Triple Cosines Lemma and π -sums of Arccosines

Yuly Shipilevsky

Abstract. We obtain a relationship between cosines of two independent angles and cosine of the angle that depends on them in 3D space and then we use that relationship to obtain π -sums of Arccosines.

1. Triple Cosines Lemma

In a Cartesian coordinate system for a three-dimensional space of an ordeed triplet of axes: OX, OY, OZ that go through the origin O, let the angle $AOX = \alpha$, the angle $XOB = \beta$. See Figure 1.

Figure 1. Triple Cosines Lemma

2 Y. Shipilevsky

Let us find the angle $AOB = \gamma$.

Lemma 1. $\cos \gamma = \cos \alpha \cos \beta$

Proof. Let OM be a unit vector in the direction of OA, let OL be a unit vector in the direction of OB. OM = ($\cos \alpha$, $\sin \alpha$, 0), OL = ($\cos \beta$, 0, $\sin \beta$). Since the dot product of vectors OM and OL is: OM * OL = |OM| |OL| $\cos \gamma = \cos \gamma$, finally we have: $\cos \gamma = \cos \alpha \cos \beta$.

2. Triple Arccosines Theorem

Theorem 1. If $\alpha_1 + \beta_1 = \pi/2$, $\alpha_2 + \beta_2 = \pi/2$, $\alpha_3 + \beta_3 = \pi/2$, then:

 $\arccos(\cos\alpha_1\cos\beta_3) + \arccos(\cos\alpha_2\cos\beta_1) + \arccos(\cos\alpha_3\cos\beta_2) = \pi$

Proof. Let $ABCDA_1B_1C_1D_1$ be a cube (see Figure 2).

Let $M \subseteq [AB], N \subseteq [BB_1], L \subseteq [BC].$

Let $\alpha_1 = \angle \text{NMB}, \alpha_2 = \angle \text{BNL}, \alpha_3 = \angle \text{BLM},$

 $\beta_1 = \angle MNB, \beta_2 = \angle NLB, \beta_3 = \angle BML,$

Then, considering the triangles MNB, NBL and MBL we have:

$$\alpha_1 + \beta_1 = \pi/2, \ \alpha_2 + \beta_2 = \pi/2, \ \alpha_3 + \beta_3 = \pi/2.$$

By applying the Triple Cosines Lemma 1 to the triangle MNL we finally have:

$$\arccos(\cos\alpha_1\cos\beta_3) + \arccos(\cos\alpha_2\cos\beta_1) + \arccos(\cos\alpha_3\cos\beta_2) = \pi.$$

Remark. Note that we could generalize Theorem 1 for the case of 4-sided and 6-sided polygons: intersections of plane and cube, instead of the triangle cross section as well as for intersections of n-dimensioned hypercubes(n > 3).

Figure 2. Triple Arccosines Theorem

3. π -sum of 6 Arccosines Theorem

Let us consider a tetrahedron SABC, having the base ABC, the height SO, where O is the orthocenter of ABC: the three altitudes - AP, BQ and CR of ABC intersect at the orthocenter O. Thus, SO, ASP, BSQ, CSR are perpendicular to the base ABC (see Figure 3).

4 Y. Shipilevsky

Figure 3. π -sum of 6 Arccosines Theorem

Let $\alpha_1 = \angle SAP$, $\beta_{11} = \angle PAC$, $\beta_{12} = \angle PAB$, $\gamma_1 = \angle SAC$, $\delta_1 = \angle SAB$, $\alpha_2 = \angle SBQ$, $\beta_{21} = \angle ABQ$, $\beta_{22} = \angle QBC$, $\gamma_2 = \angle SBA$, $\delta_2 = \angle SBC$, $\alpha_3 = \angle SCR$, $\beta_{31} = \angle BCR$, $\beta_{32} = \angle RCA$, $\gamma_3 = \angle BCS$, $\delta_3 = \angle SCA$, Theorem 2. If $\alpha_1, \delta_2 + \gamma_2 \leq \pi$, $\alpha_2, \delta_3 + \gamma_3 \leq \pi$, $\alpha_3, \delta_4 + \gamma_4 \leq \pi$

Theorem 2. If $\alpha_1, \delta_1 + \gamma_2 < \pi, \alpha_2, \delta_2 + \gamma_3 < \pi, \alpha_3, \delta_3 + \gamma_1 < \pi$, *then:*

```
\arccos(\cos \gamma_1 / \cos \alpha_l) + \arccos(\cos \delta_l / \cos \alpha_l) +
```

 $\arccos(\cos \gamma_2 / \cos \alpha_2) + \arccos(\cos \delta_2 / \cos \alpha_2) +$

 $\arccos(\cos \gamma_3 / \cos \alpha_3) + \arccos(\cos \delta_3 / \cos \alpha_3) = \pi.$

Proof. By applying the Triple Cosines Lemma 1 to the angles at the vertex A of tetrahedron SABC, we have:

 $\cos \gamma_1 = \cos \alpha_1 \cos \beta_{11}, \cos \delta_1 = \cos \alpha_1 \cos \beta_{12}$

Thus, $\beta_{11} = \arccos(\cos \gamma_1 / \cos \alpha_1)$, $\beta_{12} = \arccos(\cos \delta_1 / \cos \alpha_1)$, So, $\angle BAC = \beta_{11} + \beta_{12} = \arccos(\cos \gamma_1 / \cos \alpha_1) + \arccos(\cos \delta_1 / \cos \alpha_1)$. Similarly, $\angle ABC = \arccos(\cos \gamma_2 / \cos \alpha_2) + \arccos(\cos \delta_2 / \cos \alpha_2)$ and $\angle BCA = \arccos(\cos \gamma_3 / \cos \alpha_3) + \arccos(\cos \delta_3 / \cos \alpha_3)$. Since $\angle BAC + \angle ABC + \angle BCA = \pi$, we prove the Theorem 2.

References

[1] C. B. Boyer, History of Analytic Geometry, Dover Publications, 2004.

[2] J. W. Cannon, Geometry of Lengths, Areas, and Volumes. American Mathematical Soc., 2017.

[3] J. Köller, Tetrahedron, Mathematische Basteleien, 2001.

[4] J. Stewart, L. Redlin and S. Watson, Algebra and Trigonometry, Cengage Learning, 2015.

Yuly Shipilevsky, Toronto, Ontario, Canada E-mail address; yulysh2000@yahoo.ca