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1 Introduction

From [1] or the book [2], p.92, we know the inequality dim(G) ≤ 2 · χ(G) for every graph G, where
χ(G) means the chromatic number of G. Here we show a further inequality. For the sake of clarity we
repeat the definition of the dimension of a graph. Please see [1] and [2], p.88.
Here an embedding means an injective map of an isomorphic graph, different from [1]. A display is
less. Note that a display is also an isomorphic graph and the number of intersection points of different
edges is finite.

Definition 1. Let G be an arbitrary graph. We define the dimension of G, in symbols dim(G), as the
minimum number n such that G can be displayed in the Euclidean space Rn by an isomorphic graph and
all edges have length one.

Theorem 1. Let G be an arbitrary graph, and let vert be the set of its vertices. It holds the inequality

dim(G)≤ cardinality(vert)

This is an improvement in many cases. For instance, if G is the complete graph Kr,r > 1, we have

dim(G) = r−1 < r = cardinality(vert(G))< 2 · r = 2 ·χ(G).

The proof of the theorem is yielded in the following section.

2 Construction

We prove the theorem only for cardinality(vert) < ∞. Hence we assume a graph G with a finite set of
vertices. Let {v1,v2, . . .vn−1,vn} be the set of vertices of G. We construct an embedding of G in the
Euclidean space R

n.
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Let ~ei := (0,0, . . . ,0,0,1,0,0, . . . ,0) be the the i th unit vector of the R
n, i.e. 1 ≤ i ≤ n and ~ei has

n−1 zeros and a single one at place i. We construct a graph H ⊂R
n which is isomorphic to G. We take

n vectors

~wi :=
1

2
·
√

2 ·~ei, (1)

1 ≤ i ≤ n, as the vertices of H. Note that the Euclidean distance between two different vertices of H is
one, i.e. length (~wi − ~w j) = 1 for i 6= j. Now we add edges. We add the straight line between ~wi and ~w j

if and only if there is an edge between vi and v j. The constructed graph H is an embedding of G.

Lemma 1. The above construction of H has solely straight lines as edges. If vi,v j and vm are three

different vertices of G, and if there is an edge beween vm and vi, and if there is another edge between

vm and v j, the two constructed edges between ~wm and ~wi and between ~wm and ~w j are straight lines, and

they meet only once. The intersection point is their common vertex ~wm.

Proof. The graph H has straight lines as edges due to the construction. The edges between ~wm and ~wi

and between ~wm and ~w j, respectively, are given by

α · ~wm +(1−α) · ~wi and β · ~wm +(1−β ) · ~w j for α,β ∈ [0,1]. (2)

They meet once in ~wm. They intersect only if α = β = 1.

3 Definitions

We create further definitions of dimensions in graphs besides dim. We define ‘dimensions’ with names
straight dim, Dim, straight Dim, k double points, polygon k double points, straight k double points,
straight k di f f erent lengths and straight k Di f f erent Lengths.
Let G be an arbitrary graph.

Definition 2. For straight dim we use the same definition as for dim, except that only straight lines are
allowed. We define Dim(G) as the minimum number n such that G can be embedded in the Euclidean
space R

n, and all edges have the same length.

Proposition 1. It holds
dim(G)≤ Dim(G)

The definition of straight Dim is equal the definition of Dim, except that only straight lines are allowed
as edges. Trivially we have the inequalities

Dim(G)≤ straight Dim(G) and dim(G)≤ straight dim(G)≤ straight Dim(G) (3)

Remark 1. Since we use only straight lines in our construction and since our graph is an embedding,

we also have proven for each graph G

straight Dim(G)≤ cardinality(vert)

Definition 3. Let H be a display in R
n of a graph for any n. We call a double point a point~x such that

~x is not a vertex and~x is an element of at least two edges of H.
Let k be a natural number. We define k double points(G) as the minimum number n such that

there is a display called H in R
n such that H is isomorphic to G and H has exactly k double points. For

the natural number straight k double points(G) we take the same definition, except that only straight
lines are allowed.
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Definition 4. We define a polygon line as a line that consists of a finite number of straight lines, and
that is homeomorphic to a line segment.

We define polygon k double points(G) to be the smallest number n such that there is a display
called H in R

n, where H is isomorphic to G and H has exactly k double points and all edges are polygon
lines.

Note that a line segment is a polygon line.

Proposition 2. For every k ∈N there exists a natural number k double points(G) and a natural number
polygon k double points(G) for each graph G with more than one edge. Let vert be the set of vertices
of G. It holds

polygon k double points(G)≤ cardinality(vert)

Proof. We construct an isomorphic graph of G in R
n, which we call H. Let vert := {v1,v2,v3, . . .vn−1,vn}

be the set of vertices of G. We shall go a similar way as in the section ‘Construction’. The set of vertices
of H is taken from the finite set {~ei | 1 ≤ i ≤ n}, where ~ei is the i th unit vector of Rn. Since G has more
than one edge, we have at least two edges. We call these edges l and k. The vertices of l are without
restriction of generality v1 and v2, while k has the vertices v3 and v4. If v1 = v3 it holds v2 6= v4. If v1 6= v3

we assume that v1,v2,v3,v4 are pairwise different. On the line α ·~e3 +(1−α) ·~e4, where α ∈ [0,1], we
fix k points. Let pi := i

k+1
·~e3 +(1− i

k+1
) ·~e4, where 1 ≤ i ≤ k. On the line β ·~e1 +(1−β ) ·~e2, where

β ∈ [0,1], we fix k+1 points. Let q j := j
k+2

·~e1 +(1− j
k+2

) ·~e2, where 1 ≤ j ≤ k+1. Now we define a
polygon line in ‘zig-zag’ shape, starting from ~e1 and alternating between the points q j and pi and ending
in ~e2. The first and the last piece of the polygon line are parts of the line segment which connects ~e1

and ~e2. The two pieces are defined as γ ·~e1 +(1− γ) ·q1, and γ ·qk+1 +(1− γ) ·~e2, respectively, where
γ ∈ [0,1]. Please see the picture. There we assume ~e1 = ~e3 , i.e. v1 = v3, and k = 2.

Figure 1:

We assume v1 = v3

and k = 2.

•
~e1 = ~e3

•
~e2

q1 q2 q3

•
~e4

p1

p2

The line δ · q j + (1 − δ ) · p j, δ ∈ [0,1] connects q j and p j, while ε · p j + (1 − ε) · q j+1, ε ∈ [0,1]
connects p j and q j+1, where 1 ≤ j ≤ k. We define the polygon line from ~e1 to ~e2 through the points
pi and q j as an edge of H. Further we add the segment β · ~e3 +(1− β ) · ~e4, where β ∈ [0,1], which
connects ~e3 and ~e4 as an edge of H. From this construction we get k double points pi, 1 ≤ i ≤ k. The
rest of the graph is constructed as in section ‘Construction’. We add the straight line in H between ~es

and ~et if and only if there is an edge between vs and vt in G, (s, t) /∈ {(1,2),(2,1),(3,4),(4,3)}. By this
construction we add no more double points to H. We get that the cardinality of the set of the double
points of H is k and that H is isomorphic to G.

Let us assume that the graph G has a finite set of edges.

Proposition 3. It holds k double points(G) = polygon k double points(G) for each number k.
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Proof. Every line of finite length can be replaced by a polygon line, such that the old intersection points
are kept and no new intersection points are generated.

Definition 5. We define straight k di f f erent lengths(G) as the smallest natural number n such that
G can be displayed in the R

n, where the edges are straight lines, for each graph G. These edges have
exactly k different lengths. For straight k Di f f erent Lengths(G) we take the same definition, but here
the display has to be an embedding.

Remark 2. In the case that there is no realization with the corresponding conditions in R
n for any n, we

define xxx(G) = ∞, where ’xxx’ stands for straight k di f f erent lengths, straight k Di f f erent Lengths

or straight k double points.

We have the inequality

polygon k double points(G)≤ straight k double points(G)

for every graph G.

Note straight dim = straight 1 di f f erent lengths and straight Dim = straight 1 Di f f erent Lengths.

4 Pictures

We show displays of the graph W4 and the Petersen graph. Note that both graphs can not be displayed
in R by isomorphic graphs.
See two displays of the graph W4, which consists of five vertices and eight edges. The first proves
straight 2 di f f erent lengths(W4) = straight 2 Di f f erent Lengths(W4) = 2.

Figure 2:

On the left hand side we show

two embeddings of the ‘wheel’ W4.

• •

• •

•

• •

• •

•
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From [2], p.91 we know dim(W4) = 3. An embedding of W4 in R
3 with only edges of length one

yields a pyramid with quadratic base and the right sidelength. Here we show a display of W4 with three
double points and an embedding of W4 with equal edgelengths. This demonstrates 3 double points(W4)=
2 and dim(W4) =Dim(W4) = 2. If in the second display the square of W4 has the corners

(

1
2 ,

1
2

)

,
(

1
2 ,−1

2

)

,
(

−1
2 ,−1

2

)

and
(

−1
2 ,

1
2

)

, the kink on the edge from
(

− 1
2 ,

1
2

)

to (0,0) is (s, t), where s = t = 1
8 ·

√
2.

Figure 3:

We show two displays of W4.

The second is an embedding of W4

with edges of equal length.

• •

• •

•

• •

• •

•

(s, t)

Now we consider two displays of the Petersen graph P. The website [3] was helpful by generating the
displays. The first display shows straight 3 di f f erent lengths(P) = straight 5 double points(P) = 2.
The second demonstrates again straight 5 double points(P) = 2 and dim(P) = straight dim(P) = 2.

Figure 4:

We show two displays of the Petersen

graph. The second is a display

of P with edges of equal length.
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5 Example

As an example we consider the complete graph called K3 with three vertices. From [2], p.88, we have
dim(K3) = 2. An embedding in R

2 is shown by each triangle. With our theorem we get dim(K3) = 2 <
3 = cardinality(vert(K3))< 6 = 2 ·χ(K3).
We add a further theorem.

Theorem 2. Let G be a graph. We assume a nonempty set of edges of G called edges. Let the cardinality

of the set of vertices of G does not overrun the cardinality of R. It holds

dim(G)≤ 2 · cardinality(edges)

Proof. If the cardinality of the edges is infinite, we have nothing to show. Hence we assume a finite set of
edges of G. An edge connects two vertices. Hence there are at most n := 2 ·cardinality(edges) vertices,
which are part of an edge. With these vertices we go the same way as in the section ‘Construction’. We
embed G in R

n.
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The theorem may be an improvement in some cases. We only know a single example. For the
complete graph K2 it holds

dim(K2) = 1 < 2 = 2 · cardinality(edges)< 4 = 2 ·χ(K2).
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