
Add latent restriction loss when recovering latent vector

Jeongik Cho1

Dept. of Computer Science and Engineering1

College of Engineering1

Konkuk University, Seoul, Korea1

jeongik. jo. 01@gmail. com1

Abstract

 When a pre-trained generative model is given,

the process of finding the latent vector that

produces the data closest to the input data is

called the latent vector recover. The latent

vector recover receives the difference between

the generated data and the input data

generated through the latent vector as

reconstruction loss and performs gradient

descent repeatedly on the latent vector to find

the optimal latent vector.

 In this paper, I propose a method to find a

better latent vector by adding a latent

restriction loss in addition to reconstruction loss

during latent vector recovery. The latent

restriction loss is a loss that makes the latent

vector follow the distribution of the latent

vector used when training the generative model

during latent vector recovery. The distance

between the "distribution of latent vector used

in training the generative model" and "latent

vector during latent vector recovery" becomes

the latent restriction loss.

1. Latent vector recover

When a pre-trained generative model is given,

the process of finding the latent vector that

produces the data closest to the input data is

called the latent vector recover. In general, the

latent vector recover is performed through the

process of repeatedly performing gradient

descent on the latent vector by taking the

difference between the input data and the

generated data as a loss.

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑙𝑎𝑡𝑒𝑛𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑟𝑒𝑐𝑜𝑣𝑒𝑟:

 𝑓𝑜𝑟 𝑖 = 0 𝑡𝑜 𝑛:

 𝑟𝑐𝑛 𝑙𝑜𝑠𝑠 ← 𝑑𝑖𝑓𝑓(𝐺(𝑙𝑡𝑛), 𝑥)

 𝑙𝑡𝑛 ← 𝑜𝑝𝑡(𝑟𝑐𝑛 𝑙𝑜𝑠𝑠, 𝑙𝑡𝑛)

 𝑟𝑒𝑡𝑢𝑟𝑛 𝑙𝑡𝑛

 𝑙𝑡𝑛 is a latent vector. 𝐺 is a generative model.

𝐺(𝑙𝑡𝑛) is data generated by 𝐺 receiving 𝑙𝑡𝑛 .

𝑑𝑖𝑓𝑓 is a function that outputs the difference

between the two data. 𝑜𝑝𝑡 is a function that

receives loss and variable and outputs the

updated variable in the direction of minimizing

loss.

mailto:jeongik.jo.01@gmail.com
mailto:jeongik.jo.01@gmail.com

Through the above process, the latent vector

can be recovered.

2. Latent restriction loss

 In this paper, I propose a method to find a

better latent vector by adding a latent

restriction loss to the loss during the latent

vector recover process. The generative model is

trained to receive the latent vector of a specific

distribution and output the distribution of train

data during training. However, in the process of

latent vector recovery, when updating the latent

vector through gradient descent, the latent

vector may become very far from the

distribution of the latent vector received during

training. This means that even if 𝑑𝑖𝑓(𝐺(𝑙𝑡𝑛), 𝑥)

is small, the latent vector 𝑙𝑡𝑛 may not properly

represent the input data 𝑥.

 To prevent this, if the distance between the

distribution of latent vectors used in training

the generative model and the latent vectors in

gradient descent during latent vector recovery

is added to the loss, 𝑙𝑡𝑛 that better represents

the input data 𝑥 can be found.

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑙𝑎𝑡𝑒𝑛𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑟𝑒𝑐𝑜𝑣𝑒𝑟:

 𝑓𝑜𝑟 𝑖 = 0 𝑡𝑜 𝑛:

 𝑟𝑐𝑛 𝑙𝑜𝑠𝑠 ← 𝑑𝑖𝑓𝑓(𝐺(𝑙𝑡𝑛), 𝑥)

 𝑙𝑟 𝑙𝑜𝑠𝑠 ← 𝑑𝑖𝑠𝑡(𝑙𝑡𝑛, 𝑡𝑟𝑎𝑖𝑛 𝑙𝑡𝑛)

 𝑙𝑜𝑠𝑠 ← 𝑟𝑐𝑛 𝑙𝑜𝑠𝑠 + 𝛼𝑙𝑟𝑙𝑟 𝑙𝑜𝑠𝑠

 𝑙𝑡𝑛 ← 𝑜𝑝𝑡(𝑙𝑜𝑠𝑠, 𝑙𝑡𝑛)

 𝑟𝑒𝑡𝑢𝑟𝑛 𝑙𝑡𝑛

𝑡𝑟𝑎𝑖𝑛 𝑙𝑡𝑛 is the distribution of latent vectors

used in G training. 𝑑𝑖𝑠𝑡 is a function indicating

the distance between two distributions. Each

element of the vector input to 𝑑𝑖𝑠𝑡 is treated

as a sample. For example, the distance between

a vector [1.5, 2.0, -0.5] and a vector [2.0, -0.5,

1.5] is 0. 𝑙𝑟 𝑙𝑜𝑠𝑠 is latent restriction loss. 𝛼𝑙𝑟 is

the weight of 𝑙𝑟 𝑙𝑜𝑠𝑠.

3. Experiment

 I tested the performance difference with latent

restriction loss in Defense-GAN using Latent

recovery. In the experiment, an MNIST

handwriting dataset in which each pixel value

was normalized from -1 to 1 was used. Classifier

has an accuracy of 99.38%. GAN follows the

structure of DC-GAN and receives a 256-

dimensional latent vector following a gaussian

distribution, and outputs MNIST handwriting

data.

𝑛 = 200, 𝑑𝑖𝑓𝑓 = 𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑒𝑟𝑟𝑜𝑟, 𝑑𝑖𝑠𝑡 =

𝑤𝑎𝑠𝑠𝑒𝑟𝑠𝑡𝑒𝑖𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑜𝑝𝑡 =

𝐴𝑑𝑎𝑚(𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 0.001, 𝑏𝑒𝑡𝑎1 =

0.9, 𝑏𝑒𝑡𝑎2 = 0.999) was used for latent vector

recovery, and 10 randomly initialized latent

vectors per data were used. FGSM was used as

an adversarial attack, and the noise magnitude

was 0.7.

𝑛𝑜𝑖𝑠𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 = 𝑐𝑙𝑖𝑝(𝑖𝑛𝑝𝑢𝑡 𝑖𝑚𝑎𝑔

+ 𝑛𝑜𝑖𝑠𝑒 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒

× 𝐹𝐺𝑆𝑀 𝑛𝑜𝑖𝑠𝑒, −1 𝑡𝑜 1)

Because the latent vector recovery took a long

time, 1000 randomly selected data among

10000 MNIST test data were used for evaluation.

 As a result of the experiment, the accuracy of

the classifier was 1.4% when the Defense GAN

was not used, 55.3% for the Defense GAN

without a Latent restriction loss, and 64.1% for

the Defense GAN with a Latent restriction loss

weight of 1. This shows that latent restriction

loss helps to find latent vectors that better

represent the input data.

4. References

Pouya Samangouei, Maya Kabkab, Rama

Chellappa

Defense-GAN: Protecting Classifiers Against

Adversarial Attacks Using Generative Models

https://arxiv.org/abs/1805.06605

Yann LeCun, Corinna Cortes, Christopher J.C.

Burges

THE MNIST DATABASE of handwritten digits

http://yann.lecun.com/exdb/mnist/

Alec Radford, Luke Metz, Soumith Chintala

Unsupervised Representation Learning with

Deep Convolutional Generative Adversarial

Networks

https://arxiv.org/abs/1511.06434

Ian J. Goodfellow, Jonathon Shlens, Christian

Szegedy

Explaining and Harnessing Adversarial

Examples

https://arxiv.org/abs/1412.6572

Diederik P. Kingma, Jimmy Ba

Adam: A Method for Stochastic Optimization

https://arxiv.org/abs/1412.6980

https://arxiv.org/abs/1805.06605
http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1412.6980

