Triple Cosines Lemma and π-sums of Arccosines

Yuly Shipilevsky

Abstract

We obtain a relationship between cosines of two independent angles and cosine of the angle that depends on them in 3D space and then we use that relationship to obtain π-sums of Arccosines.

1. Triple Cosines Lemma

In a Cartesian coordinate system for a three-dimensional space of an ordeed triplet of axes: $\mathrm{OX}, \mathrm{OY}, \mathrm{OZ}$ that go through the origin O , let the angle $\mathrm{AOX}=\alpha$, the angle $\mathrm{XOB}=\beta$. See Figure 1.

Figure 1. Triple Cosines Lemma

Let us find the angle $\mathrm{AOB}=\gamma$.
Lemma 1. $\cos \gamma=\cos \alpha \cos \beta$
Proof. Let OM be a unit vector in the direction of OA, let OL be a unit vector in the direction of $\mathrm{OB} . \mathrm{OM}=(\cos \alpha, \sin \alpha, 0), \mathrm{OL}=(\cos \beta, 0, \sin \beta$). Since the dot product of vectors OM and OL is: $\mathrm{OM} * \mathrm{OL}=|\mathrm{OM}||\mathrm{OL}| \cos$ $\gamma=\cos \gamma$, finally we have: $\cos \gamma=\cos \alpha \cos \beta$.

2. Triple Arccosines Theorem

Theorem 1. If $\alpha_{1}+\beta_{1}=\pi / 2, \alpha_{2}+\beta_{2}=\pi / 2, \alpha_{3}+\beta_{3}=\pi / 2$, then:
$\arccos \left(\cos \alpha_{1} \cos \beta_{3}\right)+\arccos \left(\cos \alpha_{2} \cos \beta_{l}\right)+\arccos \left(\cos \alpha_{3} \cos \beta_{2}\right)=\pi$

Proof. Let $\mathrm{ABCDA}_{1} \mathrm{~B}_{1} \mathrm{C}_{1} \mathrm{D}_{1}$ be a cube (see Figure 2).
Let $\mathrm{M} \subseteq[\mathrm{AB}], \mathrm{N} \subseteq\left[\mathrm{BB}_{1}\right], \mathrm{L} \subseteq[\mathrm{BC}]$.
Let $\alpha_{1}=\angle \mathrm{NMB}, \alpha_{2}=\angle \mathrm{BNL}, \alpha_{3}=\angle \mathrm{BLM}$, $\beta_{1}=\angle \mathrm{MNB}, \beta_{2}=\angle \mathrm{NLB}, \beta_{3}=\angle \mathrm{BML}$,

Then, considering the triangles MNB, NBL and MBL we have:

$$
\alpha_{1}+\beta_{1}=\pi / 2, \alpha_{2}+\beta_{2}=\pi / 2, \alpha_{3}+\beta_{3}=\pi / 2 .
$$

By applying the Triple Cosines Lemma 1 to the triangle MNL we finally have:
$\arccos \left(\cos \alpha_{1} \cos \beta_{3}\right)+\arccos \left(\cos \alpha_{2} \cos \beta_{1}\right)+\arccos \left(\cos \alpha_{3} \cos \beta_{2}\right)=\pi$.
Remark. Note that we could generalize Theorem 1 for the case of 4 -sided and 6 -sided polygons: intersections of plane and cube, instead of the triangle cross section as well as for intersections of n-dimensioned hypercubes $(\mathrm{n}>3)$.

Figure 2. Triple Arccosines Theorem

3. π-sum of 6 Arccosines Theorem

Let us consider a tetrahedron SABC , having the base ABC , the height SO , where O is the orthocenter of ABC : the three altitudes - AP, BQ and CR of ABC intersect at the orthocenter O. Thus, SO, ASP, BSQ, CSR are perpendicular to the base ABC (see Figure 3).
Y. Shipilevsky

Figure 3. π-sum of 6 Arccosines Theorem
Let $\alpha_{1}=\angle \mathrm{SAP}, \beta_{11}=\angle \mathrm{PAC}, \beta_{12}=\angle \mathrm{PAB}, \gamma_{1}=\angle \mathrm{SAC}, \delta_{1}=\angle \mathrm{SAB}$,

$$
\begin{aligned}
& \alpha_{2}=\angle \mathrm{SBQ}, \beta_{21}=\angle \mathrm{ABQ}, \beta_{22}=\angle \mathrm{QBC}, \gamma_{2}=\angle \mathrm{SBA}, \delta_{2}=\angle \mathrm{SBC} \\
& \alpha_{3}=\angle \mathrm{SCR}, \beta_{31}=\angle \mathrm{BCR}, \beta_{32}=\angle \mathrm{RCA}, \gamma_{3}=\angle \mathrm{BCS}, \delta_{3}=\angle \mathrm{SCA}
\end{aligned}
$$

Theorem 2. If $\alpha_{1}, \delta_{1}+\gamma_{2}<\pi, \quad \alpha_{2}, \delta_{2}+\gamma_{3}<\pi, \alpha_{3}, \delta_{3}+\gamma_{1}<\pi$, then:
$\arccos \left(\cos \gamma_{1} / \cos \alpha_{1}\right)+\arccos \left(\cos \delta_{1} / \cos \alpha_{1}\right)+$ $\arccos \left(\cos \gamma_{2} / \cos \alpha_{2}\right)+\arccos \left(\cos \delta_{2} / \cos \alpha_{2}\right)+$ $\arccos \left(\cos \gamma_{3} / \cos \alpha_{3}\right)+\arccos \left(\cos \delta_{3} / \cos \alpha_{3}\right)=\pi$.

Proof. By applying the Triple Cosines Lemma 1 to the angles at the vertex A of tetrahedron SABC, we have:

$$
\cos \gamma_{1}=\cos \alpha_{1} \cos \beta_{11}, \cos \delta_{1}=\cos \alpha_{1} \cos \beta_{12} .
$$

Thus, $\beta_{11}=\arccos \left(\cos \gamma_{1} / \cos \alpha_{1}\right), \beta_{12}=\arccos \left(\cos \delta_{1} / \cos \alpha_{1}\right)$, So, $\angle \mathrm{BAC}=\beta_{11}+\beta_{12}=\arccos \left(\cos \gamma_{1} / \cos \alpha_{1}\right)+\arccos \left(\cos \delta_{1} / \cos \alpha_{1}\right)$. Similarly, $\angle \mathrm{ABC}=\arccos \left(\cos \gamma_{2} / \cos \alpha_{2}\right)+\arccos \left(\cos \delta_{2} / \cos \alpha_{2}\right)$ and $\angle \mathrm{BCA}=\arccos \left(\cos \gamma_{3} / \cos \alpha_{3}\right)+\arccos \left(\cos \delta_{3} / \cos \alpha_{3}\right)$.
Since $\angle \mathrm{BAC}+\angle \mathrm{ABC}+\angle \mathrm{BCA}=\pi$, we prove the Theorem 2 .

References

[1] C. B. Boyer, History of Analytic Geometry, Dover Publications, 2004.
[2] J. W. Cannon, Geometry of Lengths, Areas, and Volumes. American Mathematical Soc., 2017.
[3] J. Köller, Tetrahedron, Mathematische Basteleien, 2001.
[4] J. Stewart, L. Redlin and S. Watson, Algebra and Trigonometry, Cengage Learning, 2015.

[^0]
[^0]: Yuly Shipilevsky, Toronto, Ontario, Canada
 E-mail address; yulysh2000@yahoo.ca

