Approximation of Euler's number

Richard Zhang

June 17, 2020

Abstract

It is commonly thought that Euler's number, denoted as ' e ' is approximately equal to 2.71828. In fact this error is found everywhere and even my CASIO fx-100AU PLUS calculator claims that $\mathrm{e}=2.718281828 \ldots$. The following paper will explore this misconception and analytically find another approximation for e.

Theorem 0.1.

$$
e=3
$$

Proof. We start with the integral $\int_{1}^{e} \frac{1}{x} d x$. After simple rearranging

$$
\int_{1}^{e} \frac{1}{x} d x=\int_{1}^{e} d \frac{x}{x}
$$

Using algebaric manipulation allows us to write the integral in an alternate form

$$
=\int_{1}^{e} 1 d \frac{x}{x}=\int_{1}^{e} 1 d 1
$$

This resulting integral can be easily computed

$$
\begin{aligned}
& =\left.\frac{1^{2}}{2}\right|_{1} ^{e}=\left.\frac{1}{2}\right|_{1} ^{e} \\
& =\frac{1}{2}(e-1)
\end{aligned}
$$

Now we make use of the mathematical fact

$$
\int_{1}^{e} \frac{1}{x} d x=1
$$

We may thus equate the two results

$$
\begin{aligned}
\frac{1}{2}(e-1) & =1 \\
e-1 & =2
\end{aligned}
$$

Solving this equation gives the truly astounding result

$$
e=3
$$

Please forward any counterexamples to richardzhang@live.com.au

