 

performance of latent recovery, assuming that 

the generative model is trained with IID 

(Independent and identically distributed) 

random variables. The proposed Wasserstein 

latent regulation loss is the Wasserstein 

distance between the sample distribution of the 

train probability distribution and the latent 

vector being recovered. This paper compares 

the latent regulation loss of several papers, 

including the proposed Wasserstein latent 

regulation loss. In conclusion, the Wasserstein 

regulation loss and the log normal density 

function proposed in [1] showed the best 

performance. 

 

1. Latent regulation loss 

The generative model (generator) 𝐺 is trained 

to convert the 𝑑𝑧  dimension multivariate 

random variable 𝑍 ∈ 𝑅𝑑𝑧 that follows a specific 

distribution to the 𝑑𝑥  dimension data 

multivariable random variable 𝑋 ∈ 𝑅𝑑𝑥. Finding 

a latent vector 𝑧𝑝  that can generate specific 

data 𝑥𝑝  sampled from 𝑋  through gradient 

descent using a pre-trained generator G is 

called gradient descent based latent vector 

recovery. In this paper, only latent vector 

recovery using gradient descent is covered. 

 The following function is a function that 

performs gradient descent based latent vector 

recovery. 

 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑙𝑎𝑡𝑒𝑛𝑡_𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦(𝑥𝑝 , 𝐺, 𝑛, 𝑜𝑝𝑡):   

    𝑧𝑝 ← 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑍) 

    𝑟𝑒𝑝𝑒𝑎𝑡 𝑛 𝑡𝑖𝑚𝑒𝑠:  

        𝐿 ← 𝑑𝑖𝑓𝑓 (𝑥𝑝, 𝐺(𝑧𝑝))  

        𝑧𝑝 ← 𝑧𝑝 − 𝑜𝑝𝑡 (
∆𝐿

∆𝑧𝑝
)  

    𝑟𝑒𝑡𝑢𝑟𝑛 𝑧𝑝 

𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 is sampling one value from a random 

variable. 𝑛 is the number of times to perform 

gradient descent. 𝑜𝑝𝑡 is an optimizer. 𝑑𝑖𝑓𝑓 is a 

function that measures the difference between 

two data. 

 In this paper, I propose a method of adding 

Wasserstein latent restriction loss to loss 𝐿 to 

improve the performance of latent recovery 

when 𝑍 is an IID random variables that follows 
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an specific probability distribution 𝐴𝑑𝑧 . 

  When 𝑍~𝐴𝑑𝑧 , the set of each element of 

𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑍)  can be called the one-

dimensional sample distribution �̅� sampled 𝑑𝑧 

times from probability distribution 𝐴. Similarly, 

each set of elements of 𝑧𝑝  is treated as a 

sample distribution, and the Wasserstein 

distance between the two sample distributions 

becomes a Wasserstein latent restriction loss. 

 

 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑙𝑎𝑡𝑒𝑛𝑡_𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦(𝑥𝑝, 𝐺, 𝑛, 𝑜𝑝𝑡):   

    𝑧𝑝 ← 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑍) 

    𝑟𝑒𝑝𝑒𝑎𝑡 𝑛 𝑡𝑖𝑚𝑒𝑠:  

        𝐿𝑙𝑟 ← 𝑊𝑑𝑖𝑠𝑡 (𝑧𝑝, 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑍)) 

        𝐿 ← 𝑑𝑖𝑓𝑓 (𝑥𝑝, 𝐺(𝑧𝑝)) + λ𝑙𝑟𝐿𝑙𝑟  

        𝑧𝑝 ← 𝑧𝑝 − 𝑜𝑝𝑡 (
∆𝐿

∆𝑧𝑝
)  

    𝑟𝑒𝑡𝑢𝑟𝑛 𝑧  

 

𝑊𝑑𝑖𝑠𝑡 is the Wasserstein distance between the 

two sample distributions. Reducing the latent 

restriction loss is to increase 𝑃(𝑍 = 𝑧𝑝) . 𝑧𝑝 

with high 𝑃(𝑍 = 𝑧𝑝)  is also high in 𝑃 (𝑋 =

𝐺(𝑧𝑝)), which means that if generator G is ideal, 

𝑧𝑝 not only expresses 𝑥𝑝 well, but also has a 

low probability of falling into local optima. For 

example, suppose that in MNIST handwriting 

data, 𝑥𝑝 is the handwriting of the number “1” 

picture, 𝐺(𝑧𝑝) produces the current number “0” 

picture, and 𝑧𝑝[1] represents the width of the 

letter. If the other elements of 𝑧𝑝  remain 

unchanged and 𝑧𝑝[1] becomes extremely low, 

the width of the letter becomes very narrow, 

which can look like the number “1” picture. 

However, for 𝑧𝑝 where 𝑧𝑝[1] is extremely low, 

𝑃(𝑍 = 𝑧𝑝) will be very low or zero. In this case, 

𝑧𝑝 cannot be regarded as a good latent vector 

that can generate 𝑥𝑝, and since it has already 

converged to local optima, it is highly likely that 

even if additional gradient descent is 

performed, global optima number “1” picture 

cannot be generated. That is, good 𝑧𝑝 can be 

regarded as a value that minimizes 

𝑑𝑖𝑓𝑓 (𝑥𝑝, 𝐺(𝑧𝑝)) while maximizing 𝑃(𝑍 = 𝑧𝑝).  

 In general, since GAN is trained with IID 

random variables such as 𝑍~𝑈(𝑎, 𝑏)𝑑𝑧  or 

𝑍~𝑁(𝜇, 𝜎2)𝑑𝑧 , proposed Wasserstein latent 

restriction loss can be used for latent vector 

recovery. In addition, in the case of VAE, since 

all elements of the latent vector follow a normal 

distribution, it can be transformed into an IID 

random variable through scale and shift. 

 

2. Experiments 

For the experiment, pre-trained GAN using 

LSGAN [6] adversarial loss was used. MNIST 

handwriting dataset [7] was used for the data. 

For the performance evaluation, I measured 

how well the generated data were classified 

into a classifier with an accuracy of 99.4%. For 

𝑑𝑖𝑓𝑓, the 𝑙1 loss with the best result in [2] was 

used. The number of gradient descent iterations 

is 𝑛 = 200  and optimizer 𝑜𝑝𝑡 = 𝐴𝑑𝑎𝑚 . For 

evaluation, only 1000 of 10000 test data were 

used. 

 The latent regulation loss compared is seven, 

including the two distances added in this paper. 



“Wasserstein distance” and “Energy distance” 

are added latent regulation loss in this paper. 

Energy latent regulation loss uses the energy 

distance between two sample distributions. The 

“trick discriminator” is the loss proposed in [3]. 

The log normal density is the loss suggested in 

[4]. The logistic cutoff and truncated normal 

cutoff are the clipping methods proposed in [5]. 

Logistic cutoff has two hyperparameters, of 

which b is fixed to 2, which showed the best 

performance in the paper. 

The following table shows the accuracy of the 

classifier according to the learning rate and 

hyperparameter. 

Wasserstein distance  Regulation loss weight   

  0 0.01 0.1 1 10 

Learning rate 0.001 46 47.1 45.1 37 19.7 

 0.01 75.8 79.5 80.5 70.2 46.8 

 0.1 73.5 83.9 94.3 94.7 86.6 

 1 49.4 74.2 82.2 52.5 41.4 

Table 1. Wasserstein distance accuracy 

 

Energy distance  Regulation loss weight   

  0 0.01 0.1 1 10 

Learning rate 0.001 46 49.4 46.4 41 23.5 

 0.01 75.8 77.9 79 72.1 47.3 

 0.1 73.5 74.5 92.6 93.2 85.1 

 1 49.4 55.4 66.8 81.3 69.2 

Table 2. Energy distance accuracy 

 

Trick discriminator  Regulation loss weight    

  0 0.000001 0.00001 0.0001 0.001 0.01 

Learning rate 0.001 46 47.9 48.2 45.3 45.1 35 

 0.01 75.8 77.6 77.8 77.5 77 66.7 

 0.1 73.5 73 69.1 71.3 69.3 54.8 

 1 49.4 46.9 45.9 49 51.2 40.2 

Table 3. Trick discriminator accuracy 

 

Log normal density  Regulation loss weight   



  0 0.01 0.1 1 10 

Learning rate 0.001 46 46.2 46.3 43.6 27.4 

 0.01 75.8 78.9 87.2 95.5 91.9 

 0.1 73.5 93 95.1 86.9 69.9 

 1 49.4 15.4 58.3 33.7 20.9 

Table 4. Log normal density accuracy 

 

Logistic cutoff  hyperparameter   

  -1 0 1 2 

Learning rate 0.01 49.32 10.3 13.5 49.28 

 0.1 73.3 25 52.1 79.1 

 1 47.2 77.9 71.3 70.9 

 10 31.6 76.6 23.6 16.1 

 100 22.5 73.8 8.5 9.9 

Table 5. Logistic cutoff accuracy 

 

 

Truncated normal cutoff Hyperparameter   

  0 1 2 3 

Learning rate 0.01 10.9 15.2 51 83.9 

 0.1 22 53.1 80.8 87.5 

 1 75.1 69.9 76.5 77 

 10 76.5 24.5 15.5 16.2 

 100 74.6 9.8 10.5 11.5 

Table 6. Truncated normal cutoff accuracy 

 

3. Conclusion 

Overall, the performances of Wasserstein latent 

regulation loss and Log normal density latent 

regulation loss were the best. 
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