The Vertices of a Graph and its Dimension

VOLKER W. THÜREY

Bremen, Germany *

June 19, 2020

Abstract

We show that the dimension of a graph is less or equal to the cardinality of the set of its vertices Keywords and phrases: graph, dimension MSC 2010 subject classification: 05C99

1 Introduction

From [1] or the book [2], p.92, we know the inequality $dim(G) \le 2 \cdot \chi(G)$ for every graph *G*, where $\chi(G)$ means the chromatic number of *G*. Here we show a further inequality. For the sake of clarity we repeat the definition of the dimension of a graph. Please see [1] and [2], p.88.

Here an *embedding* means an injective map of an isomorphic graph, different from [1]. A *display* is less. Note that a display is also an isomorphic graph and the number of intersection points of different edges is finite.

Definition 1. Let *G* be an arbitrary graph. We define the *dimension* of *G*, in symbols dim(G), as the minimum number *n* such that *G* can be displayed in the Euclidean space \mathbb{R}^n by an isomorphic graph and all edges have length one.

Theorem 1. Let G be an arbitrary graph, and let vert be the set of its vertices. It holds the inequality

 $dim(G) \le cardinality(vert)$

This is an improvement in many cases. For instance, if G is the complete graph K_r , r > 1, we have

 $dim(G) = r - 1 < r = cardinality(vert(G)) < 2 \cdot r = 2 \cdot \chi(G).$

The proof of the theorem is yielded in the following section.

2 Construction

We prove the theorem only for *cardinality*(*vert*) $< \infty$. Hence we assume a graph *G* with a finite set of vertices. Let $\{v_1, v_2, \dots, v_{n-1}, v_n\}$ be the set of vertices of *G*. We construct an embedding of *G* in the Euclidean space \mathbb{R}^n .

^{*49 (0)421 591777,} volker@thuerey.de

Let $\vec{e_i} := (0, 0, \dots, 0, 0, 1, 0, 0, \dots, 0)$ be the the i^{th} unit vector of the \mathbb{R}^n , i.e. $1 \le i \le n$ and $\vec{e_i}$ has n-1 zeros and a single one at place *i*. We construct a graph $H \subset \mathbb{R}^n$ which is isomorphic to *G*. We take *n* vectors

$$\vec{w}_i := \frac{1}{2} \cdot \sqrt{2} \cdot \vec{e}_i,\tag{1}$$

 $1 \le i \le n$, as the vertices of *H*. Note that the Euclidean distance between two different vertices of *H* is one, i.e. length $(\vec{w}_i - \vec{w}_j) = 1$ for $i \ne j$. Now we add edges. We add the straight line between \vec{w}_i and \vec{w}_j if and only if there is an edge between v_i and v_j . The constructed graph *H* is an embedding of *G*.

Lemma 1. The above construction of *H* has solely straight lines as edges. If v_i, v_j and v_m are three different vertices of *G*, and if there is an edge between v_m and v_i , and if there is another edge between v_m and v_j , the two constructed edges between \vec{w}_m and \vec{w}_i and between \vec{w}_m and \vec{w}_j are straight lines, and they meet only once. The intersection point is their common vertex \vec{w}_m .

Proof. The graph *H* has straight lines as edges due to the construction. The edges between $\vec{w_m}$ and $\vec{w_i}$ and between $\vec{w_m}$ and $\vec{w_i}$, respectively, are given by

$$\alpha \cdot \vec{w_m} + (1 - \alpha) \cdot \vec{w_i} \text{ and } \beta \cdot \vec{w_m} + (1 - \beta) \cdot \vec{w_i} \text{ for } \alpha, \beta \in [0, 1].$$
(2)

They meet once in $\vec{w_m}$. They intersect only if $\alpha = \beta = 1$.

3 Definitions

We create further definitions of dimensions in graphs besides *dim*. We define 'dimensions' with names *straight dim*, *Dim*, *straight Dim*, **k** *double points*, *polygon* **k** *double points*, *straight* **k** *double points*, *straight k double poin*

Definition 2. For *straight dim* we use the same definition as for *dim*, except that only straight lines are allowed. We define Dim(G) as the minimum number *n* such that *G* can be embedded in the Euclidean space \mathbb{R}^n , and all edges have the same length.

Proposition 1. It holds

$$dim(G) \leq Dim(G)$$

The definition of *straight Dim* is equal the definition of *Dim*, except that only straight lines are allowed as edges. Trivially we have the inequalities

 $Dim(G) \le straight Dim(G)$ and $dim(G) \le straight dim(G) \le straight Dim(G)$ (3)

Remark 1. Since we use only straight lines in our construction and since our graph is an embedding, we also have proven for each graph *G*

straight
$$Dim(G) \leq cardinality(vert)$$

Definition 3. Let *H* be a display in \mathbb{R}^n of a graph for any *n*. We call a *double point* a point \vec{x} such that \vec{x} is not a vertex and \vec{x} is an element of at least two edges of *H*.

Let **k** be a natural number. We define **k** *double* points(G) as the minimum number *n* such that there is a display called *H* in \mathbb{R}^n such that *H* is isomorphic to *G* and *H* has exactly **k** double points. For the natural number *straight* **k** *double points*(*G*) we take the same definition, except that only straight lines are allowed.

Definition 4. We define a *polygon line* as a line that consists of a finite number of straight lines, and that is homeomorphic to a line segment.

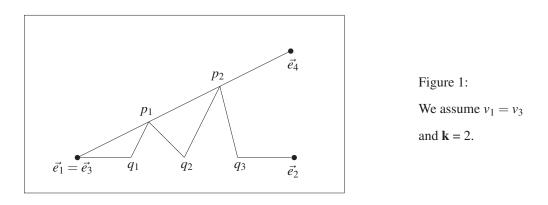
We define *polygon* \mathbf{k} *double points*(*G*) to be the smallest number *n* such that there is a display called *H* in \mathbb{R}^n , where *H* is isomorphic to *G* and *H* has exactly \mathbf{k} double points and all edges are polygon lines.

Note that a line segment is a polygon line.

Proposition 2. For every $\mathbf{k} \in \mathbb{N}$ there exists a natural number \mathbf{k} *double points*(*G*) and a natural number *polygon* \mathbf{k} *double points*(*G*) for each graph *G* with more than one edge. Let *vert* be the set of vertices of *G*. It holds

polygon **k** double points(G) \leq cardinality(vert)

Proof. We construct an isomorphic graph of G in \mathbb{R}^n , which we call H. Let $vert := \{v_1, v_2, v_3, \dots, v_{n-1}, v_n\}$ be the set of vertices of G. We shall go a similar way as in the section 'Construction'. The set of vertices of H is taken from the finite set $\{\vec{e}_i \mid 1 \le i \le n\}$, where \vec{e}_i is the i^{th} unit vector of \mathbb{R}^n . Since G has more than one edge, we have at least two edges. We call these edges l and k. The vertices of l are without restriction of generality v_1 and v_2 , while k has the vertices v_3 and v_4 . If $v_1 = v_3$ it holds $v_2 \ne v_4$. If $v_1 \ne v_3$ we assume that v_1, v_2, v_3, v_4 are pairwise different. On the line $\alpha \cdot \vec{e}_3 + (1 - \alpha) \cdot \vec{e}_4$, where $\alpha \in [0, 1]$, we fix \mathbf{k} points. Let $p_i := \frac{i}{\mathbf{k}+1} \cdot \vec{e}_3 + (1 - \frac{i}{\mathbf{k}+1}) \cdot \vec{e}_4$, where $1 \le i \le \mathbf{k}$. On the line $\beta \cdot \vec{e}_1 + (1 - \beta) \cdot \vec{e}_2$, where $\beta \in [0, 1]$, we fix $\mathbf{k} + 1$ points. Let $q_j := \frac{j}{\mathbf{k}+2} \cdot \vec{e}_1 + (1 - \frac{j}{\mathbf{k}+2}) \cdot \vec{e}_2$, where $1 \le j \le \mathbf{k} + 1$. Now we define a polygon line in 'zig-zag' shape, starting from \vec{e}_1 and alternating between the points q_j and p_i and ending in \vec{e}_2 . The first and the last piece of the polygon line are parts of the line segment which connects \vec{e}_1 and \vec{e}_2 . The two pieces are defined as $\gamma \cdot \vec{e}_1 + (1 - \gamma) \cdot q_1$, and $\gamma \cdot q_{\mathbf{k}+1} + (1 - \gamma) \cdot \vec{e}_2$, respectively, where $\gamma \in [0, 1]$. Please see the picture. There we assume $\vec{e}_1 = \vec{e}_3$, i.e. $v_1 = v_3$, and $\mathbf{k} = 2$.



The line $\delta \cdot q_j + (1 - \delta) \cdot p_j$, $\delta \in [0, 1]$ connects q_j and p_j , while $\varepsilon \cdot p_j + (1 - \varepsilon) \cdot q_{j+1}$, $\varepsilon \in [0, 1]$ connects p_j and q_{j+1} , where $1 \le j \le \mathbf{k}$. We define the polygon line from $\vec{e_1}$ to $\vec{e_2}$ through the points p_i and q_j as an edge of H. Further we add the segment $\beta \cdot \vec{e_3} + (1 - \beta) \cdot \vec{e_4}$, where $\beta \in [0, 1]$, which connects $\vec{e_3}$ and $\vec{e_4}$ as an edge of H. From this construction we get \mathbf{k} double points p_i , $1 \le i \le \mathbf{k}$. The rest of the graph is constructed as in section 'Construction'. We add the straight line in H between $\vec{e_s}$ and $\vec{e_t}$ if and only if there is an edge between v_s and v_t in G, $(s,t) \notin \{(1,2), (2,1), (3,4), (4,3)\}$. By this construction we add no more double points to H. We get that the cardinality of the set of the double points of H is \mathbf{k} and that H is isomorphic to G.

Let us assume that the graph *G* has a finite set of edges.

Proposition 3. It holds \mathbf{k} *double points*(G) = *polygon* \mathbf{k} *double points*(G) for each number \mathbf{k} .

Proof. Every line of finite length can be replaced by a polygon line, such that the old intersection points are kept and no new intersection points are generated. \Box

Definition 5. We define *straight* \mathbf{k} *different lengths*(*G*) as the smallest natural number *n* such that *G* can be displayed in the \mathbb{R}^n , where the edges are straight lines, for each graph *G*. These edges have exactly \mathbf{k} different lengths. For *straight* \mathbf{k} *Different Lengths*(*G*) we take the same definition, but here the display has to be an embedding.

Remark 2. In the case that there is no realization with the corresponding conditions in \mathbb{R}^n for any *n*, we define $xxx(G) = \infty$, where 'xxx' stands for straight **k** different lengths, straight **k** Different Lengths or straight **k** double points.

We have the inequality

polygon **k** double points(G) \leq straight **k** double points(G)

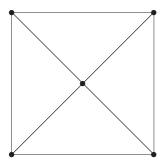
for every graph G.

Note straight dim = straight 1 different lengths and straight Dim = straight 1 Different Lengths.

4 Pictures

We show displays of the graph W_4 and the Petersen graph. Note that both graphs can not be displayed in \mathbb{R} by isomorphic graphs.

See two displays of the graph W_4 , which consists of five vertices and eight edges. The first proves *straight* **2** *different lengths*(W_4) = *straight* **2** *Different Lengths*(W_4) = 2.



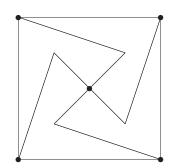


Figure 2:

On the left hand side we show two embeddings of the 'wheel' W_4 . From [2], p.91 we know $dim(W_4) = 3$. An embedding of W_4 in \mathbb{R}^3 with only edges of length one yields a pyramid with quadratic base and the right sidelength. Here we show a display of W_4 with three double points and an embedding of W_4 with equal edgelengths. This demonstrates **3** *double points*(W_4) = 2 and $dim(W_4) = Dim(W_4) = 2$. If in the second display the square of W_4 has the corners $(\frac{1}{2}, \frac{1}{2}), (\frac{1}{2}, -\frac{1}{2}), (-\frac{1}{2}, -\frac{1}{2})$ and $(-\frac{1}{2}, \frac{1}{2})$, the kink on the edge from $(-\frac{1}{2}, \frac{1}{2})$ to (0,0) is (s,t), where $s = t = \frac{1}{8} \cdot \sqrt{2}$.

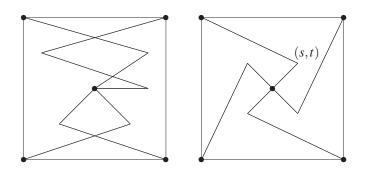


Figure 3:We show two displays of *W*₄.The second is an embedding of *W*₄with edges of equal length.

Now we consider two displays of the Petersen graph *P*. The website [3] was helpful by generating the displays. The first display shows *straight* **3** *different lengths*(*P*) = *straight* **5** *double points*(*P*) = 2. The second demonstrates again *straight* **5** *double points*(*P*) = 2 and dim(P) = straight dim(P) = 2.

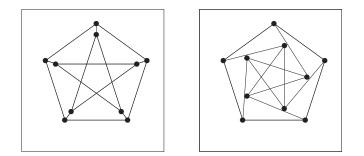


Figure 4: We show two displays of the Petersen graph. The second is a display

of P with edges of equal length.

5 Example

As an example we consider the complete graph called K_3 with three vertices. From [2], p.88, we have $dim(K_3) = 2$. An embedding in \mathbb{R}^2 is shown by each triangle. With our theorem we get $dim(K_3) = 2 < 3 = cardinality(vert(K_3)) < 6 = 2 \cdot \chi(K_3)$. We add a further theorem.

Theorem 2. Let G be a graph. We assume a nonempty set of edges of G called edges. Let the cardinality of the set of vertices of G does not overrun the cardinality of \mathbb{R} . It holds

$$dim(G) \le 2 \cdot cardinality(edges)$$

Proof. If the cardinality of the edges is infinite, we have nothing to show. Hence we assume a finite set of edges of *G*. An edge connects two vertices. Hence there are at most $n := 2 \cdot cardinality(edges)$ vertices, which are part of an edge. With these vertices we go the same way as in the section 'Construction'. We embed *G* in \mathbb{R}^n .

The theorem may be an improvement in some cases. We only know a single example. For the complete graph K_2 it holds

$$dim(K_2) = 1 < 2 = 2 \cdot cardinality(edges) < 4 = 2 \cdot \chi(K_2).$$

Acknowledgements: We thank Kshitija Jog for a careful reading of the paper and for some calculations.

References

- [1] Paul Erdös, Frank Harary, William Thomas Tutte *On the dimension of a graph*, Mathematika 12, London (1965)
- [2] Alexander Soifer: *The Mathematical Coloring Book. Mathematics of Coloring and the Colorful Life of its Creators*, New York Springer(2009), ISBN 978-0-387-74640-1
- [3] http://cosypanther.blogspot.com/2010/11/koordinaten-eines-regelmaigen-funfecks.html

Author: Doctor Volker Wilhelm Thürey Hegelstrasse 101 28201 Bremen, Germany T: 49 (0) 421 591777 E-Mail: volker@thuerey.de