
1 

 

Nonlinearity, The Jeśmanowicz Conjecture And 

The Equations a
2
+b

2
=c

2
, And ax+by=cz. 

 

 

Michael C. Nwogugu 

Address: Enugu 400007, Enugu State, Nigeria 

Emails: mcn2225@gmail.com; mcn2225@aol.com 

Skype: mcn1112 

Phone: 234-909-606-8162 or 234-814-906-2100. 
 

 

Abstract. 

In this article, several joint-properties of the equations a
2
+b

2
=c
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, and ax+by=cz, are introduced. 
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1. Introduction. 

On the Jeśmanowicz Conjecture which has generated substantial debate for decades, see: Guo & Le (1995), 

Miyazaki (2011; 2013), Miyazaki, Yuan & Wu (2014); Miyazaki & Terai (2015), Takakuwa (1996), and Terai 

(2014). On various approaches for solving related diophantine equations, see: Bennett & Skinner (2004). On 

Pythagorean numbers, see: Jeśmanowicz (1955/1956). On other approaches to solving Diophantine Equations, 

see: Rahmawati, Sugandha, et. al. (2019), Darmon & Merel (1997) and Ibarra & Dang (2006).   

On Homomorphisms, see: Wang & Chin (2012). Chu (2008) and Lu & Wu (2016) studied dynamical 

systems pertaining to Diophantine equations (and equations such as a
2
+b

2
=c

2
, and ax+by=cz can approximate 

Dynamical Systems). Luca, Moree & Weger (2011) discussed Group Theory. Elia (2005), Jones, Sato, et. al. 

(1976) and Matijasevič (1981) noted that primes can be represented as Diophantine equations or as polynomials 

(ie. and each of the equations a
2
+b

2
=c

2
, and ax+by=cz, can represent a prime). On uses of Diophantine 

Equations in Cryptography, see: Ding, Kudo, et. al. (2018), Okumura (2015), and Ogura (2012) (each of the 

equations a
x
+b

y
=c

z
 and ax+by=cz can be used in cryptoanalysis and in creation of public-keys). Zadeh (2019) 

notes that Diophantine equations have been used in analytic functions.  

For the equation a
x
+b

y
=c

z
 in positive integers, the following are combinations of a,b,c, x,y and z; but for 

each such combination, (a
x
+b

y
)/c

z
 ≈1.0000000000000000000000 (the equation is not exactly equal to 

1.0000000000000000000000000 like in pythagorean triples): 

i) a = 3; b= 5; c = 7; x= 6; y = 7; z= 7; and (a
x
+b

x
)/c

x
 = 1.018206700.   

ii) a = 60; b= 80; c = 461; x= 6; y = 7; z= 7; and (a
x
+b

x
)/c

x
 = 1.009462982.   

iii) a = 434,500; b= 425,000; c = 75,696,000; x= 6; y = 7; z= 7; and (a
x
+b

x
)/c

x
 = 1.007764426.   

iv) a = 37,566; b= 24,844; c = 461; x= 23; y = 40; z= 66; and (a
x
+b

x
)/c

x
 = 1.010647596.   

v) a = 567,000; b= 424,410; c = 2,575; x= 23; y = 40; z= 66; and (a
x
+b

x
)/c

x
 = 1.000292303.   

 

Given the foregoing, Jesmanowicz’s Conjecture can be valid only in the Domain-Of-Integers, but not in 

the Domain-Of-Real-Numbers. Lolja (2018) explained the differences between the Domain-of-Integers and the 

Domain-Of-Lines.   
 

 

2. The Theorems. 
 

Theorem-1: Jeśmanowicz Conjectured That For Any Primitive Pythagorean Triple (a, b, c), The 

Equation a
x
+b

y
 = c

z
 Has The Unique Solution (x, y, z) = (2, 2, 2) In Positive Integers x, y and z; But 

Its Conjectured Here That For Any Pythagorean Equation a
x
+b

y
=c

z
 That Satfisfies The Jesmanowicz 

Conjecture (and a,b,c,x,y And z Are Integers), The Equation ax+by=cz Doesn’t Have The Unique 

Solution (x, y, z)=(2, 2, 2) In Positive Integers, If: (a–b)= ±1. 
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Proof: 

The equation (a–b)= ±1 is henceforth referred to as the “(a-b) Conditions”. 

 

1.1) Assuming that (x,y,z) = (2,2,2); then ax+by=cz is 

2a+2b=2c. Dividing both sides by 2, the result is: 

1.2) a+b=c. 

1.3) Its easy to see that for any positive integers a, b and c, if a+b=c, then a
2
+b

2
≠ c

2
. 

 

If (a-b) = 1, then: 

1.4) a=(1+b) 

1.5) ax+by = cz = (1+b)x+by = x+b(x+y) = z(a
2
+b

2
)
1/2

 = 

1.6) (1+b)x+(a-1)y = cz = x+xb+ay-y 

1.7) Thus, x+xb+ay-y = x+bx+by = cz 

1.8) and: (ay-y) = (by) = (cz-x-bx) 

by dividing both sides of the first two terms by y, the result is: 

1.9) b = (a-1) 

1.10) 1= (a-b) 

Since by = cz-ax 

1.11) cz-ax = cz-x-bx 

 

Let: a=(1+b) (this is the first (a-b) Condition). 

The next step is to substitute 1=(a-b); x,y,z=2; and other preceding equations into equation a
2
+b

2
 

=c
2
.  

1.12) Then if the (a-b) Condition is true, and if as mentioned above a+b=c, then (a
2
+b

2
) = c

2
 = 

(a+b)
2
 But that is incorrect because: 

1.13) (a+b)
2
 = (a+b)(a+b) = a

2
+ab+ab+b

2
 = a

2
+2ab+b

2
; and (a

2
+b

2
) ≠ a

2
+2ab+b

2
 

1.14) Furthermore, if the (a-b) Condition is true, by substituting 1=(a-b) into a
2
+b

2
 =c

2
, then: (a

2
+b

2
) = 

[(1+b)
2
+b

2
] = c

2
 = (a+b)

2
 

1.15) Which implies that 1+2b+2b
2
 = a

2
+2ab+b

2
, which is clearly incorrect. 

 

Similarly, assume (a-b)=-1 (the second (a-b) Condition); and thus a= (b-1). 

The next step is to substitute [-1=(a-b)], and [x,y,z=2] into equation a
2
+b

2
 =c

2
. 

If the second (a-b) Condition is true then: (a
2
+b

2
) = [(b-1)

2
+b

2
] = c

2
 

1.16) (a
2
+b

2
) = a

2
+2ab+b

2
. 

1.17) [(b-1)
2
+b

2
] = 2b

2
-2b+1 

1.18) But 2b
2
-2b+1 ≠ a

2
+2ab+b

2
. 

Thus, both (a-b) Conditions are false.  ▄    

 
 

Theorem-2: For a
2
+b

2
=c

2
, And Where a,b,c,x,y, and z Are Positive Integers, The Equation And 

Condition ax+by=cz Can Be Valid And Can Have A Solution. 

Proof: 

If: ax+by=cz, then let: 

2.1) a = (cz-by)/x 

2.2) b = (cz-ax)/y 

2.3) c = (ax+by)/z 

2.4.) x = (cz-by)/a 

2.5) y = cz-ax/b 

2.6) z= (ax-by)/c 

 

If a
2
+b

2
=c

2
 (the unique solution in the Jesmanowicz Conjecture) then by substitution: 

2.7) [(cz-by)/x]
2
 + [(cz-ax)/y]

2
 = [(ax+by)/z]

2
; and: 
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2.8) [(cz-by)
2
/x

2
] + [(cz-ax)

2
/y

2
] = [(ax+by)

2
/z

2
]; and: 

2.9) [(cz-by)
2
/((cz-by)/a)

2
] + [(cz-ax)

2
/((cz-ax)/b)

2
] = [(ax+by)

2
/((ax-by)/c)

2
]; and thus: 

 

a
2
+ b

2
 = c

2
 

Thus, if [a
2
+b

2
=c

2
], then the equation and condition [ax+by=cz] holds for some (a,b,c,x,y,z). ▄ 

 

 

Theorem-3: Generally, if a
2
+b

2
 = c

2
; from which: 

a1
2
+b1

2
=c1

2
; from which: 

a2
2
+b2

2
=c2

2
; from which: 

a3
2
+b3

2
=c3

2
; then: c

2
 = c1

2
= c2

2
=c3

2
. 

 

Proof: 

The above conditions are henceforth referred to as “Vertical Equalization” and they can simultaneously hold iff: 

a3
2
 is derived from (an expansion or substitution of) a2

2
 which is derived from (an expansion or substitution of) 

a1
2
 which is derived from (an expansion or substitution of) a

2
; and 

b3
2
 is derived from (an expansion or substitution of) b2

2
 which is derived from (an expansion or substitution of) 

b1
2
 which is derived from (an expansion or substitution of) b

2
; and 

c3
2
 is derived from (an expansion or substitution of) c2

2
 which is derived from (an expansion or substitution of) 

c1
2
 which is derived from (an expansion or substitution of) c

2
; 

then by “vertical equalization” (a new theory introduced here): 

c
2
 = c1

2
= c2

2
=c3

2
. ▄ 

 

 

Theorem-4: For a
2
+b

2
=c

2
, And Where a,b,c,x,y, and z Are Positive Integers; The Equation ax+by=cz Has The 

Non-Unique Solutions (a,b,c,)=(0;0;0) Or (x; y; z)=(1;1;1), Or (x,y,z)= (0;0;0), iff: (z>y,x) And (c>b>a). 

Proof: 
 

Let: 

4.1) a = (cz-by)/x 

4.2) b = (cz-ax)/y 

4.3) c = (ax+by)/z 

4.4) x = (cz-by)/a 

4.5) y = cz-ax/b 

4.6.) z= (ax-by)/c 

4.7) c>b> a, because a, b and c constitute a Pythagorean triple. 

4.8) z>y>x or z>y,x because a, b and c constitute a Pythagorean triple. 

 

If a
2
+b

2
=c

2
, then by substitution: 

4.9) [(cz-by)/x]
2
 + [(cz-ax)/y]

2
 = [(ax+by)/z]

2
; and from that: 

4.10) [(cz-by)
2
/x

2
] + [(cz-ax)

2
/y

2
] = [(ax+by)

2
/z

2
]; and then from that: 

4.11) [(cz-by)
2
y

2
] + [(cz-ax)

2
x

2
] = [((ax+by)

2
x

2
y

2
)/z

2
], and by inspection, z>y,x (and also because a, b 

and c constitute a Pythagorean triple). 

4.12) Its easy to see that for any positive integers a, b and c, if a+b=c, then a
2
+b

2
≠ c

2
. 

Thus, the above equations imply that by Vertical Equalization: 

4.13) [(ax+by)/z]
2
 = [((ax+by)

2
x

2
y

2
)/z

2
], which can be true iff (a,b,c) = (0,0,0); or (x,y,z)= (0;0;0). 

4.14) Also, [(cz-by)
2
/x

2
] + [(cz-ax)

2
/y

2
] = [(ax+by)

2
/z

2
]; and thus: 

4.15) [(cz-by)
2
/((cz-by)/a)

2
] + [(cz-ax)

2
/((cz-ax)/b)

2
] = [(ax+by)

2
/((ax-by)/c)

2
]; and: 

a
2
+ b

2
 = c

2
      ▄ 
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3. Conclusion. 

The foregoing are several important “joint” properties of the equations a
2
+b

2
= c

2
, and ax+by=cz. Both 

equations have potentially wide applications in Computer Science, Applied Math, Game Theory and Physics.   
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