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Abstract.  

In this article, its shown that the ABC Conjecture is correct for integers a+b=c, and any real number r>1. This 

article proposes that the ABC Conjecture is true iff: c>0. 
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1. Introduction.  

The ABC Conjecture has been a controversial topic in Mathematics and was proposed independently by both 

Joseph Oesterle and David Masser in 1985 – see Scholze & Stix (2018), and Granville & Tucker (2002). The ABC 

Conjecture is defined as follows. Let a, b and c be coprime integers, where a+b=c. A square-free number is a 

number that cannot be divided by the square of any number. The “square-free part” of a number n [formally 

referred to as “sqp(n)” or “rad(n)” or “radical(n)”] is the largest square-free number that can be formed by 

multiplying the factors of n that are prime numbers.  

The Original ABC Conjecture (“ABC conjecture-I”) states that for every positive real number ε, there 

exist only finitely many coprime positive integers (a,b,c), with a+b=c, such that:  

c> rad(abc)
(1+ɛ)

    

 

A second equivalent formulation of the ABC Conjecture (“ABC conjecture-II”) states that for every 

positive real number ε, there exists a constant Kε such that for all triples (a, b, c) of coprime positive integers, with 

a+b=c:  

c< (Kɛ)rad(abc)
(1+ɛ)

    

 

A third equivalent formulation of the ABC Conjecture (“ABC conjecture-III”) states that for co-prime 

integers a+b=c, the ratio [rad(abc)
r
/c] is always greater than zero for any value of r greater than one. Its easy to see 

that ABC Conjecture-I is equivalent to ABC Conjecture-III (and the following effectively proves ABC Conjecture-I) 

because: 

i) r=(1+ε). 

ii) if  c>[rad(abc)
(1+ɛ)

] and r=(1+ε), then the statement “…the ratio rad(abc)
r
/c is always greater than zero 

for any value of r….” automatically implies that there are only finitely many triples (a, b, c) of coprime 

positive integers with a+b=c, that satisfy the condition c> rad(abc)
(1+ɛ)

. The “always-greater-than-zero” 

restriction in ABC Conjecture-III eliminates all negative-number values (of the ratio rad(abc)
r
/c) and also 

reduces the number-of-feasible-combinations of coprimes a, b and c to only-finitely-many triples.        

iii) As (a,b,c)→0, the number-of-feasible-combinations of coprimes a, b and c that satisfy c>[rad(abc)
(1+ɛ)

] 

also tends to zero. That is as (a,b,c)→+∞, the powers of primes that are factors of a,b,c (and that are 

included in rad[abc]) will typically increase, but the number of “distinct factors” of a, b and c that are 

primes (and that are included in rad[abc]) will decline. Thus, there exist only finitely many triples (a,b,c) of 

coprime positive integers, with a+b=c, such that: c> rad(abc)
(1+ɛ)

.     

iv) As (a,b,c)→+∞, the number-of-feasible-combinations of coprimes a, b and c that satisfy 

c>[rad(abc)
(1+ɛ)

] also tends to zero. That can be partly attributed to the following:   
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1) That is as (a,b,c)→+∞, the powers of primes that are factors of a,b,c (and that are 

included in rad[abc]) will typically increase, but the number of “distinct factors” of a, b and 

c that are primes (and that are included in rad[abc]) may not increase and may decline. 

2) As (a,b,c)→+∞, the number of “distinct factors” that of a, b and c that are primes (and 

that are included in rad[abc]) will generally decline because as (a,b,c)→+∞, the absolute 

number of primes in any contiguous series of equal intervals (of positive integers), tends to 

zero. For example, for the series of positive-integer intervals (1,1000), (1001-2000), 

(2001,3000)……..(200,001;201,000), the number of primes in each interval declines as the 

positive-integers increase in value.   

Thus, there exist only finitely many triples (a,b,c) of coprime positive integers, with a+b=c, such 

that: c> rad(abc)
(1+ɛ)

.     

 

It’s also easy to see that ABC Conjecture-II is equivalent to ABC Conjecture-III because: 

i) r=(1+ε)>1. 

ii) if  c<[(Kɛ)rad(abc)
(1+ɛ)

] and r=(1+ε), then Kɛ, [rad(abc)
r
/c)] >0. That is, the inequality 

c<[(Kɛ)rad(abc)
(1+ɛ)

] is mathematically equivalent to the statement “…..[rad(abc)
r
/c)]>0, for any value of 

the r…..”.  

 

The ABC Conjecture is related to compounding (financial mathematics) because of the exponent r=(1+ε)>1 

(see Chapters 4, 5, 7 & 8 in Nwogugu [2017]). Contrary to assertions by mathematics professors, the ABC 

Conjecture isn’t related to Fermat’s Last Conjecture primarily because: i) in Fermat’s equation, (a+b) is not 

required to be equal to c; and each of a, b, and c are not required to be co-prime; and ii) there is compounding in 

both sides (all the variables/bases) of Fermat’s equation – see Nwogugu (2020a;b); iii) Fermat’s Last Conjecture 

can be proved without reference to the factors of a, b and c – see Nwogugu (2020a;b).      

 Most or all the attempts to prove the ABC Conjecture have been un-necessarily convoluted and remain 

unverified – for example, see: Mochizuki (2020a;b;c;d), Yamashita (2018), and Silverman (1988). Scholze & Stix 

(2018) specifically noted that Mochizuki (2020a;b;c;d) was wrong and didn’t prove the ABC Conjecture. Also see 

Yirka (April 2020) and Castelvecchi (April 2020).   

 

 

2. The Theorems.  

 

Theorem-1 (“ABC conjecture-III”): for co-prime integers a+b=c, the ratio [rad(abc)
r
/c] is always greater than 

zero for any value of r greater than one.     

Proof:  

a+b=c, are integers but their signs can be positive or negative, and any can be zero. r>1 is any real number.  

 

Let 0<p(a)<+∞ be the product of multiplying the distinct factors of a that are prime numbers (ie. but without 

repeating factors that are primes and occur more than once); and a≥p(a), iff a>0. Thus in the case of a=125 (which is 

5x5x5), p(a)=5x1=5. If a is a prime number then its divisible by only one and itself, in which case a=p(a); and thus 

in the case of a=61, p(a)=61x1=61.        

 

Let 0<p(b)<+∞ be the product of multiplying the distinct factors of b that are prime numbers (ie. but without 

repeating factors that are primes and occur more than once); and b≥p(b), iff b>0. If b is a prime number then its 

divisible by only one and itself, in which case b=p(b).   

 

Let 0<p(c)<+∞ be the product of multiplying the distinct factors of c that are prime numbers (but without repeating 

factors that are primes and occur more than once); and c≥p(c), iff c>0. If c is a prime number then its divisible by 

only one and itself, in which case c=p(c).  

 

Where a or b or c is a negative integer, it can still have a square-free part that is the product of one or more prime 

numbers (eg. 1).  
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Each of p(a), p(b), p(c), [p(a)p(b)p(c)] and rad(abc) is the product of prime numbers and will always be a positive 

integer.  

 

1.1) Thus, rad(abc) = p(a)p(b)p(c) 

1.2) If a+b=c, then p(a),p(b),p(c)≤c, iff c>0. 

 

1.3) [rad(abc)/c]>1, iff: 

i) rad(abc) >│c│, and both numbers have the same sign.   

 

1.4) [rad(abc)/c] >0, iff: 

i) c>0 (rad(abc) is derived from prime numbers and will always be a positive integer).   

 

The smallest positive real number at which compounding (financial mathematics) starts is one (such as 

1.000000000000000000000000000000000001). Thus, as long as r>1, there will be compounding, and then if 

[rad(abc)/c]>0 under conditions stated herein and above, then +∞>[rad(abc)
r
]/c >0, iff: c>0. Thus, the ABC 

Conjecture (“ABC conjecture-III”) is correct     ▄ 

 

 

Theorem-2 (The Original ABC Conjecture (“ABC conjecture-I”)): for every positive real number ε, there exist 

only finitely many coprime positive integers (a,b,c), with a+b=c, such that:  

c> rad(abc)
(1+ɛ)

    
Proof:  

As mentioned herein and above, r=(1+ε)>1. 

 

As mentioned herein and above, as (a,b,c)→0, the number-of-feasible-combinations of coprimes a, b and c that 

satisfy c>[rad(abc)
(1+ɛ)

] also tends to zero. That is as (a,b,c)→+∞, the powers of primes that are factors of a,b,c (and 

that are included in rad[abc]) will typically increase, but the number of “distinct factors” of a, b and c that are 

primes (and that are included in rad[abc]) will decline. Thus, there exist only finitely many triples (a,b,c) of coprime 

positive integers, with a+b=c, such that: c> rad(abc)
(1+ɛ)

.     

 

As mentioned herein and above, as (a,b,c)→+∞, the number-of-feasible-combinations of coprimes a, b and c that 

satisfy c>[rad(abc)
(1+ɛ)

] also tends to zero. That can be partly attributed to the following:   

1) That is as (a,b,c)→+∞, the powers of primes that are factors of a,b,c (and that are included in rad[abc]) 

will typically increase, but the number of “distinct factors” of a, b and c that are primes (and that are 

included in rad[abc]) may not increase and may decline. 

2) As (a,b,c)→+∞, the number of “distinct factors” that of a, b and c that are primes (and that are included 

in rad[abc]) will generally decline because as (a,b,c)→+∞, the absolute number of primes in any 

contiguous series of equal intervals (of positive integers), tends to zero. For example, for the series of 

positive-integer intervals (1,1000), (1001-2000), (2001,3000)……..(200,001;201,000), the number of 

primes in each interval declines as the positive-integers increase in value.   

Thus, there exist only finitely many triples (a,b,c) of coprime positive integers, with a+b=c, such that: c> 

rad(abc)
(1+ɛ)

.     

 

Although in many or most instances, c < rad[abc] (in fewer instances, c >rad[abc]); as r→+∞ (and because of 

compounding since r=(1+ε)>1; see Chapters 4, 5, 7 & 8 in Nwogugu [2017]), r will reach a value where 

c<[rad(abc)
r
] exists for all feasible triples (a,b,c) (that satisfy c>[rad(abc)

r
]) and this threshold value of r is hence 

forth referred to as rmax. This rmax effectively limits/caps both: i) the number-of-feasible-combinations of coprimes a, 

b and c that satisfy c>[rad(abc)
r
], and ii) the number of “distinct factors” of a, b and c that are primes (and produce 

rad[abc]).  

 

Thus, there are only finitely many coprime positive integers (a,b,c), with a+b=c, such that: c> rad(abc)
(1+ɛ)

; and the 

Original ABC Conjecture (“ABC conjecture-I”) is correct.  ▄ 
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3. Conclusion. 

The ABC Conjecture is true for positive coprime integers a+b=c, and any real number r =(1+ε) >1.     
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