The Vertices of a Graph and its Dimension

VOLKER W. THÜREY
Bremen, Germany *

June 19, 2020

Abstract

We show that the dimension of a graph is less or equal to the cardinality of the set of its vertices Keywords and phrases: graph, dimension MSC 2010 subject classification: 05C99

1 Introduction

From [1] or the book [2], p.92, we know the inequality $\operatorname{dim}(G) \leq 2 \cdot \chi(G)$ for every graph G, where $\chi(G)$ means the chromatic number of G. Here we show a further inequality. For the sake of clarity we repeat the definition of the dimension of a graph. Please see [1] and [2], p.88.
Here an embedding means an injective map of an isomorphic graph, different from [1]. A display is less. Note that a display is also an isomorphic graph and the number of intersection points of different edges is finite.

Definition 1. Let G be an arbitrary graph. We define the dimension of G, in symbols $\operatorname{dim}(G)$, as the minimum number n such that G can be displayed in the Euclidean space \mathbb{R}^{n} by an isomorphic graph and all edges have length one.

Theorem 1. Let G be an arbitrary graph, and let vert be the set of its vertices. It holds the inequality

$$
\operatorname{dim}(G) \leq \operatorname{cardinality}(\text { vert })
$$

This is an improvement in many cases. For instance, if G is the complete graph $K_{r}, r>1$, we have

$$
\operatorname{dim}(G)=r-1<r=\operatorname{cardinality}(\operatorname{vert}(G))<2 \cdot r=2 \cdot \chi(G)
$$

The proof of the theorem is yielded in the following section.

2 Construction

We prove the theorem only for cardinality (vert) $<\infty$. Hence we assume a graph G with a finite set of vertices. Let $\left\{v_{1}, v_{2}, \ldots v_{n-1}, v_{n}\right\}$ be the set of vertices of G. We construct an embedding of G in the Euclidean space \mathbb{R}^{n}.

[^0]Let $\vec{e}_{i}:=(0,0, \ldots, 0,0,1,0,0, \ldots, 0)$ be the the $i^{\text {th }}$ unit vector of the \mathbb{R}^{n}, i.e. $1 \leq i \leq n$ and \vec{e}_{i} has $n-1$ zeros and a single one at place i. We construct a graph $H \subset \mathbb{R}^{n}$ which is isomorphic to G. We take n vectors

$$
\begin{equation*}
\vec{w}_{i}:=\frac{1}{2} \cdot \sqrt{2} \cdot \vec{e}_{i}, \tag{1}
\end{equation*}
$$

$1 \leq i \leq n$, as the vertices of H. Note that the Euclidean distance between two different vertices of H is one, i.e. length $\left(\vec{w}_{i}-\vec{w}_{j}\right)=1$ for $i \neq j$. Now we add edges. We add the straight line between \vec{w}_{i} and \vec{w}_{j} if and only if there is an edge between v_{i} and v_{j}. The constructed graph H is an embedding of G.

Lemma 1. The above construction of H has solely straight lines as edges. If v_{i}, v_{j} and v_{m} are three different vertices of G, and if there is an edge beween v_{m} and v_{i}, and if there is another edge between v_{m} and v_{j}, the two constructed edges between \vec{w}_{m} and \vec{w}_{i} and between \vec{w}_{m} and \vec{w}_{j} are straight lines, and they meet only once. The intersection point is their common vertex $\overrightarrow{w_{m}}$.

Proof. The graph H has straight lines as edges due to the construction. The edges between \vec{w}_{m} and \vec{w}_{i} and between $\overrightarrow{w_{m}}$ and $\overrightarrow{w_{j}}$, respectively, are given by

$$
\begin{equation*}
\alpha \cdot \vec{w}_{m}+(1-\alpha) \cdot \vec{w}_{i} \text { and } \beta \cdot \vec{w}_{m}+(1-\beta) \cdot \vec{w}_{j} \text { for } \alpha, \beta \in[0,1] . \tag{2}
\end{equation*}
$$

They meet once in $\overrightarrow{w_{m}}$. They intersect only if $\alpha=\beta=1$.

3 Definitions

We create further definitions of dimensions in graphs besides dim. We define 'dimensions' with names straight dim, Dim, straight Dim, \mathbf{k} double points, polygon \mathbf{k} double points, straight \mathbf{k} double points, straight \mathbf{k} different lengths and straight \mathbf{k} Different Lengths.
Let G be an arbitrary graph.
Definition 2. For straight dim we use the same definition as for dim, except that only straight lines are allowed. We define $\operatorname{Dim}(G)$ as the minimum number n such that G can be embedded in the Euclidean space \mathbb{R}^{n}, and all edges have the same length.

Proposition 1. It holds

$$
\operatorname{dim}(G) \leq \operatorname{Dim}(G)
$$

The definition of straight Dim is equal the definition of Dim, except that only straight lines are allowed as edges. Trivially we have the inequalities

$$
\begin{equation*}
\operatorname{Dim}(G) \leq \operatorname{straight} \operatorname{Dim}(G) \quad \text { and } \quad \operatorname{dim}(G) \leq \operatorname{straight} \operatorname{dim}(G) \leq \operatorname{straight} \operatorname{Dim}(G) \tag{3}
\end{equation*}
$$

Remark 1. Since we use only straight lines in our construction and since our graph is an embedding, we also have proven for each graph G

$$
\text { straight } \operatorname{Dim}(G) \leq \text { cardinality }(\text { vert })
$$

Definition 3. Let H be a display in \mathbb{R}^{n} of a graph for any n. We call a double point a point \vec{x} such that \vec{x} is not a vertex and \vec{x} is an element of at least two edges of H.

Let \mathbf{k} be a natural number. We define \mathbf{k} double points (G) as the minimum number n such that there is a display called H in \mathbb{R}^{n} such that H is isomorphic to G and H has exactly \mathbf{k} double points. For the natural number straight \mathbf{k} double points (G) we take the same definition, except that only straight lines are allowed.

Definition 4. We define a polygon line as a line that consists of a finite number of straight lines, and that is homeomorphic to a line segment.

We define polygon \mathbf{k} double points (G) to be the smallest number n such that there is a display called H in \mathbb{R}^{n}, where H is isomorphic to G and H has exactly \mathbf{k} double points and all edges are polygon lines.

Note that a line segment is a polygon line.
Proposition 2. For every $\mathbf{k} \in \mathbb{N}$ there exists a natural number \mathbf{k} double points (G) and a natural number polygon \mathbf{k} double points (G) for each graph G with more than one edge. Let vert be the set of vertices of G. It holds

$$
\text { polygon } \mathbf{k} \text { double points }(G) \leq \text { cardinality }(\text { vert })
$$

Proof. We construct an isomorphic graph of G in \mathbb{R}^{n}, which we call H. Let vert $:=\left\{v_{1}, v_{2}, v_{3}, \ldots v_{n-1}, v_{n}\right\}$ be the set of vertices of G. We shall go a similar way as in the section 'Construction'. The set of vertices of H is taken from the finite set $\left\{\vec{e}_{i} \mid 1 \leq i \leq n\right\}$, where \vec{e}_{i} is the $i^{t h}$ unit vector of \mathbb{R}^{n}. Since G has more than one edge, we have at least two edges. We call these edges l and k. The vertices of l are without restriction of generality v_{1} and v_{2}, while k has the vertices v_{3} and v_{4}. If $v_{1}=v_{3}$ it holds $v_{2} \neq v_{4}$. If $v_{1} \neq v_{3}$ we assume that $v_{1}, v_{2}, v_{3}, v_{4}$ are pairwise different. On the line $\alpha \cdot \vec{e}_{3}+(1-\alpha) \cdot \vec{e}_{4}$, where $\alpha \in[0,1]$, we fix \mathbf{k} points. Let $p_{i}:=\frac{i}{\mathbf{k}+\mathbf{1}} \cdot \vec{e}_{3}+\left(1-\frac{i}{\mathbf{k}+\mathbf{1}}\right) \cdot \vec{e}_{4}$, where $1 \leq i \leq \mathbf{k}$. On the line $\beta \cdot \vec{e}_{1}+(1-\beta) \cdot \overrightarrow{e_{2}}$, where $\beta \in[0,1]$, we fix $\mathbf{k}+1$ points. Let $q_{j}:=\frac{j}{\mathbf{k}+\mathbf{2}} \cdot \overrightarrow{e_{1}}+\left(1-\frac{j}{\mathbf{k}+\mathbf{2}}\right) \cdot \overrightarrow{e_{2}}$, where $1 \leq j \leq \mathbf{k}+1$. Now we define a polygon line in 'zig-zag' shape, starting from \vec{e}_{1} and alternating between the points q_{j} and p_{i} and ending in \vec{e}_{2}. The first and the last piece of the polygon line are parts of the line segment which connects \vec{e}_{1} and $\overrightarrow{e_{2}}$. The two pieces are defined as $\gamma \cdot \overrightarrow{e_{1}}+(1-\gamma) \cdot q_{1}$, and $\gamma \cdot q_{\mathbf{k}+1}+(1-\gamma) \cdot \overrightarrow{e_{2}}$, respectively, where $\gamma \in[0,1]$. Please see the picture. There we assume $\vec{e}_{1}=\overrightarrow{e_{3}}$, i.e. $v_{1}=v_{3}$, and $\mathbf{k}=2$.

Figure 1:
We assume $v_{1}=v_{3}$
and $\mathbf{k}=2$.

The line $\delta \cdot q_{j}+(1-\delta) \cdot p_{j}, \delta \in[0,1]$ connects q_{j} and p_{j}, while $\varepsilon \cdot p_{j}+(1-\varepsilon) \cdot q_{j+1}, \varepsilon \in[0,1]$ connects p_{j} and q_{j+1}, where $1 \leq j \leq \mathbf{k}$. We define the polygon line from $\overrightarrow{e_{1}}$ to $\overrightarrow{e_{2}}$ through the points p_{i} and q_{j} as an edge of H. Further we add the segment $\beta \cdot \vec{e}_{3}+(1-\beta) \cdot \vec{e}_{4}$, where $\beta \in[0,1]$, which connects \vec{e}_{3} and \vec{e}_{4} as an edge of H. From this construction we get \mathbf{k} double points $p_{i}, 1 \leq i \leq \mathbf{k}$. The rest of the graph is constructed as in section 'Construction'. We add the straight line in H between \vec{e}_{s} and \vec{e}_{t} if and only if there is an edge between v_{s} and v_{t} in $G,(s, t) \notin\{(1,2),(2,1),(3,4),(4,3)\}$. By this construction we add no more double points to H. We get that the cardinality of the set of the double points of H is \mathbf{k} and that H is isomorphic to G.

Let us assume that the graph G has a finite set of edges.
Proposition 3. It holds \mathbf{k} double points $(G)=\operatorname{polygon} \mathbf{k}$ double points (G) for each number \mathbf{k}.

Proof. Every line of finite length can be replaced by a polygon line, such that the old intersection points are kept and no new intersection points are generated.

Definition 5. We define straight \mathbf{k} different lengths (G) as the smallest natural number n such that G can be displayed in the \mathbb{R}^{n}, where the edges are straight lines, for each graph G. These edges have exactly \mathbf{k} different lengths. For straight \mathbf{k} Different Lengths (G) we take the same definition, but here the display has to be an embedding.

Remark 2. In the case that there is no realization with the corresponding conditions in \mathbb{R}^{n} for any n, we define $x x x(G)=\infty$, where ' $x x x$ ' stands for straight \mathbf{k} different lengths, straight \mathbf{k} Different Lengths or straight \mathbf{k} double points.

We have the inequality

$$
\text { polygon } \mathbf{k} \text { double points }(G) \leq \operatorname{straight} \mathbf{k} \text { double points }(G)
$$

for every graph G.

Note straight dim $=$ straight $\mathbf{1}$ different lengths and straight Dim $=$ straight $\mathbf{1}$ Different Lengths.

4 Pictures

We show displays of the graph W_{4} and the Petersen graph. Note that both graphs can not be displayed in \mathbb{R} by isomorphic graphs.
See two displays of the graph W_{4}, which consists of five vertices and eight edges. The first proves straight 2 different lengths $\left(W_{4}\right)=$ straight 2 Different Lengths $\left(W_{4}\right)=2$.

Figure 2:
On the left hand side we show two embeddings of the 'wheel' W_{4}.

From [2], p. 91 we know $\operatorname{dim}\left(W_{4}\right)=3$. An embedding of W_{4} in \mathbb{R}^{3} with only edges of length one yields a pyramid with quadratic base and the right sidelength. Here we show a display of W_{4} with three double points and an embedding of W_{4} with equal edgelengths. This demonstrates $\mathbf{3}$ double points $\left(W_{4}\right)=$ 2 and $\operatorname{dim}\left(W_{4}\right)=\operatorname{Dim}\left(W_{4}\right)=2$. If in the second display the square of W_{4} has the corners $\left(\frac{1}{2}, \frac{1}{2}\right),\left(\frac{1}{2},-\frac{1}{2}\right)$, $\left(-\frac{1}{2},-\frac{1}{2}\right)$ and $\left(-\frac{1}{2}, \frac{1}{2}\right)$, the kink on the edge from $\left(-\frac{1}{2}, \frac{1}{2}\right)$ to $(0,0)$ is (s, t), where $s=t=\frac{1}{8} \cdot \sqrt{2}$.

Figure 3:
We show two displays of W_{4}.
The second is an embedding of W_{4} with edges of equal length.

Now we consider two displays of the Petersen graph P. The website [3] was helpful by generating the displays. The first display shows straight $\mathbf{3}$ different lengths $(P)=$ straight $\mathbf{5}$ double points $(P)=2$. The second demonstrates again straight 5 double points $(P)=2$ and $\operatorname{dim}(P)=\operatorname{straight} \operatorname{dim}(P)=2$.

Figure 4:
We show two displays of the Petersen graph. The second is a display
of P with edges of equal length.

5 Example

As an example we consider the complete graph called K_{3} with three vertices. From [2], p.88, we have $\operatorname{dim}\left(K_{3}\right)=2$. An embedding in \mathbb{R}^{2} is shown by each triangle. With our theorem we get $\operatorname{dim}\left(K_{3}\right)=2<$ $3=\operatorname{cardinality}\left(\operatorname{vert}\left(K_{3}\right)\right)<6=2 \cdot \chi\left(K_{3}\right)$.
We add a further theorem.
Theorem 2. Let G be a graph. We assume a nonempty set of edges of G called edges. Let the cardinality of the set of vertices of G does not overrun the cardinality of \mathbb{R}. It holds

$$
\operatorname{dim}(G) \leq 2 \cdot \operatorname{cardinality}(\text { edges })
$$

Proof. If the cardinality of the edges is infinite, we have nothing to show. Hence we assume a finite set of edges of G. An edge connects two vertices. Hence there are at most $n:=2 \cdot$ cardinality (edges) vertices, which are part of an edge. With these vertices we go the same way as in the section 'Construction'. We embed G in \mathbb{R}^{n}.

The theorem may be an improvement in some cases. We only know a single example. For the complete graph K_{2} it holds

$$
\operatorname{dim}\left(K_{2}\right)=1<2=2 \cdot \text { cardinality }(\text { edges })<4=2 \cdot \chi\left(K_{2}\right)
$$

Acknowledgements: We thank Kshitija Jog for a careful reading of the paper and for some calculations.

References

[1] Paul Erdös, Frank Harary, William Thomas Tutte On the dimension of a graph, Mathematika 12, London (1965)
[2] Alexander Soifer: The Mathematical Coloring Book. Mathematics of Coloring and the Colorful Life of its Creators, New York Springer(2009), ISBN 978-0-387-74640-1
[3] http://cosypanther.blogspot.com/2010/11/koordinaten-eines-regelmaigen-funfecks.html

Author: Doctor Volker Wilhelm Thürey
Hegelstrasse 101
28201 Bremen, Germany
T: 49 (0) 421591777
E-Mail: volker@thuerey.de

[^0]: *49 (0)421591777, volker@thuerey.de

