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Abstract

In this paper we will look at sums of odd powers of Fibonacci and
Lucas numbers of even indices. Our motivation will be conjectures, now
theorems, which go back to Melham. Using the simple approach of tele-
scoping sums we will be able to give new proofs of those results. Along
the way we will establish inverse relationships for such sums and discover
new integer sequences.
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1 Introduction
We define the Fibonacci numbers (Fn)n≥1 by the initial values of

F1 = F2 = 1,

and, for n ≥ 2, a general term of

Fn−1 + Fn = Fn+1.

We define the Lucas numbers (Ln)n≥1 identically as the Fibonacci numbers,

Ln−1 + Ln = Ln+1,

where n ≥ 2, but with the different initial values of

L1 = 1, L2 = 3.

Ozeki [7] and Prodinger [8] might be the first places where we find explicit
expressions for the sums of odd powers of Fibonacci and Lucas numbers of even
indices. The result for Fibonacci numbers is

Theorem 1. (Ozeki) for m ≥ 0 and n ≥ 1,

n∑
k=1

F 2m+1
2k =

m∑
i=0

F 2i+1
2n+1

m−i∑
j=0

(−1)m+i 5i−m

L2m+1−2j
· 2m− 2j + 1

m− j + i+ 1

(
2m+ 1

j

)(
m− j + i+ 1

2i+ 1

)

+

m∑
j=0

(−1)j+1
5−m · F2m+1−2j

L2m+1−2j

(
2m+ 1

j

)
.

The result for Lucas numbers is

Theorem 2. (Prodinger) for m ≥ 0 and n ≥ 0,

n∑
k=0

L2m+1
2k =

m∑
l=0

L2l+1
2n+1

m−l∑
j=0

(
2m+ 1

j

)(
m− j + l

m− j − l

)
2m+ 1− 2j

2l + 1
· 1

L2m+1−2j
−4m.

(We have stated the results in their original notation. We changed the ”+4”
to ” − 4.” The original seems to contain a mistake. In this paper, for the sake
of uniformity we will adopt the notation of Ozeki [7].)

Two conjectures in Melham [5] were the inspiration for these results. (The
results are a bit removed from the original conjectures. That seems to be be-
cause, at the time, the authors were unaware of the exact statements of the
conjectures. Melham [5] contains more information on this.) Since the conjec-
tures have been proved, we state them as theorems. For the Fibonacci numbers
we have
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Theorem 3. for m ≥ 0 and n ≥ 1,

L1L3 · · ·L2m−1L2m+1

n∑
k=1

F 2m+1
2k = (F2n+1 − 1)

2 · P2k,2m+1,

where P2k,2m+1 is a polynomial in F2n+1, of degree 2m− 1, with integer coeffi-
cients.

For the Lucas numbers we have

Theorem 4. for m ≥ 0 and n ≥ 1,

L1L3 · · ·L2m−1L2m+1

n∑
k=1

L2m+1
2k = (L2n+1 − 1) ·Q2k,2m+1,

where Q2k,2m+1 is a polynomial in L2n+1, of degree 2m, with integer coefficients.

Unlike Theorems 1 and 2, the result for Fibonacci numbers is considerably
more difficult to obtain.

(Note: we have changed the notation slightly. There is little reason to keep
track of the degrees of the polynomials. By Theorems 1 and 2 we know that∑n
k=1 F

2m+1
2k and

∑n
k=1 L

2m+1
2k are polynomials in F2n+1 and L2n+1, of degree

2m+ 1. If we factor out a term of (F2n+1 − 1)
2 or L2n+1 − 1, the degree drops

by 2 or 1.)

Sun, Xie, and Yang [9] seems to contain the first complete proof of Theorem
3. A byproduct of their work was another proof of Theorem 4....

...using the simple method of telescoping sums we will show that the original
approach sketched in Melham [5] is sufficient to give a complete proof of Theorem
4. Expanding upon that approach to address the case of Fibonacci numbers,
we will prove the inverse of Theorem 1:

Theorem 5. for m ≥ 0 and n ≥ 1,

F 2m+1
2n+1 = 1+

m∑
i=0

(
n∑
k=1

F 2i+1
2k

)
m∑
j=i

[(
2m+ 1

m− j

)
L2j+1 ·

1

5m−i
· 2j + 1

j + i+ 1

(
j + i+ 1

2i+ 1

)]
.

Even though it is unnecessary for a proof of Theorem 4, we will do the same
for Theorem 2:

Theorem 6. for m ≥ 0 and n ≥ 1,

L2m+1
2n+1 = 1+

m∑
i=0

(
n∑
k=1

L2i+1
2k

)
m∑
j=i

[
(−1)m+i

(
2m+ 1

m− j

)
L2j+1

2j + 1

j + i+ 1

(
j + i+ 1

2i+ 1

)]
.

The result for Lucas numbers will give us a new integer sequence:

1, 1, 1, 1,−15, 4, 1, 125,−75, 11, . . . . (1)

A full proof of Theorem 3, in line with our approach, requires establishing
the following conjecture:
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Conjecture 1. in Theorem 5, the coefficients for
∑n
k=1 F

2i+1
2k are integers only.

In other words, for 0 ≤ i ≤ m, 5m−i divides

m∑
j=i

[(
2m+ 1

m− j

)
L2j+1

2j + 1

j + i+ 1

(
j + i+ 1

2i+ 1

)]
.

At present we are unable to do that. We are able to establish a special case,
which actually is a sharper result:

Lemma 1. in Theorem 5, the coefficient for
∑n
k=1 F2k,

1

5m

m∑
j=0

[(
2m+ 1

m− j

)
L2j+1 (2j + 1)

]
,

is equal to 2m+ 1.

Looking at the statement of Theorem 3, the difference between the special
case and the general case of the conjecture is that the former gets us everything
except for the coefficients being integers. We must settle for rational numbers.
If we add the latter case, we get that last piece and discover a second integer
sequence as well:

1, 1, 1, 1, 3, 4, 1, 5, 15, 11, . . . . (2)

Last, with regard to the overall presentation of the paper, we will place more
emphasis on the inductive aspects of the material than is customary. This will
provide motivation for the proofs and highlight how intermediate results arise
from attempts to give new solutions to the original conjectures of Melham [5].
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2 Lucas Numbers
We begin with the case for Lucas numbers. One reason is the simple approach
sketched in Melham [5] will be sufficient to prove Theorem 4 completely. An-
other reason is the discussion will prepare us for the more difficult case of the
Fibonacci numbers.

2.1 Telescoping Sums
Our starting point is the following observation:

1 = 1

L2n+1 = 1 +

(
1

0

)
L1

n∑
k=1

L2k

L3
2n+1 = 1−

(
3

1

)
L1

n∑
k=1

L2k +

(
3

0

)
L3

n∑
k=1

L6k (3)

L5
2n+1 = 1 +

(
5

2

)
L1

n∑
k=1

L2k −
(
5

1

)
L3

n∑
k=1

L6k +

(
5

0

)
L5

n∑
k=1

L10k

L7
2n+1 = 1−

(
7

3

)
L1

n∑
k=1

L2k +

(
7

2

)
L3

n∑
k=1

L6k −
(
7

1

)
L5

n∑
k=1

L10k +

(
7

0

)
L7

n∑
k=1

L14k.

This is for n ≥ 1. If we did not know it already,

L1

n∑
k=1

L2k = L2n+1 − 1. (4)

The significance of these relationships is they allow us to show L2n+1 − 1
divides

L1

n∑
k=1

L2k, L3

n∑
k=1

L6k, L5

n∑
k=1

L10k, . . . . (5)

For example, we can write

L3

n∑
k=1

L6k = L3
2n+1 − 1 +

(
3

1

)
L1

n∑
k=1

L2k

= (L2n+1 − 1)
(
L2
2n+1 + L2n+1 + 1

)
+ (L2n+1 − 1) (3)

= (L2n+1 − 1)
(
L2
2n+1 + L2n+1 + 4

)
.

Before we prove the result of (5), we must establish the relationships in (3).
This we will do using telescoping sums.

For the first step, we prove the following lemma:
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Lemma 2. for m ≥ 0 and n ≥ 1,

L2m+1
2n+1 − 1 =

n∑
k=1

(
L2m+1
2k+1 − L

2m+1
2k−1

)
. (6)

Proof. we proceed by mathematical induction. For the base case of n = 1 we
have

1∑
k=1

(
L2m+1
2k+1 − L

2m+1
2k−1

)
= L2m+1

2(1)+1 − L
2m+1
1 = L2m+1

3 − 1. (7)

Assume that (7) is true for some n ≥ 1. Then

n+1∑
k=1

(
L2m+1
2k+1 − L

2m+1
2k−1

)
=

n∑
k=1

(
L2m+1
2k+1 − L

2m+1
2k−1

)
+ L2m+1

2(n+1)+1 − L
2m+1
2n+1

= L2m+1
2n+1 − 1 + L2m+1

2(n+1)+1 − L
2m+1
2n+1

= L2m+1
2(n+1)+1 − 1.

For the next step, we rewrite the expression inside the parentheses of (6).
In order to do that we will use the Binet forms:

Fn =
αn − βn

α− β
, Ln = αn + βn, (8)

where α = 1+
√
5

2 and β = 1−
√
5

2 . Other relationships include

α+ β = 1, α− β =
√
5, αβ = −1, 1 + α = α2, 1 + β = β2. (9)

We will use the Binet forms to establish a number of results.

Lemma 3. for m ≥ 0 and n ≥ 1,

n∑
k=1

(
L2m+1
2k+1 − L

2m+1
2k−1

)
=

m∑
j=0

[
(−1)m−j

(
2m+ 1

m− j

)
L2j+1

n∑
k=1

L2(2j+1)k

]
.

Proof. the calculation is cumbersome. We illustrate the case of 2m + 1 = 5.
The expression in parentheses we rewrite using the Binet forms:

L5
2k+1 − L5

2k−1 =
(
α2k+1 + β2k+1

)5 − (α2k−1 + β2k−1)5
=

(
5

0

)(
α10k+5 − α10k−5)+ (5

1

)(
α8k+4β2k+1 − α8k−4β2k−1)

+

(
5

2

)(
α6k+3β4k+2 − α6k−3β4k−2)+ (5

3

)(
α4k+2β6k+3 − α4k−2β6k−3)

+

(
5

4

)(
α2k+1β8k+4 − α2k−1β8k−4)+ (5

5

)(
β10k+5 − β10k−5) .
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We rewrite the first three terms as follows:(
5

0

)(
α10k+5 − α10k−5) =

(
5

0

)
α10k

(
α5 − α−5

)
=

(
5

0

)
α10k

(
α5 − 1

α5

)

=

(
5

0

)
α10k

α5 − 1(
−1
β

)5
 =

(
5

0

)
α10k

(
α5 + β5

)
;

(
5

1

)(
α8k+4β2k+1 − α8k−4β2k−1) =

(
5

1

)
α8kβ2k

(
α4β1 − α−4β−1

)
=

(
5

1

)
α6k (αβ)

2k

(
α3 (αβ)− 1

α3 (αβ)

)

=

(
5

1

)
α6k

−α3 +
1(
−1
β

)3
 = −

(
5

1

)
α6k

(
α3 + β3

)
;

(
5

2

)(
α6k+3β4k+2 − α6k−3β4k−2) =

(
5

2

)
α6kβ4k

(
α3β2 − α−3β−2

)
=

(
5

2

)
α2k (αβ)

4k

(
α (αβ)

2 − 1

α (αβ)
2

)

=

(
5

2

)
α2k

(
α− 1

−1
β

)
=

(
5

2

)
α2k (α+ β) .

The other three terms we can rewrite in an analogous fashion. In total we have

L5
2k+1 − L5

2k−1 =

(
5

0

)(
α10k + β10k

) (
α5 + β5

)
−
(
5

1

)(
α6k + β6k

) (
α3 + β3

)
+

(
5

2

)(
α2k + β2k

)
(α+ β) ,

which we rewrite as

L5
2k+1 − L5

2k−1 =

(
5

0

)
L5L10k −

(
5

1

)
L3L6k +

(
5

2

)
L1L2k.

If we change the order of the terms and sum from 1 to n, we get the desired
result:

n∑
k=1

(
L5
2k+1 − L5

2k−1
)

=

2∑
j=0

[
(−1)2−j

(
5

2− j

)
L2j+1

n∑
k=1

L2(2j+1)k

]
.
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Putting together Lemmas 2 and 3, we get the main result of (3):

Proposition 1. for m ≥ 0 and n ≥ 1,

L2m+1
2n+1 = 1 +

m∑
j=0

[
(−1)m−j

(
2m+ 1

m− j

)
L2j+1

n∑
k=1

L2(2j+1)k

]
.

Now we are ready to prove Proposition 2, which we mentioned in (5). In
order to do that, we clarify some terminology:

Definition 1. “L2n+1 − 1 divides
∑n
k=1 L2(2m+1)k” means

n∑
k=1

L2(2m+1)k = (L2n+1 − 1) ·Q2(2m+1)k,

where Q2(2m+1)k is a polynomial in L2n+1; that is,

Q2(2m+1)k = rsL
s
2n+1 + rs−1L

s−1
2n+1 + . . .+ r1L2n+1 + r0,

where the ri are rational numbers, at least one of which is not equal to zero,
and the s are non-negative integers. Notice that we allow for the possibility of

n∑
k=1

L2k = (L2n+1 − 1) · 1.

Also, if we write something like

L2m+1
2n+1 − 1 = (L2n+1 − 1)

(
L2m
2n+1 + L2m−1

2n+1 + · · ·+ L2n+1 + 1
)

= (L2n+1 − 1) ·Q2n+1,2m+1,

we mean “L2n+1− 1 divides L2m+1
2n+1 − 1.” Last, when no confusion will arise, we

will abbreviate Q2n+1,2m+1 by Q2n+1.

Now we state and prove Proposition 2:

Proposition 2. for m ≥ 0 and n ≥ 1,

L2m+1

n∑
k=1

L2(2m+1)k = (L2n+1 − 1) ·Q2(2m+1)k,

where Q2(2m+1)k is a polynomial in L2n+1, with integer coefficients.

Proof. we proceed by mathematical induction. Previously we showed that
L2n+1 − 1 divides L1

∑n
k=1 L2k and L3

∑n
k=1 L6k, and that the adjoining poly-

nomials have integer coefficients. Assume that L2n+1 − 1 divides

L1

n∑
k=1

L2k, L3

n∑
k=1

L6k, . . . , L2m+1

n∑
k=1

L2(2m+1)k
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for all 1, 3, . . . , 2m + 1, and that the adjoining polynomials have integer coeffi-
cients. By Proposition 1 we have

L2m+3
2n+1 = 1 +

m+1∑
j=0

[
(−1)m+1−j

(
2m+ 3

m+ 1− j

)
L2j+1

n∑
k=1

L2(2j+1)k

]
.

We rewrite it as follows:

L2m+3

n∑
k=1

L2(2m+3)k = L2m+3
2n+1 − 1−

m∑
j=0

[
(−1)m+1−j

(
2m+ 3

m+ 1− j

)
L2j+1

n∑
k=1

L2(2j+1)k

]
= (L2n+1 − 1)

(
L2m+2
2n+1 + L2m+1

2n+1 + · · ·+ L2n+1 + 1
)

−
m∑
j=0

[
(−1)m+1−j

(
2m+ 3

m+ 1− j

)
L2j+1 (L2n+1 − 1)Q2(2j+1)k

]
= (L2n+1 − 1)

×

Q2n+1 −
m∑
j=0

[
(−1)m+1−j

(
2m+ 3

m+ 1− j

)
L2j+1 ·Q2(2j+1)k

] .

On the right-hand side we have L2n+1−1 times a sum of polynomials in L2n+1.
That means L2n+1−1 divides L2m+3

∑n
k=1 L2(2m+3)k. Also, the final polynomial

has integer coefficients.

2.2 Proof of Theorem 4
Now we are ready to prove Theorem 4. We follow the approach sketched in
Melham [5]. In order to set up our previous work we need the following result:

Proposition 3. for m ≥ 0 and n ≥ 1,

L2m+1
n =

m∑
j=0

(−1)jn
(
2m+ 1

j

)
L(2m+1−2j)n.

Proof. we use the Binet forms:

L2m+1
n = (αn + βn)

2m+1
=

2m+1∑
j=0

(
2m+ 1

j

)
α(2m+1−j)nβjn

=

m∑
j=0

(
2m+ 1

j

)(
α(2m+1−j)nβjn + αjnβ(2m+1−j)n

)
=

m∑
j=0

(
2m+ 1

j

)
(αβ)

jn
(
α(2m+1−2j)n + β(2m+1−2j)n

)
=

m∑
j=0

(−1)jn
(
2m+ 1

j

)
L(2m+1−2j)n.
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We begin the proof of Theorem 4:

Proof. in Proposition 3 we replace the n by 2k and sum from 1 to n:

n∑
k=1

L2m+1
2k =

(
2m+ 1

0

) n∑
k=1

L2(2m+1)k +

(
2m+ 1

1

) n∑
k=1

L2(2m−1)k (10)

+ · · ·+
(
2m+ 1

m− 1

) n∑
k=1

L6k +

(
2m+ 1

m

) n∑
k=1

L2k

=

m∑
j=0

[(
2m+ 1

j

) n∑
k=1

L2(2m+1−2j)k

]
.

Previously, in Proposition 2 we established that, for m ≥ 0, L2n+1 − 1 divides
L2m+1

∑n
k=1 L2(2m+1)k and the adjoining polynomial has integer coefficients.

That allows us to rewrite (10) as

L1L3 · · ·L2m−1L2m+1

n∑
k=1

L2m+1
2k = L1L3 · · ·L2m−1L2m+1

m∑
j=0

[(
2m+ 1

j

) n∑
k=1

L2(2m+1−2j)k

]

= L1L3 · · ·L2m−1

(
2m+ 1

0

)
L2m+1

n∑
k=1

L2(2m+1)k

+ · · ·+ L3 · · ·L2m−1L2m+1

(
2m+ 1

m

)
L1

n∑
k=1

L2k

= L1L3 · · ·L2m−1

(
2m+ 1

0

)
(L2n+1 − 1) ·Q2(2m+1)k

+ · · ·+ L3 · · ·L2m−1L2m+1

(
2m+ 1

m

)
(L2n+1 − 1) ·Q2k

= (L2n+1 − 1) ·Q2k,2m+1,

where Q2(2m+1)k, . . . , Q2k and Q2k,2m+1 are polynomials in L2n+1, with integer
coefficients.

We have proved Theorem 4, the original conjecture of Melham [5] for Lucas
numbers. For convenience, we state it again:

Theorem. for m ≥ 0 and n ≥ 1,

L1L3 · · ·L2m−1L2m+1

n∑
k=1

L2m+1
2k = (L2n+1 − 1) ·Q2k,2m+1,

where Q2k,2m+1 is a polynomial in L2n+1, of degree 2m, with integer coefficients.
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3 Fibonacci Numbers - First Attempt
Now we turn to Fibonacci numbers. We mention from the start that the ap-
proach of Melham [5], which we just applied to Lucas numbers, will be insuffi-
cient to give a complete proof of Theorem 3. There are two reasons for this:

1. the approach tells us F2n+1 − 1 divides such sums, not (F2n+1 − 1)
2;

2. the appearance of a divisor of 5m makes it difficult to determine whether
or not the adjoining polynomials have integer coefficients.

Nevertheless, we will state the analogous results for Fibonacci numbers because
they will serve as the foundation for a new approach in the next section. (Note:
we will state the results without proofs. The proofs are analogous to those given
for Lucas numbers.)

Our starting point is

Proposition 4. for m ≥ 0 and n ≥ 1,

F 2m+1
2n+1 = 1 +

1

5m

m∑
j=0

[(
2m+ 1

m− j

)
L2j+1

n∑
k=1

F2(2j+1)k

]
.

Some special cases include

1 = 1

F2n+1 = 1 +

(
1

0

)
L1

n∑
k=1

F2k

F 3
2n+1 = 1 +

1

5

(
3

1

)
L1

n∑
k=1

F2k +
1

5

(
3

0

)
L3

n∑
k=1

F6k (11)

F 5
2n+1 = 1 +

1

52

(
5

2

)
L1

n∑
k=1

F2k +
1

52

(
5

1

)
L3

n∑
k=1

F6k +
1

52

(
5

0

)
L5

n∑
k=1

F10k

F 7
2n+1 = 1 +

1

53

(
7

3

)
L1

n∑
k=1

F2k +
1

53

(
7

2

)
L3

n∑
k=1

F6k +
1

53

(
7

1

)
L5

n∑
k=1

F10k +
1

53

(
7

0

)
L7

n∑
k=1

F14k.

(Strictly speaking, 1 = 1 is not a special case. Like before, we include it
merely for the purpose of symmetry.) Once again,

L1

n∑
k=1

F2k = F2n+1 − 1. (12)

We establish Proposition 4 with two lemmas. The first is

Lemma 4. for m ≥ 0 and n ≥ 1,

F 2m+1
2n+1 − 1 =

n∑
k=1

(
F 2m+1
2k+1 − F

2m+1
2k−1

)
.

12



The second is

Lemma 5. for m ≥ 0 and n ≥ 1,

n∑
k=1

(
F 2m+1
2k+1 − F

2m+1
2k−1

)
=

1

5m

m∑
j=0

[(
2m+ 1

m− j

)
L2j+1

n∑
k=1

F2(2j+1)k

]
.

With Proposition 4 we are able to prove the following result:

Proposition 5. for m ≥ 0 and n ≥ 1,

L2m+1

n∑
k=1

F2(2m+1)k = (F2n+1 − 1) · P2(2m+1)k,

where P2(2m+1)k is a polynomial in F2n+1, with integer coefficients.

Unfortunately, this is as strong as we are able to make the result. For
example, by (11) we have

F 3
2n+1 = 1 +

1

5
·
(
3

1

)
L1

n∑
k=1

F2k +
1

5
·
(
3

0

)
L3

n∑
k=1

F6k,

which we can rewrite as

L3

n∑
k=1

F6k = (F2n+1 − 1)
(
5F 2

2n+1 + 5F2n+1 + 2
)
.

For the special case of n = 4 we have

L3

4∑
k=1

F6k = 4 (8 + 144 + 2584 + 46368) = 196416

= (34− 1)
(
5 · 342 + 5 · 34 + 2

)
= (33) (5952) ,

where F9 = 34. (34− 1) does not divide 5942 another time.

Now we turn to the approach of Melham [5]. Once again we need a starting
point:

Proposition 6. for m ≥ 0 and n ≥ 1,

F 2m+1
n =

1

5m

m∑
j=0

(−1)j(n+1)

(
2m+ 1

j

)
F(2m+1−2j)n.

13



Like last time, we replace n by 2k and sum from 1 to k:

n∑
k=1

F 2m+1
2k =

1

5m

(
2m+ 1

0

) n∑
k=1

F2(2m+1)k −
1

5m

(
2m+ 1

1

) n∑
k=1

F2(2m−1)k

± · · · ± 1

5m

(
2m+ 1

m− 1

) n∑
k=1

F6k ±
1

5m

(
2m+ 1

m

) n∑
k=1

F2k

=
1

5m

m∑
j=0

[
(−1)j

(
2m+ 1

j

) n∑
k=1

F2(2m+1−2j)k

]
.

(We changed (−1)j(2k+1) to (−1)j .) Then we rewrite the expression:

L1L3 · · ·L2m−1L2m+1

n∑
k=1

F 2m+1
2k = L1L3 · · ·L2m−1L2m+1

× 1

5m

m∑
j=0

[
(−1)j

(
2m+ 1

j

) n∑
k=1

F2(2m+1−2j)k

]

= L1L3 · · ·L2m−1 ·
1

5m

(
2m+ 1

0

)
L2m+1

n∑
k=1

F2(2m+1)k

± · · · ± L3 · · ·L2m−1L2m+1 ·
1

5m

(
2m+ 1

m

)
L1

n∑
k=1

F2k

= L1L3 · · ·L2m−1 ·
1

5m

(
2m+ 1

0

)
(F2n+1 − 1) · P2(2m+1)k

± · · · ± L3 · · ·L2m−1L2m+1 ·
1

5m

(
2m+ 1

m

)
(F2n+1 − 1) · P2k

=
1

5m
(F2n+1 − 1)P2k,2m+1,

where P2(2m+1)k, . . . , P2k and P2k,2m+1 are polynomials in F2n+1, with integer
coefficients. Unfortunately, we do not know whether or not 5m divides those
coefficients evenly.

In conclusion, due to the reasons mentioned previously, we can state only a
weak result:

Theorem 7. (Fibonacci, weak) for m ≥ 0 and n ≥ 1,

L1L3 · · ·L2m−1L2m+1

n∑
k=1

F 2m+1
2k = (F2n+1 − 1) · P2k,2m+1,

where P2k,2m+1 is a polynomial in F2n+1, of degree 2m, with rational coefficients.

The aim of the next section is to improve upon this.

14



4 Fibonacci Numbers - Second Attempt

4.1 Discovery
If we have experience solving problems of this kind (Edwards [2], Zielinski [11]),
upon being given explicit expressions for

∑n
k=1 F

2m+1
2k , our first impulse might

be to look for recursive relationships among all such sums. For example, Melham
[5] tells us

4

n∑
k=1

F 3
2k = (F2n+1 − 1)

2
(F2n+1 − 2) (13)

= F 3
2n+1 − 3F2n+1 + 2.

If we substitute F2n+1 = 1 +
∑n
k=1 F2k then we get

F 3
2n+1 = 1 + 3

n∑
k=1

F2k + 4

n∑
k=1

F 3
2k.

For the next case we have

44

n∑
k=1

F 5
2k = (F2n+1 − 1)

2 (
4F 3

2n+1 + 8F 2
2n+1 − 3F2n+1 − 14

)
(14)

= 4F 5
2n+1 − 15F 3

2n+1 + 25F2n+1 − 14.

If we substitute the previous expressions for F2n+1 and F 3
2n+1 then we get

F 5
2n+1 = 1 + 5

n∑
k=1

F2k + 15

n∑
k=1

F 3
2k + 11

n∑
k=1

F 5
2k.

For a fuller picture, we introduce matrix notation:
1∑
F2k∑
F 3
2k∑
F 5
2k∑
F 7
2k∑
F 9
2k

 =


1 0
−1 1
1
2 − 3

4
1
4

− 7
22

25
44 − 15

44
1
11

139
638 − 553

1276
455
1276 − 56

319
1
29

− 1877
12122

8055
24244 − 4083

12122
5625
24244 − 189

2204
1
76

×


1
F2n+1

F 3
2n+1

F 5
2n+1

F 7
2n+1

F 9
2n+1

 . (15)

(We abbreviate
∑n
k=1 F

2m+1
2k by

∑
F 2m+1
2k .) This is a special case of Theorem

1. Since the matrix is lower triangular, it has an inverse:
1

F2n+1

F 3
2n+1

F 5
2n+1

F 7
2n+1

F 9
2n+1

 =


1 0
1 1
1 3 4
1 5 15 11
1 7 35 56 29
1 9 66 171 189 76

×


1∑
F2k∑
F 3
2k∑
F 5
2k∑
F 7
2k∑
F 9
2k

 . (16)
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This is a reason to get excited! Starting with complicated fractions, we have
arrived at simple, whole numbers. Also, it is an improvement upon the old
approach. Immediately we have

4

n∑
k=1

F 3
2k = F 3

2n+1 − 1− 3

n∑
k=1

F2k

= (F2n+1 − 1)
(
F 2
2n+1 + F2n+1 − 2

)
.

Now, there is something important to notice. Unlike the previous relationships
for Fibonacci numbers in (11), we can factor out another term of F2n+1 − 1:

4

n∑
k=1

F 3
2k = (F2n+1 − 1)

2
(F2n+1 − 2) ,

which was what we had for (13). In fact, we can do this for all higher powers.
For example,

11

n∑
k=1

F 5
2k = F 5

2n+1 − 1− 5

n∑
k=1

F2k − 15

n∑
k=1

F 3
2k

= (F2n+1 − 1)
(
F 4
2n+1 + F 3

2n+1 + F 2
2n+1 + F2n+1 + 1

)
− 5 (F2n+1 − 1)− 15

n∑
k=1

F 3
2k

= (F2n+1 − 1)
(
F 4
2n+1 + F 3

2n+1 + F 2
2n+1 + F2n+1 − 4

)
− 15

n∑
k=1

F 3
2k

= (F2n+1 − 1)
2 (
F 3
2n+1 + 2F 2

2n+1 + 3F2n+1 + 4
)
− 15 (F2n+1 − 1)

2

(
F2n+1

4
− 2

4

)
.

If we multiply both sides by 4 and simplify the right side, we get

44

n∑
k=1

F 5
2k = (F2n+1 − 1)

2 (
4F 3

2n+1 + 8F 2
2n+1 − 3F2n+1 − 14

)
,

which was (14). What allowed us to factor out another term of F2n+1 − 1 was
that the coefficient for

∑n
k=1 F2k was the next odd integer.

How do we prove this rigorously in the general case? That is the purpose of
the next section. Unfortunately, rewriting

n∑
k=1

(
F 2m+1
2k+1 − F

2m+1
2k−1

)
of Lemma 5 directly into the expressions of (16) might be asking too much.
Instead, we will try something else.
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4.2 Proof
We borrow an idea from Ozeki [7]. Theorem 1 of Jennings [4] is the following:1

Theorem 8. for j ≥ 0 and n ≥ 0,

F(2j+1)n =

j∑
i=0

(−1)(j+i)n 2j + 1

j + i+ 1
5i
(
j + i+ 1

2i+ 1

)
F 2i+1
n .

If we replace n by 2k and sum from 1 to n, we get

n∑
k=1

F2(2j+1)k =

j∑
i=0

[
5i

2j + 1

j + i+ 1

(
j + i+ 1

2i+ 1

) n∑
k=1

F 2i+1
2k

]
.

Next, we insert this expression into the previous result of Proposition 4:

F 2m+1
2n+1 = 1 +

1

5m

m∑
j=0

[(
2m+ 1

m− j

)
L2j+1

n∑
k=1

F2(2j+1)k

]

= 1 +
1

5m

m∑
j=0

[(
2m+ 1

m− j

)
L2j+1

(
j∑
i=0

5i
2j + 1

j + i+ 1

(
j + i+ 1

2i+ 1

) n∑
k=1

F 2i+1
2k

)]
.

If we change the order of summation and take notice of the divisor of 5, we get
Theorem 5:

Theorem. for m ≥ 0 and n ≥ 1,

F 2m+1
2n+1 = 1+

m∑
i=0

(
n∑
k=1

F 2i+1
2k

)
m∑
j=i

[(
2m+ 1

m− j

)
L2j+1 ·

1

5m−i
· 2j + 1

j + i+ 1

(
j + i+ 1

2i+ 1

)]
.

Now we are going to give a rigorous proof of some of our observations in the
previous section. For that, we need two lemmas. The first is

Lemma 6. for real numbers x and positive integers m, x − 1 divides xm +
xm−1 + · · ·+ x−m.

Proof. notice that

xm + xm−1 + · · ·+ x−m = (x− 1)

×
(
xm−1 + 2xm−2 + · · ·+ (m− 1)x+m

)
.

The second is Lemma 1. We state it succinctly:

Lemma. in Theorem 5, the coefficient for
∑n
k=1 F2k is 2m+ 1.

1This is the inverse of our Proposition 6.
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Proof. see Section A.

Let us start the proof of the main result:

Proof. we proceed by mathematical induction. Previously we showed that

4

n∑
k=1

F 3
2k = (F2n+1 − 1)

2 · P2k,3,

44

n∑
k=1

F 5
2k = (F2n+1 − 1)

2 · P2k,5,

where P2k,3, P2k,5 were polynomials in F2n+1, with integer coefficients. Assume
that (F2n+1 − 1)

2 divides

L1L3

n∑
k=1

F 3
2k, L1L3L5

n∑
k=1

F 5
2k, L1 · · ·L2m+1

n∑
k=1

F 2m+1
2k

for all 1, 3, . . . , 2m + 1, and that the adjoining polynomials have integer coeffi-
cients.

Theorem 5 tells us

F 2m+3
2n+1 = 1+

m+1∑
i=0

(
n∑
k=1

F 2i+1
2k

)
m+1∑
j=i

[(
2m+ 3

(m+ 1)− j

)
L2j+1 ·

1

5(m+1)−i ·
2j + 1

j + i+ 1

(
j + i+ 1

2i+ 1

)]
.

(17)
Lemma 1 tells us the coefficient for

∑n
k=1 F2k is 2m+ 3. We remove that term

from the right side of (17), bring it and the 1 to the left side, and write

F 2m+3
2n+1 − 1− (2m+ 3)

n∑
k=1

F2k = (F2n+1 − 1)
(
F 2m+2
2n+1 + F 2m+1

2n+1 + · · ·+ F2n+1 + 1
)

(18)

− (2m+ 3) (F2n+1 − 1)

= (F2n+1 − 1)
(
F 2m+2
2n+1 + F 2m+1

2n+1 + · · ·+ F2n+1 − (2m+ 2)
)

= (F2n+1 − 1)
2

×
(
F 2m+1
2n+1 + 2F 2m

2n+1 + · · ·+ (2m+ 1)F2n+1 + 2m+ 2
)
,

where we have used Lemma 6 to pull out the second factor of F2n+1 − 1.
For the next step, in (17), the coefficient for

∑n
k=1 F

2m+3
2k is L2m+3. If we

pull that sum out of the right-hand side of (17) as well, we get
m∑
i=1

(
n∑
k=1

F 2i+1
2k

)
m∑
j=i

[(
2m+ 3

(m+ 1)− j

)
L2j+1 ·

1

5(m+1)−i ·
2j + 1

j + i+ 1

(
j + i+ 1

2i+ 1

)]
+L2m+3

n∑
k=1

F 2m+3
2k .

Needless to say, the first sum is too difficult to work with. Let us rewrite the
entire expression as

m∑
i=1

[
C2k,2i+1

n∑
k=1

F 2i+1
2k

]
+ L2m+3

n∑
k=1

F 2m+3
2k , (19)
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where C2k,2i+1 is some constant which depends on
∑n
k=1 F

2i+1
2k . (There is one

catch: we are not sure if C2k,2i+1 is an integer.) If we put together (18) and
(19), we get

(F2n+1 − 1)
2 · P2n+1 =

m∑
i=1

[
C2k,2i+1

n∑
k=1

F 2i+1
2k

]
+ L2m+3

n∑
k=1

F 2m+3
2k , (20)

where P2n+1 is a polynomial in F2n+1, with integer coefficients.
Now we are ready to make use of the inductive hypothesis. We multiply

both sides of (20) by L1L3 · · ·L2m−1L2m+1 and rewrite it as

L1 · · ·L2m+1 (F2n+1 − 1)
2
P2n+1· = L5 · · ·L2m+1C2k,3L1L3

n∑
k=1

F 3
2k

+L7 · · ·L2m+1C2k,5L1L3L5

n∑
k=1

F 5
2k

+ · · ·+ C2k,2m+1L1 · · ·L2m+1

n∑
k=1

F 2m+1
2k

+L1 · · ·L2m+1L2m+3

n∑
k=1

F 2m+3
2k

= L5 · · ·L2m+1C2k,3 (F2n+1 − 1)
2
P2k,3

+L7 · · ·L2m+1C2k,5 (F2n+1 − 1)
2
P2k,5

+ · · ·+ C2k,2m+1 (F2n+1 − 1)
2
P2k,2m+1

+L1 · · ·L2m+1L2m+3

n∑
k=1

F 2m+3
2k ,

where P2k,3, P2k,5, . . . , P2k,2m+1 are polynomials in F2n+1, with integer coeffi-
cients. If we keep the term of

∑n
k=1 F

2m+3
2k on the right side, move everything

else to the left side, pull out the factor of (F2n+1 − 1)
2, and collect the resulting

polynomial in F2n+1, we are finished.

We state our main result:

Theorem 9. (Fibonacci, incomplete) for m ≥ 0 and n ≥ 1,

L1L3 · · ·L2m−1L2m+1

n∑
k=1

F 2m+1
2k = (F2n+1 − 1)

2 · P2k,2m+1,

where P2k,2m+1 is a polynomial in F2n+1, of degree 2m− 1, with rational coef-
ficients.

In the next section we will have more to say about the constants C2k,2i+1.
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5 Integer Sequences
When we say “integer sequence,” what we have in mind is the prototypical
expression concerning sums of powers,

∑n
k=1 k

m, where m is a positive integer
(Edwards [1]). If we start with the telescoping sum

(n+ 1)
m − 1 =

n∑
k=1

[(k + 1)
m − km] , (21)

we can rewrite it directly as

(n+ 1)
m

= 1 +

m−1∑
j=0

[(
m

j

) n∑
k=1

kj

]
. (22)

This expresses
∑n
k=1 k

m in n. In matrix notation, the first several cases are

n+ 1

(n+ 1)
2

(n+ 1)
3

(n+ 1)
4

(n+ 1)
5

(n+ 1)
6


=


1 0
1 2
1 3 3
1 4 6 4
1 5 10 10 5
1 6 15 20 15 6

×

n+ 1∑

k∑
k2∑
k3∑
k4∑
k5

 . (23)

(Again, we abbreviate
∑n
k=1 k

m by
∑
km.) The associated integer sequence is

1, 1, 2, 1, 3, 3, 1, 4, 6, 4, . . . , (24)

which is A074909 in the OEIS.

5.1 Lucas Numbers
We expand upon our work in Section 2 and derive Theorem 6. Doing so, we
will discover a new integer sequence.

Theorem 6 of Swamy [10] is the following:2

Theorem 10. for j ≥ 0 and n ≥ 0,

L(2j+1)n =

j∑
i=0

(−1)(j+i)(n+1) 2j + 1

j + i+ 1

(
j + i+ 1

2i+ 1

)
L2i+1
n .

If we replace n by 2k and sum from 1 to n, we get

n∑
k=1

L2(2j+1)k =

j∑
i=0

[
(−1)(j+i)(2k+1) 2j + 1

j + i+ 1

(
j + i+ 1

2i+ 1

) n∑
k=1

L2i+1
2k

]
.

2This is the inverse of our Proposition 3.
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If we insert this expression into the result of Proposition 1, we get

L2m+1
2n+1 = 1 +

m∑
j=0

[
(−1)m−j

(
2m+ 1

m− j

)
L2j+1

n∑
k=1

L2(2j+1)k

]

= 1 +

m∑
j=0

{
(−1)m−j

(
2m+ 1

m− j

)
L2j+1

[
j∑
i=0

(−1)(j+i)(2k+1) 2j + 1

j + i+ 1

(
j + i+ 1

2i+ 1

) n∑
k=1

L2i+1
2k

]}
.

If we adjust the signs3 and change the order of summation, we get Theorem 6:

Theorem. for m ≥ 0 and n ≥ 1,

L2m+1
2n+1 = 1+

m∑
i=0

(
n∑
k=1

L2i+1
2k

)
m∑
j=i

[
(−1)m+i

(
2m+ 1

m− j

)
L2j+1

2j + 1

j + i+ 1

(
j + i+ 1

2i+ 1

)]
.

One tiny detail remains before we can assert this sum produces only integers
for coefficients: the possibly rational term of

2j + 1

j + i+ 1

(
j + i+ 1

2i+ 1

)
. (25)

We get around this in the following way.
Theorem 10, which is Theorem 6 of Swamy [10], actually is established in

Filipponi [3]. Also, it is stated a bit differently. In our notation it is

Theorem 11. for j ≥ 0 and n ≥ 0,

L(2j+1)n =

j∑
i=0

(−1)i(n+1) 2j + 1

2j + 1− i

(
2j + 1− i

i

)
L2j+1−2i
n .

The author points out that

2j + 1

2j + 1− i

(
2j + 1− i

i

)
=

(
2j + 1− i

i

)
+

(
2j − i
i− 1

)
. (26)

The expressions in Theorems 10 and 11 are the same thing: the first one counts
up, the second one counts down. We can substitute one for the other. That
means (25) always is an integer.

Now that we know the sum produces only integers for coefficients, what does
it look like? Well, it is the same as the one for Fibonacci numbers, (16), but
with changes of sign and without divisors of 5:

1
L2n+1

L3
2n+1

L5
2n+1

L7
2n+1

L9
2n+1

 =


1 0
1 1
1 −15 4
1 125 −75 11
1 −875 875 −280 29
1 5625 −8250 4275 −945 76

×


1∑
L2k∑
L3
2k∑

L5
2k∑

L7
2k∑

L9
2k

 . (27)

3We replace (−1)m−j+(j+i)2k+j+i by (−1)m+i.
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The inverse is
1∑
L2k∑
L3
2k∑

L5
2k∑

L7
2k∑

L9
2k

 =


1 0
−1 1
−4 15

4
1
4

−16 625
44

75
44

1
11

−64 69125
1276

11375
1276

280
319

1
29

−256 5034375
24244

510375
12122

140625
24244

945
2204

1
76

×


1
L2n+1

L3
2n+1

L5
2n+1

L7
2n+1

L9
2n+1

 , (28)

which appears in Melham [5]. Also, it is a special case of Theorem 2. (Again,
we abbreviate

∑n
k=1 L

2m+1
2k by

∑
L2m+1
2k .) Our integer sequence is

1, 1, 1, 1,−15, 4, 1, 125,−75, 11, . . . ,

which we stated in (1). It seems to be new. The OEIS does not have an entry
for it.

5.2 Fibonacci Numbers
When we last left the Fibonacci numbers in Section 4.2, we were talking about
constants C2k,2i+1. Let us refresh our memory.

The result of Theorem 5 is

F 2m+1
2n+1 = 1+

m∑
i=0

(
n∑
k=1

F 2i+1
2k

)
m∑
j=i

[(
2m+ 1

m− j

)
L2j+1 ·

1

5m−i
· 2j + 1

j + i+ 1

(
j + i+ 1

2i+ 1

)]
.

For i = m, the sum

m∑
j=m

[(
2m+ 1

m− j

)
L2j+1 ·

1

5m−i
· 2j + 1

j + i+ 1

(
j + i+ 1

2i+ 1

)]
is simply L2m+1. For i = 0, by Lemma 1 the sum

1

5m

m∑
j=0

[(
2m+ 1

m− j

)
L2j+1 (2j + 1)

]
is equal to 2m + 1. From the previous discussion of Lucas numbers, we know
that

m∑
j=i

[(
2m+ 1

m− j

)
L2j+1

2j + 1

j + i+ 1

(
j + i+ 1

2i+ 1

)]
always produces an integer. For 1 ≤ i ≤ m − 1, does 5m−i divide such a sum,
thereby still producing an integer?

The experimental data in (16) says it does. Unfortunately, despite the proof
of Lemma 1, we are unable to give a rigorous proof of the full result and must
leave it as Conjecture 1:
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Conjecture. in Theorem 5, the coefficients for
∑n
k=1 F

2i+1
2k are integers only.

In other words, for 0 ≤ i ≤ m, 5m−i divides

m∑
j=i

[(
2m+ 1

m− j

)
L2j+1

2j + 1

j + i+ 1

(
j + i+ 1

2i+ 1

)]
.

If we can establish this result then we will have a complete proof of Theorem
3, the original conjecture of Melham [5]. Also, as a byproduct we will have a
second integer sequence,

1, 1, 1, 1, 3, 4, 1, 5, 15, 11, . . . ,

which we stated in (2). It also seems to be new.
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A Proof of Lemma 1
Now we will prove Lemma 1. Let us state it again. Theorem 5 tells us

F 2m+1
2n+1 = 1+

m∑
i=0

(
n∑
k=1

F 2i+1
2k

)
m∑
j=i

[(
2m+ 1

m− j

)
L2j+1 ·

1

5m−i
· 2j + 1

j + i+ 1

(
j + i+ 1

2i+ 1

)]
.

The coefficient for
∑n
k=1 F2k is

1

5m

m∑
j=0

[(
2m+ 1

m− j

)
L2j+1 (2j + 1)

]
. (29)

Our objective is to show this expression is equal to 2m+ 1.

We start with Theorem 8 of Swamy [10]:

Theorem 12. for j ≥ 0 and n ≥ 0,

L(2m+1)n =

m∑
j=0

[
(−1)(m+j)n

(
m+ j

2j

)
5jLnF

2j
n

]
.

(We have changed the notation to match that of (29).) The first several
cases are

Ln = Ln

L3n = (−1)n Ln + 5LnF
2
n

L5n = Ln + (−1)3n 15LnF 2
n + 25LnF

4
n (30)

L7n = (−1)3n Ln + 30LnF
2
n + (−1)5n 125LnF 4

n + 125LnF
6
n

L9n = Ln + (−1)5n 50LnF 2
n + 375LnF

4
n + (−1)7n 875LnF 6

n + 625LnF
8
n .

The first several cases of the inverse relationship are

Ln = Ln

5LnF
2
n = (−1)n+1

Ln + L3n

52LnF
4
n = 2Ln + (−1)n+1

3L3n + L5n (31)

53LnF
6
n = (−1)3(n+1)

5Ln + 9L3n + (−1)n+1
5L5n + L7n

54LnF
8
n = 14Ln + (−1)3(n+1)

28L3n + 20L5n + (−1)n+1
7L7n + L9n.

It must be admitted the changes in sign make these examples difficult to
work with. For the inverse, if we set n = 1 then we get

54 = 14L1 + 28L3 + 20L5 + 7L7 + L9,

for example. In the proof of Lemma 1 this idea will come up again.

The general case of the inverse is
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Proposition 7. for m ≥ 0 and n ≥ 1,

5mLnF
2m
n =

(
2m

0

)
L(2m+1)n+

m∑
j=1

[
(−1)j(n+1)

((
2m

j

)
−
(

2m

j − 1

))
L(2m+1−2j)n

]
.

We will prove it in two steps. The first step is to establish

Lemma 7. for m ≥ 1 and n ≥ 1,

5mLnF
2m
n =

m−1∑
j=0

[
(−1)j(n+1)

(
2m

j

)
L2(m−j)nLn

]
+ (−1)m(n+1)

(
2m

m

)
Ln.

The second step is to rewrite it using

Lemma 8. for m ≥ n ≥ 1,

LmLn = Lm+n + (−1)n Lm−n.

Let us get started by proving Lemma 7:

Proof. we use the Binet forms:

F 2m
n =

(
αn − βn

α− β

)2m

=
1(√
5
)2m (αn − βn)2m

=
1

5m

2m∑
j=0

(−1)j
(
2m

j

)
α(2m−j)nβjn

=
1

5m

m−1∑
j=0

[
(−1)j

(
2m

j

)(
α(2m−j)nβjn + αjnβ(2m−j)n

)]
+

1

5m
(−1)m

(
2m

m

)
(αβ)

mn

=
1

5m

m−1∑
j=0

[
(−1)j

(
2m

j

)
(αβ)

jn
(
α(2m−2j)n + β(2m−2j)n

)]
+

1

5m
(−1)m+mn

(
2m

m

)

=
1

5m

m−1∑
j=0

[
(−1)j(n+1)

(
2m

j

)
L2(m−j)n

]
+

1

5m
(−1)m(n+1)

(
2m

m

)
.

If we multiply both sides by 5mLn, we get the desired result:

5mLnF
2m
n =

m−1∑
j=0

[
(−1)j(n+1)

(
2m

j

)
L2(m−j)nLn

]
+ (−1)m(n+1)

(
2m

m

)
Ln.

Let us prove Lemma 8:
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Proof. we use the Binet forms as well:

LmLn = (αm + βm) (αn + βn)

= αm+n + αnβm + αmβn + βm+n

=
(
αm+n + βm+n

)
+ (αβ)

n (
αm−n + βm−n

)
= Lm+n + (−1)n Lm−n.

Now we rewrite Lemma 7:

5mLnF
2m
n =

m−1∑
j=0

[
(−1)j(n+1)

(
2m

j

)
L2(m−j)nLn

]
+ (−1)m(n+1)

(
2m

m

)
Ln

=

m−1∑
j=0

[
(−1)j(n+1)

(
2m

j

)(
L(2m+1−2j)n + (−1)n L(2m−1−2j)n

)]

+(−1)m(n+1)

(
2m

m

)
Ln

=

(
2m

0

)
L(2m+1)n + (−1)n

(
2m

0

)
L(2m−1)n

+(−1)n+1

(
2m

1

)
L(2m−1)n + (−1)2n+1

(
2m

1

)
L(2m−3)n

+ · · ·+ (−1)(m−1)(n+1)

(
2m

m− 1

)
L3n + (−1)(m−1)(n+1)+n

(
2m

m− 1

)
Ln

+(−1)m(n+1)

(
2m

m

)
Ln,

which we group as

5mLnF
2m
n =

(
2m

0

)
L(2m+1)n +

[
(−1)n

(
2m

0

)
+ (−1)n+1

(
2m

1

)]
L(2m−1)n

+ · · ·+
[
(−1)mn+m−1

(
2m

m− 1

)
+ (−1)mn+m

(
2m

m

)]
Ln

=

(
2m

0

)
L(2m+1)n + (−1)n+1

[(
2m

1

)
−
(
2m

0

)]
L(2m−1)n

+ · · ·+ (−1)mn+m
[(

2m

m

)
−
(

2m

m− 1

)]
Ln,

which gives us the final result of

5mLnF
2m
n =

(
2m

0

)
L(2m+1)n+

m∑
j=1

[
(−1)j(n+1)

((
2m

j

)
−
(

2m

j − 1

))
L(2m+1−2j)n

]
.

This establishes Proposition 7.
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Now we are ready to prove Lemma 1. In the result of Proposition 7 we set
n = 1 and multiply both sides by 2m+ 1. This gives us

5m (2m+ 1) =

(
2m

0

)
L(2m+1) (2m+ 1) (32)

+

m∑
j=1

[((
2m

j

)
−
(

2m

j − 1

))
L(2m+1−2j) (2m+ 1)

]
.

For the expression in brackets, let us concentrate on the product

(2m+ 1)

((
2m

j

)
−
(

2m

j − 1

))
.

The basic identity (
2m

j − 1

)
+

(
2m

j

)
=

(
2m+ 1

j

)
allows us to rewrite it as

(2m+ 1)

((
2m+ 1

j

)
− 2

(
2m

j − 1

))
= (2m+ 1)

[
(2m+ 1)!

j! (2m+ 1− j)!
− 2 · (2m)!

(j − 1)! (2m+ 1− j)!

]
= (2m+ 1)

[
(2m+ 1)!

j! (2m+ 1− j)!
− 2j (2m)!

j! (2m+ 1− j)!

]
=

(2m+ 1) (2m+ 1)!− 2j (2m+ 1)!

j! (2m+ 1− j)!

= (2m+ 1− 2j)

(
2m+ 1

j

)
.

(32) has become

5m (2m+ 1) =

(
2m

0

)
L(2m+1) (2m+ 1)

+

m∑
j=1

[(
2m+ 1

j

)
L(2m+1−2j) (2m+ 1− 2j)

]
.

If we change
(
2m
0

)
to
(
2m+1

0

)
then we get

2m+ 1 =
1

5m

m∑
j=0

[(
2m+ 1

j

)
L(2m+1−2j) (2m+ 1− 2j)

]
.

We have proved Lemma 1.
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